1
|
Wei J, Xing Y, Ye X, Nguyen B, Wojtas L, Hong X, Shi X. Gold-Catalyzed Amine Cascade Addition to Diyne-Ene: Enantioselective Synthesis of 1,2-Dihydropyridines. Angew Chem Int Ed Engl 2023; 62:e202305409. [PMID: 37167070 PMCID: PMC10524696 DOI: 10.1002/anie.202305409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/13/2023]
Abstract
With the well-documented chemical and biological applications, piperidine and pyridine are among the most important N-heterocycles, and a new synthetic strategy, especially one with an alternative bond-forming design, is of general interest. Using the gold-catalyzed intermolecular condensation of amine and diyne-ene, we report herein the first example of enantioselective 1,2-dihydropyridine synthesis through a formal [3+2+1] fashion (up to 95 % yield, up to 99 % e.e.).
Collapse
Affiliation(s)
- Jingwen Wei
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Yangyang Xing
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Xiaohan Ye
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Bao Nguyen
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| |
Collapse
|
2
|
Lin LC, Suresh S, Lin KW, Kavala V, Yao CF. One-Pot Knoevenagel/Imination/6π-Azaelectrocyclization Sequence for the Synthesis of Disubstituted Nicotinonitriles. J Org Chem 2023. [PMID: 37437261 DOI: 10.1021/acs.joc.3c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
We report on a copper-catalyzed three-component reaction for the synthesis of disubstituted nicotinonitriles using 3-bromopropenals, benzoylacetonitriles, and ammonium acetate (NH4OAc). The Knoevenagel-type condensation of 3-bromopropenals with benzoylacetonitriles gives δ-bromo-2,4-dienones that contain strategically placed functional groups that react with the ammonia generated in situ to give the corresponding azatrienes. These azatrienes can then be transformed into trisubstituted pyridines under the reaction conditions via a reaction sequence involving 6π-azaelectrocyclization and aromatization.
Collapse
Affiliation(s)
- Li-Chun Lin
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, R.O.C
| | - Sundaram Suresh
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, R.O.C
| | - Kun-Wu Lin
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, R.O.C
| | - Veerababurao Kavala
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, R.O.C
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, R.O.C
| |
Collapse
|
3
|
Jiang J, Zhou J, Li Y, Peng C, He G, Huang W, Zhan G, Han B. Silver/chiral pyrrolidinopyridine relay catalytic cycloisomerization/(2 + 3) cycloadditions of enynamides to asymmetrically synthesize bispirocyclopentenes as PDE1B inhibitors. Commun Chem 2023; 6:128. [PMID: 37337043 DOI: 10.1038/s42004-023-00921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Significant progress has been made in asymmetric synthesis through the use of transition metal catalysts combined with Lewis bases. However, the use of a dual catalytic system involving 4-aminopyridine and transition metal has received little attention. Here we show a metal/Lewis base relay catalytic system featuring silver acetate and a modified chiral pyrrolidinopyridine (PPY). It was successfully applied in the cycloisomerization/(2 + 3) cycloaddition reaction of enynamides. Bispirocyclopentene pyrazolone products could be efficiently synthesized in a stereoselective and economical manner (up to >19:1 dr, 99.5:0.5 er). Transformations of the product could access stereodivergent diastereoisomers and densely functionalized polycyclic derivatives. Mechanistic studies illustrated the relay catalytic model and the origin of the uncommon chemoselectivity. In subsequent bioassays, the products containing a privileged drug-like scaffold exhibited isoform-selective phosphodiesterase 1 (PDE1) inhibitory activity in vitro. The optimal lead compound displayed a good therapeutic effect for ameliorating pulmonary fibrosis via inhibiting PDE1 in vivo.
Collapse
Affiliation(s)
- Jing Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Jin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Yang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China.
| |
Collapse
|
4
|
Yu J, Wang X, Xu M, Zhang B, Xiong Z, Mao H, Lv X, Zhou L. Synthesis of α-pyrones via gold-catalyzed cycloisomerization/[2 + 1] cycloaddition/rearrangement of enyne-amides and sulfur ylides. Org Chem Front 2023. [DOI: 10.1039/d2qo01388f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel gold-catalyzed cycloisomerization/[2 + 1]cycloaddition/rearrangement of enyne-amides and sulfur ylides is reported. This strategy enables rapid and efficient construction of a series of α-pyrone derivatives.
Collapse
Affiliation(s)
- Jinhang Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Xinyuan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Mengjiao Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Bei Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zuping Xiong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Hui Mao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Xin Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
5
|
Rakshit A, Dhara HN, Sahoo AK, Alam T, Patel BK. Pd(II)-Catalyzed Synthesis of Furo[2,3- b]pyridines from β-Ketodinitriles and Alkynes via Cyclization and N-H/C Annulation. Org Lett 2022; 24:3741-3746. [PMID: 35584095 DOI: 10.1021/acs.orglett.2c01472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A Pd(II)-catalyzed synthesis of furopyridines has been developed from β-ketodinitriles and alkynes via an unusual N-H/C annulation. The participation of both the nitrile groups and the concurrent construction of furan and pyridine rings through the formation of C-C, C═C, C-O, C-N, and C═N bonds are the important features. The synthetic applicability is further demonstrated through a series of postsynthetic alterations.
