1
|
Xie K, Shen Z, Cheng P, Dong H, Yu ZX, Zu L. C-H functionalization of 2-alkyl tryptamines: direct assembly of azepino[4,5- b]indoles and total synthesis of ngouniensines. Chem Sci 2024; 15:12732-12738. [PMID: 39148802 PMCID: PMC11323328 DOI: 10.1039/d4sc02802c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024] Open
Abstract
The Pictet-Spengler type condensation of tryptamine derivatives and aldehydes or ketones is a classic reaction, and has been previously applied to assemble indole-annulated 5-, 6- and 8-membered heterocyclic rings. In this work, we further expand the synthetic scope of this reaction to the 7-membered azepino[4,5-b]indole skeleton through the direct C-H functionalization of 2-alkyl tryptamines, in which the non-activated methylene group participates in a 7-membered ring formation with aldehydes. By combining this unprecedented ring-forming process with a second C-H olefination at the same carbon, the concise total synthesis of natural products ngouniensines is achieved, demonstrating the synthetic potential of the developed chemistry in simplifying retrosynthetic disconnections.
Collapse
Affiliation(s)
- Kejing Xie
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Frontier Research Center for Biological Structure, Tsinghua University Beijing 100084 China
| | - Zeyuan Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University Beijing 100871 China
| | - Peng Cheng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Frontier Research Center for Biological Structure, Tsinghua University Beijing 100084 China
| | - Haoxiang Dong
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Frontier Research Center for Biological Structure, Tsinghua University Beijing 100084 China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University Beijing 100871 China
| | - Liansuo Zu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Frontier Research Center for Biological Structure, Tsinghua University Beijing 100084 China
| |
Collapse
|
2
|
Ishihara N, Harada S, Nakajima M, Arai S. Isatogenols as Precursors for the Synthesis of Fully Substituted Indolines through Regio- and Stereoselective [3 + 2] Cycloaddition Using Various Olefins. Org Lett 2024; 26:2908-2912. [PMID: 38557071 DOI: 10.1021/acs.orglett.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Here, we describe a unique reactivity of isatogen derivatives bearing a hydroxy group at the C3-position (isatogenol) and their synthetic application to highly regio- and stereoselective [3 + 2] cycloaddition reactions. This method provides facile access to polyfused and highly functionalized heterocycles including consecutive stereocenters. Furthermore, DFT calculations revealed that hydrogen bonding is a key to controlling the regio- and stereoselectivity in the cycloaddition using acrylates.
Collapse
Affiliation(s)
- Nanaka Ishihara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shinji Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Institute for Advanced Academic Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masaya Nakajima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeru Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
3
|
You ZH, Zou S, Song YL, Song XQ. Enantioselective Synthesis of Fused Butyrolactones via Organocatalytic Formal [2 + 2 + 2] Annulation of γ-Butenolides, Methylene Indolinones, and Nitroolefins. Org Lett 2022; 24:7183-7187. [PMID: 36170457 DOI: 10.1021/acs.orglett.2c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An organocatalyzed asymmetric synthesis of fused butyrolactones via formal [2 + 2 + 2] annulation between γ-butenolides, methylene indolinones, and nitroolefins in a one-pot process has been established. Products containing six contiguous stereocenters could be obtained in good yields (up to 95%) with excellent enantioselectivities (up to >99% ee) catalyzed by a l-tert-leucine-derived bifunctional thiourea catalyst.
Collapse
Affiliation(s)
- Zhi-Hao You
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Sheng Zou
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Ya-Li Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Xue-Qing Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
4
|
Quevedo-Acosta Y, Jurberg ID, Gamba-Sánchez D. Cyclization Strategies Using Imide Derivatives for the Synthesis of Polycyclic Nitrogen‐Containing Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Igor D. Jurberg
- Universidade Estadual de Campinas Institute of Chemistry 13083 BRAZIL
| | - Diego Gamba-Sánchez
- Universidad de Los Andes Chemistry Department Cra 1 No. 18A-12 Q:305 111711 Bogota COLOMBIA
| |
Collapse
|
5
|
Huang XL, Cheng YZ, You SL. Visible-light enabled synthesis of cyclopropane-fused indolines via dearomatization of indoles. Org Chem Front 2022. [DOI: 10.1039/d2qo01174c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient synthesis of methylene-unsubstituted cyclopropane-fused indolines via photoredox catalyzed dearomative cyclopropanation of indole derivatives was developed. A broad range of indoles bearing a variety of functional groups were compatible...
