1
|
Xu B, Zhang Z, Tantillo DJ, Dai M. Concise Total Syntheses of ( -)-Crinipellins A and B Enabled by a Controlled Cargill Rearrangement. J Am Chem Soc 2024; 146:21250-21256. [PMID: 39052841 PMCID: PMC11311239 DOI: 10.1021/jacs.4c07900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Herein, we report concise total syntheses of diterpene natural products (-)-crinipellins A and B with a tetraquinane skeleton, three adjacent all-carbon quaternary centers, and multiple oxygenated and labile functional groups. Our synthesis features a convergent Kozikowski β-alkylation to unite two readily available building blocks with all the required carbon atoms, an intramolecular photochemical [2 + 2] cycloaddition to install three challenging and adjacent all-carbon quaternary centers and a 5-6-4-5 tetracyclic skeleton, and a controlled Cargill rearrangement to rearrange the 5-6-4-5 tetracyclic skeleton to the desired tetraquinane skeleton. These strategically enabling transformations allowed us to complete total syntheses of (-)-crinipellins A and B in 12 and 13 steps, respectively. The results of quantum chemical computations revealed that the Bronsted acid-catalyzed Cargill rearrangements likely involve stepwise paths to products and the AlR3-catalyzed Cargill rearrangements likely involve a concerted path with asynchronous alkyl shifting events to form the desired product.
Collapse
Affiliation(s)
- Bo Xu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ziyao Zhang
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Dean J. Tantillo
- Department
of Chemistry, University of California—Davis, Davis, California 95616, United States
| | - Mingji Dai
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Fang K, Dou BH, Zhang FM, Wang YP, Shan ZR, Wang XY, Hou SH, Tu YQ, Ding TM. Expansion of Structure Property in Cascade Nazarov Cyclization and Cycloexpansion Reaction to Diverse Angular Tricycles and Total Synthesis of Nominal Madreporanone. Angew Chem Int Ed Engl 2024:e202412337. [PMID: 39106111 DOI: 10.1002/anie.202412337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/09/2024]
Abstract
A cascade Nazarov cyclization/dicycloexpansions reaction was developed for the precise synthesis of the angularly fused M/5/N (M=5, 6; N=4-9, 13) tricyclic skeletons. The prioritized expansion of the first ring played a critical role in the transformations, due to the release of ring strain, and the nature of the substituents present on the substrate is another influencing factor. This pioneering cascade reaction features broad substrates scope (33 examples), short reaction time, exceptional yields (up to 95 %), and remarkable regioselectivities (>20 : 1). Exploiting the synthetic application of this cascade reaction, we successfully executed a succinct total synthesis of nominal madreporanone for the first time.
Collapse
Affiliation(s)
- Kun Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bao-Heng Dou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yun-Peng Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zi-Rui Shan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Yu Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Si-Hua Hou
- School of Pharmaceutical Sciences, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Zhang Z, Qian X, Gu Y, Gui J. Controllable skeletal reorganizations in natural product synthesis. Nat Prod Rep 2024; 41:251-272. [PMID: 38291905 DOI: 10.1039/d3np00066d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Covering: 2016 to 2023The synthetic chemistry community is always in pursuit of efficient routes to natural products. Among the many available general strategies, skeletal reorganization, which involves the formation, cleavage, and migration of C-C and C-heteroatom bonds, stands out as a particularly useful approach for the efficient assembly of molecular skeletons. In addition, it allows for late-stage modification of natural products for quick access to other family members or unnatural derivatives. This review summarizes efficient syntheses of steroid, terpenoid, and alkaloid natural products that have been achieved by means of this strategy in the past eight years. Our goal is to illustrate the strategy's potency and reveal the spectacular human ingenuity demonstrated in its use and development.
Collapse
Affiliation(s)
- Zeliang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xiao Qian
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Jinghan Gui
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
4
|
Lin X, Min L, Li CC. Asymmetric Synthesis of the epi-Vinigrol Tricyclic Core Enabled by a Wolff Rearrangement Strategy and Formal Total Synthesis of (-)-Vinigrol. J Org Chem 2023; 88:14826-14830. [PMID: 37821441 DOI: 10.1021/acs.joc.3c01729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A new approach to construct the tricyclic framework of the diterpenoid vinigrol is described. The challenging 1,5-butanodecahydronaphthalene core was established efficiently and diastereoselectively through a combination of type II [5 + 2] cycloaddition and Wolff rearrangement. In addition, a formal total synthesis of (-)-vinigrol was achieved in 12 steps, in which Baran's intermediate was efficiently produced from a known compound by a two-step sequence involving a stereoselective α-hydroxylation and a diastereoselective α-ketol rearrangement.