Collapse
Affiliation(s)
- Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
6
|
Khosravi H, Ghazvini HJ, Kamangar M, Rominger F, Balalaie S. Migratory cycloisomerization of 1,3-dien-5-ynes conjugated with pseudopeptides in assembly of benzo[7]annulenes. Chem Commun (Camb) 2022; 58:2164-2167. [PMID: 35060573 DOI: 10.1039/d1cc06533e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A novel domino cycloisomerization of 1,3-dien-5-ynes for the synthesis of 7H-benzo[7]annulenes is reported. The noticeable feature of this domino reaction involves the assembly of the fused bicyclic motifs through a transamidation/5-exo-trig cyclization/8π-electrocyclization sequence in a single step. Finally, mechanistic investigations were conducted experimentally and supported by DFT calculations.
Collapse
Affiliation(s)
- Hormoz Khosravi
- Peptide Chemistry Research Institute, Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.
| | - Helya Janatian Ghazvini
- Peptide Chemistry Research Institute, Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.
| | - Mohammad Kamangar
- Peptide Chemistry Research Institute, Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.
| |
Collapse
|
7
|
Yang WL, Shen JH, Zhao ZH, Wang Z, Deng WP. Stereoselective synthesis of functionalized azepines via gold and palladium relay catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00646d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a cycloisomerization/asymmetric [4 + 3] cycloaddition cascade reaction via gold/palladium relay catalysis, furnishing enantioenriched furan-fused azepines efficiently.
Collapse
Affiliation(s)
- Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jia-Huan Shen
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zeng-Hui Zhao
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhongao Wang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wei-Ping Deng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
8
|
Zhou L, Yu J, Xu M, Wang X, Zhang B, Mao H, Lv X. Catalyst-controlled cycloisomerization/[4+3] cycloaddition sequence to construct 2,3-furan-fused dihydroazepines and 2,3-pyrrole-fused dihydrooxepines. Org Chem Front 2022. [DOI: 10.1039/d1qo01733k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel catalyst-controlled cycloisomerization/[4+3]cycloaddition sequence of readily available acyclic enyne-amides and crotonate-derived sulfur ylides is reported. This strategy enables the rapid and efficient construction of a series of bicyclic 2,3-furan-fused...
Collapse
|
9
|
Electrocyclizations of Conjugated Azapolyenes Produced in Reactions of Azaheterocycles with Metal Carbenes. ORGANICS 2021. [DOI: 10.3390/org2030017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Conjugated azapolyenes (azabuta-1,3-dienes, aza-/diaza-/oxaza-/oxadiazahexa-1,3,5-trienes) are highly reactive in electrocyclization reactions, which makes them convenient precursors for the synthesis of a wide range of four-, five-, and six-membered nitrogen heterocycles that are of relevance for medicinal chemistry. Ring opening reactions of 2H-azirines and azoles containing an N–N or N–O bond, initiated by a transition metal carbene, have become increasingly important in recent years, since they easily allow the generation of azapolyenes with different numbers of double bonds and heteroatoms in various positions. This review summarizes the literature, published mainly in the last decade, on the synthetic and mechanistic aspects of electrocyclizations of azapolyenes generated by the carbene method.
Collapse
|
10
|
Nie W, Shen S, Ma C. Rhodium-Catalyzed Dehydrogenative Cycloisomerization of Dienylcyclopropane to Highly Substituted Toluene. Org Lett 2021; 23:4337-4341. [PMID: 34029111 DOI: 10.1021/acs.orglett.1c01265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A rhodium-catalyzed dehydrogenative cycloisomerization of dienylcyclopropane compounds is reported, which provides a straightforward approach to a variety of highly substituted toluene derivatives in 67-85% yields. The dienylcyclopropane-imides are produced by a single-step formal three-component olefination procedure. Preliminary mechanistic studies indicated that an electron-withdrawing group as R plays a critical role in completing this transformation.
Collapse
Affiliation(s)
- Wo Nie
- Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China
| | - Shichao Shen
- Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China
| | - Cheng Ma
- Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China
| |
Collapse
|
11
|
Strelnikova JO, Koronatov AN, Rostovskii NV, Khlebnikov AF, Khoroshilova OV, Kryukova MA, Novikov MS. Rhodium-Catalyzed Denitrogenative Diazole-Triazole Coupling toward Aza-Bridged Structures and Imidazole-Based Chelating Ligands. Org Lett 2021; 23:4173-4178. [PMID: 33999636 DOI: 10.1021/acs.orglett.1c01092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
1,4,8-Triazaocta-1,3,5,7-tetraenes, generated in situ by Rh2(Piv)4-catalyzed denitrogenative coupling of pyrazoles with 1-sulfonyl-1,2,3-triazoles, smoothly form 2,6,8-triazabicyclo[3.2.1]octa-3,6-dienes via intramolecular aza-Diels-Alder cycloaddition. This domino reaction, combined with the subsequent thermal or acid-catalyzed rearrangement of the cycloadducts, provides direct and flexible access to N-sulfonylated (Z)-2-(2-aminovinyl)imidazoles.