Collapse
|
6
|
Kim JY, Lee W, Kang HJ, Jeon TH, Baik MH, Cho CG. Switching Chemoselectivity Based on the Ring Size: How to Make Ring-Fused Indoles Using Transition-Metal-Mediated Cross-Coupling. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jang-Yeop Kim
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Center for New Directions in Organic Synthesis, Science Research Center (SRC), Seoul 04763, Republic of Korea
| | - Woojong Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hyung-Joon Kang
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Center for New Directions in Organic Synthesis, Science Research Center (SRC), Seoul 04763, Republic of Korea
| | - Tae-Hong Jeon
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Center for New Directions in Organic Synthesis, Science Research Center (SRC), Seoul 04763, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Cheon-Gyu Cho
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Center for New Directions in Organic Synthesis, Science Research Center (SRC), Seoul 04763, Republic of Korea
| |
Collapse
|
7
|
Karan G, Sahu S, Maji MS. A one-pot "back-to-front" approach for the synthesis of benzene ring substituted indoles using allylboronic acids. Chem Commun (Camb) 2021; 57:5274-5277. [PMID: 33908966 DOI: 10.1039/d1cc01512e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthesis of only benzene ring functionalized indoles and poly-substituted carbazoles is reported via a one-pot triple cascade benzannulation protocol. Usage of differently substituted and readily accessible allylboronic acids as a 3-carbon annulating partner enables diverse aliphatic and aromatic substitution patterns, which is still a daunting task. This scalable synthetic protocol tolerates broad scope, thus enabling further downstream modifications. As an application, carbazole based natural products glycozoline and glycozolinol were synthesized.
Collapse
Affiliation(s)
- Ganesh Karan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| | - Samrat Sahu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| |
Collapse
|
8
|
Kong XK, Xiong ZM, Zhi X, Meng XL, Zhao JF, Chen W, Zhang H. Lewis acid mediated cyclization: synthesis of 2 spirocyclohexylindolines. Org Biomol Chem 2021; 19:4043-4047. [PMID: 33885129 DOI: 10.1039/d1ob00293g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the synthesis of 2-spirocyclohexylindolines based on a Lewis acid mediated cyclization. This diastereoselective procedure provides the target structures in a straightforward way via dual activation.
Collapse
Affiliation(s)
- Xiang-Kai Kong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China.
| | - Zhi-Min Xiong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China.
| | - Xiang Zhi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China.
| | - Xue-Ling Meng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China.
| | - Jing-Feng Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China.
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China.
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China.
| |
Collapse
|
9
|
Manning MA, Sun W, Light ME, Harrowven DC. A photochemical ring expansion of 6- to 8-membered nitrogen heterocycles by [1,3]-sigmatropic rearrangement. Chem Commun (Camb) 2021; 57:4556-4559. [PMID: 33956001 DOI: 10.1039/d1cc00393c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new route to azocines and benzoazocines from furopyridinones is described through a photochemically induced [1,3]-sigmatropic rearrangement. The method gives access to these 8-membered nitrogen heterocycles from dimethyl squarate in four stages and with excellent atom economy by sequencing thermal and photochemical ring expansion steps under continuous flow.
Collapse
Affiliation(s)
- Morgan A Manning
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Wei Sun
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Mark E Light
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - David C Harrowven
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| |
Collapse
|
10
|
Puerto Galvis CE, Granados CC, Kouznetsov VV, Macías MA. Synthesis and X-ray crystallographic analysis of free base and hexafluorophosphate salts of 3,4-dihydroisoquinolines from the Bischler–Napieralski reaction. NEW J CHEM 2021. [DOI: 10.1039/d0nj05235c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Free base and hexafluorophosphate salts of 3,4-dihydroisoquinolines from the Bischler–Napieralski reaction: potential supramolecular modulation. Centrosymmetric/enantiomorphic crystals.
Collapse
Affiliation(s)
- Carlos E. Puerto Galvis
- Laboratorio de Química Orgánica y Biomolecular
- CMN
- Universidad Industrial de Santander
- Parque Tecnológico Guatiguará
- Piedecuesta 681011
| | - Cristian C. Granados
- Crystallography and Chemistry of Materials
- CrisQuimMat
- Department of Chemistry
- Universidad de los Andes
- Bogotá 111711
| | - Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular
- CMN
- Universidad Industrial de Santander
- Parque Tecnológico Guatiguará
- Piedecuesta 681011
| | - Mario A. Macías
- Crystallography and Chemistry of Materials
- CrisQuimMat
- Department of Chemistry
- Universidad de los Andes
- Bogotá 111711
| |
Collapse
|
11
|
Zhang G, Fan Q, Wang H, Zhao Y, Ding C. NaHSO
3
‐Mediated Direct Synthesis of Sulfinic Esters from Sulfonyl Hydrazides under Transition‐Metal‐Free Conditions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Qiankun Fan
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Huimin Wang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Yiyong Zhao
- Zhejiang Ecological Environment Low Carbon Development Center Hangzhou 310012 People's Republic of China
| | - Chengrong Ding
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
12
|
Pu LY, Yang F, Chen JQ, Xiong Y, Bin HY, Xie JH, Zhou QL. Enantioselective Total Syntheses of Pentacyclic Homoproaporphine Alkaloids. Org Lett 2020; 22:7526-7530. [PMID: 32937077 DOI: 10.1021/acs.orglett.0c02720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Herein we report the first enantioselective total syntheses of pentacyclic homoproaporphine alkaloids by means of a route, which includes a tandem retro-oxa-Michael addition and nucleophilic substitution to generate the oxa-benzobicyclco[3.3.1]nonane core structure, a Pictet-Spengler cyclization to construct the fused B and C rings, and sequential Baeyer-Villiger oxidation and pinacol-type cyclization to install the hydroxyl-lactol moiety of D ring. With this unified route, six pentacyclic homoproaporphine alkaloids have been synthesized enantioselectively.