Collapse
Affiliation(s)
- Xiaohong Lin
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Long Min
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
5
|
Wang LN, Huang Z, Yu ZX. Synthesis of Polycyclic n/5/8 and n/5/5/5 Skeletons Using Rhodium-Catalyzed [5 + 2 + 1] Cycloaddition of Exocyclic-ene-vinylcyclopropanes and Carbon Monoxide. Org Lett 2023; 25:1732-1736. [PMID: 36881539 DOI: 10.1021/acs.orglett.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
A rhodium-catalyzed [5 + 2 + 1] reaction of exocyclic-ene-vinylcyclopropanes (exo-ene-VCPs) and CO has been realized to access challenging tricyclic n/5/8 skeletons (n = 5, 6, 7), some of which are found in natural products. This reaction can be used to build tetracyclic n/5/5/5 skeletons (n = 5, 6), which are also found in natural products. In addition, 0.2 atm CO can be replaced by (CH2O)n as the CO surrogate to achieve the [5 + 2 + 1] reaction with similar efficiency.
Collapse
Affiliation(s)
- Lu-Ning Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhiqiang Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Momeni T, Zadsirjan V, Hadi Meshkatalsadat M, Pourmohammadi‐Mahunaki M. Applications of Cobalt‐Catalyzed Reactions in the Total Synthesis of Natural Products. ChemistrySelect 2022. [DOI: 10.1002/slct.202202816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tayebeh Momeni
- Department of Chemistry Qom University of Technology Qom Iran 3718146645
- Department of Chemistry School of Science Alzahra University Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry Malek Ashtar University of Technology Tehran Iran
| | | | | |
Collapse
|
7
|
Abstract
Terpenoids constitute a broad class of natural compounds with tremendous variability in structure and bioactivity, which resulted in a strong interest of the chemical community to this class of natural products over the last 150 years. The presence of strained small rings renders the terpenoid targets interesting for chemical synthesis, due to limited number of available methods and stability issues. In this feature article, a number of recent examples of total syntheses of terpenoids with complex carbon frameworks featuring small rings are discussed. Specific emphasis is given to the new developments in strategical and tactical approaches to construction of such systems.
Collapse
Affiliation(s)
- Gleb A Chesnokov
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
8
|
Yavari I, Mohsenzadeh R, Ravaghi P. A Molecular Iodine-Mediated Synthesis of Cyclopenta[c]furo[3,2-b]furan-5,6-diones: Assembly of an Angular Dioxatriquinane Core. J Org Chem 2022; 87:2616-2623. [DOI: 10.1021/acs.joc.1c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran 1998838511, Iran
| | - Ramin Mohsenzadeh
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran 1998838511, Iran
| | - Parisa Ravaghi
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran 1998838511, Iran
| |
Collapse
|
9
|
Zhao Y, Hu J, Chen R, Xiong F, Xie H, Ding H. Divergent Total Syntheses of (-)-Crinipellins Facilitated by a HAT-Initiated Dowd-Beckwith Rearrangement. J Am Chem Soc 2022; 144:2495-2500. [PMID: 35112847 DOI: 10.1021/jacs.1c13370] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A hydrogen atom transfer (HAT)-initiated Dowd-Beckwith rearrangement reaction was developed, which enables the efficient assembly of diversely functionalized polyquinane frameworks. By incorporation of an iridium-catalyzed regio- and enantioselective hydrogenation and a diastereocontrolled ODI-[5+2] cycloaddition/pinacol rearrangement cascade reaction, the asymmetric total syntheses of eight tetraquinane natural products, including (-)-crinipellins A-F and (-)-dihydrocrinipellins A and B, have been achieved in a concise and divergent manner.
Collapse
Affiliation(s)
- Yifan Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jialei Hu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ruyi Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Fengping Xiong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hujun Xie
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Meng FT, Chen JL, Qin XY, Zhang TS, Tu SJ, Jiang B, Hao WJ. Gold self-relay catalysis for accessing functionalized cyclopentenones bearing an all-carbon quaternary stereocenter. Org Chem Front 2022. [DOI: 10.1039/d1qo01313k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new gold(i) self-relay catalysis consisting of a 3,3-rearrangement, Nazarov cyclization and Michael addition cascade of 1,3-enyne acetates with aurones and their derived azadienes is reported, producing functionalized cyclopentenones.