Collapse
Affiliation(s)
- Julia O Strelnikova
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander N Koronatov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Nikolai V Rostovskii
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander F Khlebnikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Olesya V Khoroshilova
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Mariya A Kryukova
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Mikhail S Novikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
12
|
Yang G, Ke Y, Zhao Y. Stereoselective Access to Polyfunctionalized Nine‐Membered Heterocycles by Sequential Gold and Palladium Catalysis. Angew Chem Int Ed Engl 2021; 60:12775-12780. [DOI: 10.1002/anie.202102061] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/28/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Ya‐Ming Ke
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
13
|
Yang G, Ke Y, Zhao Y. Stereoselective Access to Polyfunctionalized Nine‐Membered Heterocycles by Sequential Gold and Palladium Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Ya‐Ming Ke
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
14
|
Liu J, Zhu L, Wan W, Huang X. Gold-Catalyzed Oxidative Cascade Cyclization of 1,3-Diynamides: Polycyclic N-Heterocycle Synthesis via Construction of a Furopyridinyl Core. Org Lett 2020; 22:3279-3285. [PMID: 32242410 DOI: 10.1021/acs.orglett.0c01086] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A facile and practical approach to construct a furopyridinyl motif through a gold-catalyzed cascade cyclization of easily accessible diynamides is described. This strategy offers a straightforward approach to furo[2,3-c]isoquinoline and 6H-furo[3',2':5,6]pyrido[3,4-b]indole derivatives. The reaction could build up four new bonds and two additional heteroaromatic rings via a single operation. The heterocyclic products show promising blue luminous performance with fluorescence quantum yields up to 75%.
Collapse
Affiliation(s)
- Jibing Liu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Zhou L, Wu X, Yang X, Mou C, Song R, Yu S, Chai H, Pan L, Jin Z, Chi YR. Gold and Carbene Relay Catalytic Enantioselective Cycloisomerization/Cyclization Reactions of Ynamides and Enals. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910922] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liejin Zhou
- Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Xingxing Wu
- Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Xing Yang
- Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Chengli Mou
- Guizhou University of Traditional Chinese Medicine Guizhou P. R. China
| | - Runjiang Song
- Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Shuyan Yu
- Material and Chemical Engineering College Zhengzhou University of Light Industry Zhengzhou 450001 Henan Province P. R. China
| | - Huifang Chai
- Guizhou University of Traditional Chinese Medicine Guizhou P. R. China
| | - Lutai Pan
- Guizhou University of Traditional Chinese Medicine Guizhou P. R. China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 P. R. China
| |
Collapse
|
16
|
Gold and Carbene Relay Catalytic Enantioselective Cycloisomerization/Cyclization Reactions of Ynamides and Enals. Angew Chem Int Ed Engl 2019; 59:1557-1561. [DOI: 10.1002/anie.201910922] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/24/2019] [Indexed: 01/04/2023]
|
17
|
Miao M, Jin M, Xu H, Chen P, Zhang S, Ren H. Synthesis of 5H-Dibenzo[c,g]chromen-5-ones via FeCl3-Mediated Tandem C–O Bond Cleavage/6π Electrocyclization/Oxidative Aromatization. Org Lett 2018; 20:5718-5722. [DOI: 10.1021/acs.orglett.8b02434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Maozhong Miao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Mengchao Jin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Huaping Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Panpan Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Shouzhi Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Hongjun Ren
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
18
|
Sun J, Cheng X, Mansaray JK, Fei W, Wan J, Yao W. A copper-catalyzed three component reaction of aryl acetylene, sulfonyl azide and enaminone to form iminolactone via 6π electrocyclization. Chem Commun (Camb) 2018; 54:13953-13956. [DOI: 10.1039/c8cc06868b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We developed a copper-catalyzed three component reaction of aryl acetylene, enaminone and sulfonyl azide to construct iminolactone via copper-catalyzed alkyne–azide cycloaddition (CuAAC), Michael addition of metalated ketenimine followed by elimination and 6π electrocyclization.
Collapse
Affiliation(s)
- Jiarui Sun
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou
- P. R. China
| | - Xiangsheng Cheng
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou
- P. R. China
| | | | - Weihong Fei
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou
- P. R. China
| | - Jieping Wan
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Weijun Yao
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou
- P. R. China
| |
Collapse
|