Collapse
Affiliation(s)
- Liu-Yang Pu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ji-Qiang Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Xiong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huai-Yu Bin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Affiliation(s)
- Karre Nagaraju
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dongshun Ni
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
14
|
Nagaraju K, Ni D, Ma D. Total Synthesis of Kopsinitarine E. Angew Chem Int Ed Engl 2020; 59:22039-22042. [DOI: 10.1002/anie.202011093] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Karre Nagaraju
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dongshun Ni
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
15
|
Wang B, Cai J, Liu C, Yang J, Ding X. Harnessing a Novel Machine-Learning-Assisted Evolutionary Algorithm to Co-optimize Three Characteristics of an Electrospun Oil Sorbent. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42842-42849. [PMID: 32805104 DOI: 10.1021/acsami.0c11667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The optimization of materials is challenging as it often involves simultaneous manipulation of an assembly of condition parameters, which generates an enormous combinational space. Thus, optimization models and algorithms are widely adopted to accelerate material design and optimization. However, most optimization strategies can poorly handle multiple parameters simultaneously with limited prior knowledge. Herein, we describe a novel systematic optimization strategy, namely, machine-learning-assisted differential evolution, which combines machine learning and the evolutionary algorithm together, for zero-prior-data, rapid, and simultaneous optimization of multiple objectives. The strategy enables the evolutionary algorithm to "learn" so as to accelerate the optimization process, and also to identify quantitative interactions between the condition parameters and functional characteristics of the material. The performance of the strategy is verified by in silico simulations, as well as an application on simultaneously optimizing three characteristics, namely, water contact angle, oil absorption capacity, and mechanical strength, of an electrospun polystyrene/polyacrylonitrile (PS/PAN) material as a potential sorbent for a marine oil spill. With only 50 tests, the optimal fabrication parameters were successfully located from a combinatorial space of 50 000 possibilities. The presented platform technique offers a universal enabling technology to identify the optimal conditions rapidly from a daunting parameter space to synthesize materials with multiple desired functionalities.
Collapse
Affiliation(s)
- Boqian Wang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiacheng Cai
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chuangui Liu
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Yang
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
16
|
Guo P, Sun W, Liu Y, Li YX, Loh TP, Jiang Y. Stereoselective Synthesis of Vinylcyclopropa[ b]indolines via a Rh-Migration Strategy. Org Lett 2020; 22:5978-5983. [PMID: 32672043 DOI: 10.1021/acs.orglett.0c02071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A mild rhodium catalytic system has been developed to synthesize vinylcyclopropa[b]indolines through cyclopropanation of indoles with vinyl carbenoids generated from ring opening of cyclopropenes in situ. By employing a Rh-migration strategy, the products can be obtained with good to excellent E:Z ratios (≤99:1) and complete diastereoselectivity (≤99:1). This method is easy, has a low catalyst loading, and works for a broad range of functionalities.
Collapse
Affiliation(s)
- Pan Guo
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wangbin Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yong-Xin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616
| | - Teck-Peng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
17
|
|
18
|
Norwood VM, Huigens RW. Harnessing the Chemistry of the Indole Heterocycle to Drive Discoveries in Biology and Medicine. Chembiochem 2019; 20:2273-2297. [DOI: 10.1002/cbic.201800768] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Verrill M. Norwood
- Department of Medicinal ChemistryCenter for Natural Products Drug Discovery and Development (CNPD3)University of Florida 1345 Center Drive Gainesville FL 32610 USA
| | - Robert W. Huigens
- Department of Medicinal ChemistryCenter for Natural Products Drug Discovery and Development (CNPD3)University of Florida 1345 Center Drive Gainesville FL 32610 USA
| |
Collapse
|
19
|
Sawant R, Stevens MY, Odell LR. Microwave-Assisted aza-Friedel-Crafts Arylation of N-Acyliminium Ions: Expedient Access to 4-Aryl 3,4-Dihydroquinazolinones. ACS OMEGA 2018; 3:14258-14265. [PMID: 31458116 PMCID: PMC6644441 DOI: 10.1021/acsomega.8b02298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/12/2018] [Indexed: 06/10/2023]
Abstract
A one-pot microwave-assisted aza-Friedel-Crafts arylation of N-acyliminium ions, generated in situ from o-formyl carbamates and different amines, is reported. This metal-free protocol provides rapid access to diverse 4-aryl 3,4-dihydroquinazolinones in excellent yield without any aqueous workup. A solvent-directed process for the selective aza-Friedel-Crafts arylation of electron-rich aryl/heteroaryl/butenyl-tethered N-acyliminium ions is also described.
Collapse
|