1
|
Hirao T, Kishino S, Yoshida M, Haino T. Chiral Induction of a Tetrakis(porphyrin) in Various Chiral Solvents. Chemistry 2024; 30:e202403569. [PMID: 39483106 DOI: 10.1002/chem.202403569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/03/2024]
Abstract
Non-covalent interactions offer an alternative way for developing stimulus-responsive materials such as sensors, machines, and drug-delivery systems. We recently reported that a urethane-equipped tetrakis(porphyrin) forms one-handed helical supramolecular polymers in solution in response to chirality of chiral solvents. Conformational changes in helical sense were detected using circular dichroism (CD) spectroscopy, which showed that the tetrakis(porphyrin) can possibly be used as a sensor for determining the enantiomeric excess of a chiral analyte. Hence, we studied the scope and limitations of the chiral-induction behavior of tetrakis(porphyrin) to deepen the understanding of tetrakis(porphyrin)-based chiral sensing systems. Herein, we report the chiral-induction behavior of tetrakis(porphyrin) in various chiral solvents, which was found to be CD-active in many chiral solvents. Notably, the tetrakis(porphyrin) was CD active in a cryptochiral molecular solvent, which is exciting because the chiralities of acyclic saturated hydrocarbons are hard to sense. Consequently, this study highlights the potential advantages of supramolecular chiral sensors capable of targeting a wide range of analytes, including molecules that are absorption-silent in the UV/vis region, ones devoid of anchoring functional groups, and acyclic, saturated hydrocarbons.
Collapse
Affiliation(s)
- Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Sei Kishino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Masaya Yoshida
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
2
|
Fujii N, Hisano N, Hirao T, Kihara SI, Tanabe K, Yoshida M, Tate SI, Haino T. Controlled Helical Organization in Supramolecular Polymers of Pseudo-Macrocyclic Tetrakisporphyrins. Angew Chem Int Ed Engl 2024:e202416770. [PMID: 39445656 DOI: 10.1002/anie.202416770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Tetrakisporphyrin monomers with amino acid side chains at each end form intramolecular antiparallel hydrogen-bonds to adopt chirally twisted pseudo-macrocyclic structures that result in right-handed and left-handed (P)- and (M)-conformations. The pseudo-macrocyclic tetrakisporphyrin monomers self-assembled to form supramolecular helical pseudo-polycatenane polymers via head-to-head complementary dimerization of the bisporphyrin cleft units in an isodesmic manner. The formation of one-handed supramolecular helical pseudo-polycatenane polymers was confirmed by circular dichroism (CD) spectroscopy. The methyl and iso-propyl groups at the stereogenic center greatly enhanced the induced circular dichroism in the Soret bands of the supramolecular helical pseudo-polycatenane polymers. The induced CDs were reduced upon the introduction of large iso-butyl and tert-butyl groups. Atomic force microscopy revealed well-grown and long supramolecular helical pseudo-polycatenane polymer chains with chain lengths in the range of 361 to 13.6 nm. The right-handed helical chains were established by the self-assembly of the right-handed (P)-conformation of the pseudo-macrocyclic monomer.
Collapse
Affiliation(s)
- Naoka Fujii
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Naoyuki Hisano
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takehiro Hirao
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shin-Ichi Kihara
- Department of Chemical Engineering Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Kouta Tanabe
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Masaya Yoshida
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shin-Ichi Tate
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
3
|
Abstract
Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have C4 symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host-guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures.
Collapse
Affiliation(s)
- Hosoowi Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Hyunjun Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Hirao T, Kishino S, Haino T. Supramolecular chiral sensing by supramolecular helical polymers. Chem Commun (Camb) 2023; 59:2421-2424. [PMID: 36727639 DOI: 10.1039/d2cc06502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A tetrakis(porphyrin) with branched side chains self-assembled to form supramolecular helical polymers both in solution and in the solid state. The helicity of the supramolecular polymers was determined by the chirality of solvent molecules, which permitted the polymer chains to be used in chiral sensing.