Collapse
Affiliation(s)
- Fan-Tao Meng
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Jing-Long Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Xiao-Yan Qin
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| |
Collapse
|
11
|
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry Indian Institute of Technology-Bombay Powai Mumbai 400 076 India
| | - Ambareen Fatma
- Department of Chemistry Indian Institute of Technology-Bombay Powai Mumbai 400 076 India
| |
Collapse
|
12
|
Kotha S, Keesari RR. A Modular Approach to Angularly Fused Polyquinanes via Ring-Rearrangement Metathesis: Synthetic Access to Cameroonanol Analogues and the Basic Core of Subergorgic Acid and Crinipellin. J Org Chem 2021; 86:17129-17155. [PMID: 34788028 DOI: 10.1021/acs.joc.1c02258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a modular approach to angularly fused polyquinanes that are core units of many natural products such as cameroonanol, subergorgic acid, and crinepellin, etc. in excellent yields by employing atom-economic ring-rearrangement metathesis as a key step. Our work highlights, the synthesis of cameroonanol analogues 1-6 and their ester derivatives by using the stereoselective reduction of the carbonyl group by using DIBAL-H- and DCC-mediated coupling as the key reactions. The subergorgic acid core 7 was produced by LDA-mediated kinetically controlled regio- and stereoselective ring-junction allylation as a critical step. Moreover, it is worth mentioning that the present strategy relies on a less explored exo-dicyclopentadiene-1-one (8) and produces highly congested polycyclic frameworks containing up to seven contiguous stereogenic centers including quaternary carbons up to two. All of the new molecules were characterized by NMR data. The structure and relative stereochemistry of some compounds were confirmed by chemical methods and further supported by single-crystal X-ray diffraction studies. The newly reported tri- and tetraquinane skeletons are present in many naturally occurring bioactive polyquinanes. Hence, this strategy is useful for designing various "druglike molecules" and expands the chemical space of cyclopentanoids that are useful in medicinal chemistry.
Collapse
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India
| | | |
Collapse
|
13
|
Kotha S, Keesari RR. Synthetic Approaches to Crinipellin Based Tetraquinanes via Ring‐Rearrangement Metathesis and Ring‐Closing Metathesis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry Indian Institute of Technology – Bombay Powai Mumbai 400 076 India
| | | |
Collapse
|
14
|
Jee DW, Lee H. Facile Total Syntheses of Putative and Revised Structures of Pethybrene. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dong Whan Jee
- Department of Chemistry Korea Advanced Institution of Science and Technology (KAIST) Daejeon 350-701 Korea
| | - Hee‐Yoon Lee
- Department of Chemistry Korea Advanced Institution of Science and Technology (KAIST) Daejeon 350-701 Korea
| |
Collapse
|
15
|
Reddy GS, Reddy DS, Corey EJ. Unraveling the C 2-Symmetric Azatetraquinane System. Simple, Enantioselective Syntheses. Org Lett 2021; 23:2258-2262. [PMID: 33646796 DOI: 10.1021/acs.orglett.1c00387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Concise stereocontrolled synthetic routes to the C2-symmetric azatetraquinane 1 (or, also, the enantiomer) are described. The successful execution of the synthesis involved innovation in the methodology for [3+2] cycloaddition and stereochemical control.