Collapse
Affiliation(s)
- Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Sei Kishino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan. .,International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| |
Collapse
|
5
|
Supramolecular Polymers: Recent Advances Based on the Types of Underlying Interactions. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Tan Y, Pan S, Zhang S, Fang L, Zhang F, Zhang Y, Jiang L. Crown‐Ether‐based Cryptands with Rarely Strong Affinities for Binding Neutral Organic Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yanyan Tan
- South China Normal University school of chemistry Higher Education Mega Center of GuangzhouGuangzhou 510631 Guangzhou CHINA
| | - Shaowu Pan
- South China Normal University Chemistry CHINA
| | - Shilong Zhang
- South China Normal University school of chemistry CHINA
| | - Lin Fang
- South China Normal University Chemistry Higher Education Mega CenterGuangzhou 510631 Guangzhou CHINA
| | - Feichun Zhang
- South China Normal University School of Chemistry CHINA
| | - Yuanyuan Zhang
- South China Normal University Guangzhou Higher Education Mega Center Chemistry Department 番禺区大学城中山大学格致园1号楼4单元1102 510006 广州市 CHINA
| | - Lasheng Jiang
- South China Normal University School of Chemistry Guangzhou 510006, P. R. ChinaGuangzhou 510006 Guangzhou CHINA
| |
Collapse
|
7
|
Affiliation(s)
- Naoyuki Hisano
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
8
|
Han Y, Yin Y, Wang F, Wang F. Single-Photon Near-Infrared-Responsiveness from the Molecular to the Supramolecular Level via Platination of Pentacenes. Angew Chem Int Ed Engl 2021; 60:14076-14082. [PMID: 33829624 DOI: 10.1002/anie.202103125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Near-infrared (NIR) responsiveness is important for various applications. Currently, single-photon NIR-responsive systems are rare compared to systems that display two-photon absorption and triplet-triplet annihilation processes. Supramolecular stacking of photo-responsive chromophores results in decreased efficiency due to space-confinement effects. Herein we show that σ-platination of pentacenes is a feasible protocol to build single-photon NIR-responsive systems, with advantages including a low HOMO-LUMO energy gap, high photochemical efficiency, and pathway specificity. The pentacene-to-endoperoxidation transformation is accompanied by color and absorbance changes. The high photo-oxygenation efficiency of σ-platinated pentacenes facilitates NIR responsiveness in one-dimensional supramolecular polymers, resulting in the disappearance of supramolecular chirality signals and disruption of self-assembled nanofibers. Overall, the σ-platination strategy opens up new avenues toward NIR photo-responsive materials at the molecular and supramolecular levels.
Collapse
Affiliation(s)
- Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yueru Yin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fan Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
9
|
Single‐Photon Near‐Infrared‐Responsiveness from the Molecular to the Supramolecular Level via Platination of Pentacenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Nitta N, Takatsuka M, Kihara S, Hirao T, Haino T. Self‐Healing Supramolecular Materials Constructed by Copolymerization via Molecular Recognition of Cavitand‐Based Coordination Capsules. Angew Chem Int Ed Engl 2020; 59:16690-16697. [DOI: 10.1002/anie.202006604] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/04/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Natsumi Nitta
- Graduate School of Science Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Mei Takatsuka
- Graduate School of Science Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Shin‐ichi Kihara
- Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Takehiro Hirao
- Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Takeharu Haino
- Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| |
Collapse
|
11
|
Nitta N, Takatsuka M, Kihara S, Hirao T, Haino T. Self‐Healing Supramolecular Materials Constructed by Copolymerization via Molecular Recognition of Cavitand‐Based Coordination Capsules. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Natsumi Nitta
- Graduate School of Science Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Mei Takatsuka
- Graduate School of Science Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Shin‐ichi Kihara
- Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Takehiro Hirao
- Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Takeharu Haino
- Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| |
Collapse
|
12
|
Haino T, Hirao T. Supramolecular Polymerization and Functions of Isoxazole Ring Monomers. CHEM LETT 2020. [DOI: 10.1246/cl.200031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takeharu Haino
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takehiro Hirao
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
13
|