Collapse
Affiliation(s)
- G Sudhakar Reddy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - D Srinivas Reddy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - E J Corey
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
16
|
Haider S, Khan IA, Ding H, Chittiboyina AG. Synthetic Approaches for Building Tricyclic Cage-like Motifs Found in Indoxamycins. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201210193141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Indoxamycins A-F, a novel class of polyketides, were isolated from the saline culture
of marine-derived actinomyces by Sato et al. in 2009. Intriguing stereochemical complexity
involving tricyclic [5.5.6] cage-like structures with six consecutive chiral centers challenged
many organic chemists. Chemical ingenuity, implementation of pioneered reactions
along with fine chemical transformations allowed not only the rapid construction of the central
core but also allowed minor structural revision and paved the information to delineate the
absolute stereostructures of these complex polyketide marine natural products. To achieve the
central core structure in indoxamycins A-F, reactions like the Ireland-Claisen rearrangement,
an enantioselective 1,6-enyne reductive cyclization, and one-pot cascade reactions of 1,2-
addition/oxa-Michael/methylenation were employed. Using the chiral pool approach, the
readily available R-carvone was employed as a cost-effective starting material to achieve the concise total syntheses
of (-)-indoxamycins A and B, in which Pauson-Khand, Cu-catalyzed Michael addition and tandem retro-oxa-Michael
addition/1,2-addition/oxa-Michael addition reactions were employed. The antipodes, (+)-indoxamycins can be easily
accessed by simply switching to S-carvone as the starting material. Synthetically prepared indoxamycins A-F are devoid
of antiproliferative properties, which disagree with the work reported by Sato and co-workers for (-)-
indoxamycins A and F. Nevertheless, ready access to such complex natural products allows probing the untapped
potential biological activities of these polyketides including cytotoxicity. A concise overview of interesting, key
chemical transformations including named reactions in establishing the architecture of indoxamycins was compiled to
inspire organic chemists and help reinvigorate novel strategies for the asymmetric synthesis as well as the development
of novel derivatives of indoxamycins with unique physicochemical and biological properties.
Collapse
Affiliation(s)
- Saqlain Haider
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou-310058, China
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| |
Collapse
|
17
|
Yang Z. Navigating the Pauson-Khand Reaction in Total Syntheses of Complex Natural Products. Acc Chem Res 2021; 54:556-568. [PMID: 33412841 DOI: 10.1021/acs.accounts.0c00709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
"Total synthesis endeavors provide wonderful opportunities to discover and invent new synthetic reactions as a means to advance organic synthesis in general. Such discoveries and inventions can occur when the practitioner faces intransigent problems that cannot be solved by known methods and/or when method improvements are desired in terms of elegance, efficiency, cost-effectiveness, practicality, or environmental friendliness" (K. C. Nicolaou et al. from their review in CCS Chem. 2019, 1, 3-37). To date tens of thousands of bioactive compounds have been isolated from plants, microbes, marine invertebrates, and other sources. These chemical structures have been studied by chemists who scanned the breadth of natural diversity toward drug discovery efforts. Drug-likeness of natural products often possesses common features including molecular complexity, protein-binding ability, structural rigidity, and three-dimensionality. Considering certain biologically important natural products are scarce from natural supply, total synthesis may provide an alternative solution to generating these compounds and their derivatives for the purpose of probing their biological functions. Natural products bearing quaternary carbon stereocenters represent a group of biologically important natural entities that are lead compounds in the development of pharmacological agents and biological probes. However, the stereocontrolled introduction of quaternary carbons, with vicinal patterns that substantially expand the complexity of molecular architectures and chemical space in particular, presents distinct challenges because of the high steric repulsion between substituents. Though remarkable advance has been seen for quaternary carbon stereocenter generation, the process remains a daunting challenge given that the formation of highly congested stereocenters increases the difficulty in achieving orbital overlap.In the past two decades, our group has initiated a program to develop synthetic strategies and methods with the aim of advancing the frontiers of the total syntheses of biologically important complex natural products bearing all-carbon quaternary stereogenic centers. Typical endeavors have involved the use of a Pauson-Khand (PK) reaction as a key step in constructing core structures with all-carbon quaternary stereogenic center(s), with the aid of well-orchestrated thiourea-Co- and thiourea-Pd-catalyzed PK reactions. These methodological advances have enabled us to achieve total syntheses of a series of topologically complex natural products with diverse structural features. These methods will enable the assembly of molecules with improved biological functions and provide tool compounds for elucidation of mechanism of action or identification of potential cellular targets.
Collapse
Affiliation(s)
- Zhen Yang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Beijing National Laboratory for Molecular Science and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
18
|
Cochrane AR, Kerr WJ, Paterson LC, Pearson CM, Shaw P. Advances in the cobalt-catalysed Pauson-Khand reaction: Development of a sulfide-promoted, microwave-assisted protocol. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Zou C, Lv Y, Lu M, Li X, Zhang L, Yang L, Liu Z, Ke Y, Song G, Ye J. Regioselective and diastereodivergent organocatalytic asymmetric vinylogous Michael addition. Org Chem Front 2021. [DOI: 10.1039/d1qo00371b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regioselective and diastereodivergent γ-position asymmetric vinylogous Michael addition (AVMA) of cyclohex-2-enones to nitroalkenes and γ′-AVMA between cyclohex-3-enones and nitroalkenes.