Zhao W, Tropp J, Qiao B, Pink M, Azoulay JD, Flood AH. Tunable Adhesion from Stoichiometry-Controlled and Sequence-Defined Supramolecular Polymers Emerges Hierarchically from Cyanostar-Stabilized Anion-Anion Linkages. J Am Chem Soc 2020; 142:2579-2591. [PMID: 31931561 DOI: 10.1021/jacs.9b12645] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequence-controlled supramolecular polymers offer new design paradigms for generating stimuli-responsive macromolecules with enhanced functionalities. The dynamic character of supramolecular links present challenges to sequence definition in extended supramolecular macromolecules, and design principles remain nascent. Here, we demonstrate the first example of using stoichiometry-control to specify the monomer sequence in a linear supramolecular polymer by synthesizing both a homopolymer and an alternating copolymer from the same glycol-substituted cyanostar macrocycle and phenylene-linked diphosphate monomers. A 2:1 stoichiometry between macrocycle and diphosphate produces a supramolecular homopolymer of general formula (A)n comprised of repeating units of cyanostar-stabilized phosphate-phosphate dimers. Using a 1:1 stoichiometry, an alternating (AB)n structure is produced with half the phosphate dimers now stabilized by the additional counter cations that emerge hierarchically after forming the stronger cyanostar-stabilized phosphate dimers. These new polymer materials and binding motifs are sufficient to bear normal and shear stress to promote significant and tunable adhesive properties. The homopolymer (A)n, consisting of cyanostar-stabilized anti-electrostatic linkages, shows adhesion strength comparable to commercial superglue formulations based on polycyanoacrylate but is thermally reversible. Unexpectedly, and despite including traditional ionic linkages, the alternating copolymer (AB)n shows weaker adhesion strength more similar to commercial white glue based on poly(vinyl acetate). Thus, the adhesion properties can be tuned over a wide range by simply controlling the stoichiometric ratio of monomers. This study offers new insight into supramolecular polymers composed of custom-designed anion and receptor monomers and demonstrates the utility of emerging functional materials based on anion-anion linkages.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Joshua Tropp
- School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive , Hattiesburg , Mississippi 39406 , United States
| | - Bo Qiao
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Maren Pink
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Jason D Azoulay
- School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive , Hattiesburg , Mississippi 39406 , United States
| | - Amar H Flood
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| |
Collapse
|
14
|
Hisano N, Hirao T, Haino T. A dual redox-responsive supramolecular polymer driven by molecular recognition between bisporphyrin and trinitrofluorenone. Chem Commun (Camb) 2020; 56:7553-7556. [DOI: 10.1039/d0cc02474k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A dual redox-responsive supramolecular polymer driven by molecular recognition between bisporphyrin (bisPor) and trinitrofluorenone (TNF) has been developed.
Collapse
Affiliation(s)
- Naoyuki Hisano
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Hiroshima 739-8562
- Japan
| | - Takehiro Hirao
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Hiroshima 739-8562
- Japan
| | - Takeharu Haino
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Hiroshima 739-8562
- Japan
| |
Collapse
|
15
|
|
16
|
Hirao T, Hisano N, Akine S, Kihara SI, Haino T. Ring–Chain Competition in Supramolecular Polymerization Directed by Molecular Recognition of the Bisporphyrin Cleft. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Takehiro Hirao
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Naoyuki Hisano
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shin-ichi Kihara
- Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
17
|
Yang Y, Li H, Chen J, Xu F, Duan Z, Liang T, Liu Y, Tian W. Controllable supramolecular assembly and architecture transformation by the combination of orthogonal self-assembly and competitive self-sorting assembly. Polym Chem 2019. [DOI: 10.1039/c9py01495k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New supramolecular polymers were prepared by the combination of orthogonal self-assembly and competitive self-sorting assembly methods.
Collapse
Affiliation(s)
- Ying Yang
- School of Materials Science and Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Hui Li
- School of Materials Science and Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Jiangmin Chen
- School of Materials Science and Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Fenfen Xu
- School of Materials Science and Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Zhaozhao Duan
- School of Materials Science and Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Tongxiang Liang
- School of Materials Science and Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Yang Liu
- School of Materials Science and Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| |
Collapse
|
18
|
Gou XX, Peng JX, Das R, Wang YY, Han YF. On/off fluorescence emission induced by encapsulation, exchange and reversible encapsulation of a BODIPY-guest in self-assembled organometallic cages. Dalton Trans 2019; 48:7236-7241. [DOI: 10.1039/c8dt05103h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A reversible fluorescence turn off/on switch induced by the encapsulation and release of a guest molecule within an organometallic cage was presented.
Collapse
Affiliation(s)
- Xing-Xing Gou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- FM & EM International Joint Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| | - Jia-Xin Peng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- FM & EM International Joint Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| | - Rajorshi Das
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- FM & EM International Joint Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- FM & EM International Joint Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- FM & EM International Joint Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
| |
Collapse
|
19
|
|