Collapse
Affiliation(s)
- Chuncheng Zou
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Key Laboratory of Chemistry Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yanting Lv
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Min Lu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin Li
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen Liu
- State Key Laboratory of Chemical Engineering. East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yanxiong Ke
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gonghua Song
- Shanghai Key Laboratory of Chemistry Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
20
|
Burrows LC, Jesikiewicz LT, Liu P, Brummond KM. Mechanism and Origins of Enantioselectivity in the Rh(I)-Catalyzed Pauson–Khand Reaction: Comparison of Bidentate and Monodentate Chiral Ligands. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lauren C. Burrows
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Luke T. Jesikiewicz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kay M. Brummond
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
21
|
Lee YH, Denton EH, Morandi B. Modular Cyclopentenone Synthesis through the Catalytic Molecular Shuffling of Unsaturated Acid Chlorides and Alkynes. J Am Chem Soc 2020; 142:20948-20955. [DOI: 10.1021/jacs.0c10832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yong Ho Lee
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | | | - Bill Morandi
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| |
Collapse
|
22
|
Evolution of Pauson-Khand Reaction: Strategic Applications in Total Syntheses of Architecturally Complex Natural Products (2016–2020). Catalysts 2020. [DOI: 10.3390/catal10101199] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metal-mediated cyclizations are important transformations in a natural product total synthesis. The Pauson-Khand reaction, particularly powerful for establishing cyclopentenone-containing structures, is distinguished as one of the most attractive annulation processes routinely employed in synthesis campaigns. This review covers Co, Rh, and Pd catalyzed Pauson-Khand reaction and summarizes its strategic applications in total syntheses of structurally complex natural products in the last five years. Additionally, the hetero-Pauson-Khand reaction in the synthesis of heterocycles will also be discussed. Focusing on the panorama of organic synthesis, this review highlights the strategically developed Pauson-Khand reaction in fulfilling total synthetic tasks and its synthetic attractiveness is aimed to be illustrated.
Collapse
|
23
|
Peng C, Arya P, Zhou Z, Snyder SA. A Concise Total Synthesis of (+)-Waihoensene Guided by Quaternary Center Analysis. Angew Chem Int Ed Engl 2020; 59:13521-13525. [PMID: 32330370 PMCID: PMC7906115 DOI: 10.1002/anie.202004177] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Indexed: 11/07/2022]
Abstract
The four contiguous all-carbon quaternary centers of waihoensene, coupled with the absence of any traditional reactive functional groups other than a single alkene, render it a particularly challenging synthetic target among angular triquinane natural products. Here, we show that its polycyclic frame can be assembled concisely by using a strategically chosen quaternary center to guide the formation of the other three through judiciously selected C-C bond formation reactions. Those events, which included a unique Conia-ene cyclization and a challenging Pauson-Khand reaction, afforded a 17-step synthesis of the molecule in enantioenriched form.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Piyush Arya
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Zhiyao Zhou
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Scott A Snyder
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| |
Collapse
|
24
|
Escorihuela J, Sedgwick DM, Llobat A, Medio-Simón M, Barrio P, Fustero S. Pauson-Khand reaction of fluorinated compounds. Beilstein J Org Chem 2020; 16:1662-1682. [PMID: 32733610 PMCID: PMC7372243 DOI: 10.3762/bjoc.16.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
The Pauson-Khand reaction (PKR) is one of the key methods for the construction of cyclopentenone derivatives, which can in turn undergo diverse chemical transformations to yield more complex biologically active molecules. Despite the increasing availability of fluorinated building blocks and methodologies to incorporate fluorine in compounds with biological interest, there have been few significant advances focused on the fluoro-Pauson-Khand reaction, both in the inter- and intramolecular versions. Furthermore, the use of vinyl fluorides as olefinic counterparts had been completely overlooked. In this review, we collect the advances both on the stoichiometric and catalytic intermolecular and intramolecular fluoro-Pauson-Khand reaction, with special attention to the PKR of enynes containing a fluoride moiety.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Daniel M Sedgwick
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Alberto Llobat
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Mercedes Medio-Simón
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Pablo Barrio
- Departmento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Av. Julián Clavería 8, Campus Universitario de El Cristo, 33006 Oviedo, Spain
| | - Santos Fustero
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
25
|
Zimnitskiy NS, Denikaev AD, Barkov AY, Kutyashev IB, Korotaev VY, Sosnovskikh VY. Catalyst-free Tandem 1,3-Dipolar Cycloaddition/Aldol Condensation: Diastereoselective Construction of the Azatetraquinane Skeleton. J Org Chem 2020; 85:8683-8694. [PMID: 32517470 DOI: 10.1021/acs.joc.0c01127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The one-pot regioselective and diastereoselective method for the synthesis of 5-(het)aroyl-7-(het)arylhexahydrobenzo[4,5]pentaleno[1,6a-b](thia)pyrrolizine-6,12-diones from accessible 1,5-di(het)arylpent-4-ene-1,3-diones or curcuminoids in 38-98% yield was developed. This reaction proceeds as a sequence of 1,3-dipolar cycloaddition of azomethine ylide generated in situ from ninhydrin and (thia)proline at the C═C bond of corresponding enedione, followed by spontaneous intramolecular aldol condensation and leads to the formation of an azatetraquinane scaffold.
Collapse
Affiliation(s)
- Nikolay S Zimnitskiy
- Institute of Natural Sciences and Mathematics, Ural Federal University, pr. Lenina 51, 620000 Ekaterinburg, Russian Federation
| | - Andrey D Denikaev
- Institute of Natural Sciences and Mathematics, Ural Federal University, pr. Lenina 51, 620000 Ekaterinburg, Russian Federation
| | - Alexey Y Barkov
- Institute of Natural Sciences and Mathematics, Ural Federal University, pr. Lenina 51, 620000 Ekaterinburg, Russian Federation
| | - Igor B Kutyashev
- Institute of Natural Sciences and Mathematics, Ural Federal University, pr. Lenina 51, 620000 Ekaterinburg, Russian Federation
| | - Vladislav Y Korotaev
- Institute of Natural Sciences and Mathematics, Ural Federal University, pr. Lenina 51, 620000 Ekaterinburg, Russian Federation
| | - Vyacheslav Y Sosnovskikh
- Institute of Natural Sciences and Mathematics, Ural Federal University, pr. Lenina 51, 620000 Ekaterinburg, Russian Federation
| |
Collapse
|
26
|
Peng C, Arya P, Zhou Z, Snyder SA. A Concise Total Synthesis of (+)‐Waihoensene Guided by Quaternary Center Analysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cheng Peng
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Piyush Arya
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Zhiyao Zhou
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Scott A. Snyder
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| |
Collapse
|
27
|
Qu Y, Wang Z, Zhang Z, Zhang W, Huang J, Yang Z. Asymmetric Total Synthesis of (+)-Waihoensene. J Am Chem Soc 2020; 142:6511-6515. [DOI: 10.1021/jacs.0c02143] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yongzheng Qu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zheyuan Wang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhongchao Zhang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wendou Zhang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jun Huang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhen Yang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
28
|
Cao T, Zhu L, Lan Y, Huang J, Yang Z. Protecting-Group-Free Total Syntheses of (±)-Norascyronones A and B. Org Lett 2020; 22:2517-2521. [DOI: 10.1021/acs.orglett.0c00212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tingting Cao
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School and Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Jun Huang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School and Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School and Shenzhen Bay Laboratory, Shenzhen 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Zhang J, Yan Y, Hu R, Li T, Bai W, Yang Y. Enantioselective Total Syntheses of Lyconadins A–E through a Palladium‐Catalyzed Heck‐Type Reaction. Angew Chem Int Ed Engl 2020; 59:2860-2866. [DOI: 10.1002/anie.201912948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/18/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Jiayang Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Yangtian Yan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Rong Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Ting Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Wen‐Ju Bai
- Department of ChemistryStanford University Stanford CA 94305-5080 USA
| | - Yang Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| |
Collapse
|
30
|
Kotha S, Keesari RR, Fatma A, Gunta R. Synthetic Strategies to Diverse Polyquinanes via Olefin Metathesis: Access to the Basic Core of Crinipellin, Presilphiperfolanol, and Cucumin. J Org Chem 2020; 85:851-863. [PMID: 31802663 DOI: 10.1021/acs.joc.9b02829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A rapid and useful synthetic approach to various polyquinane-based natural products was accomplished efficiently by employing ring-rearrangement metathesis and ring-closing metathesis as key steps. Here, we report the synthesis of stereochemically well-defined cis-anti-cis triquinanes (1, 2), tetraquinanes (3, 4), a novel pentaquinane 5, and fused [5-5-5-6] tetracyclic systems (6, 7) that are present in crinipellin, presilphiperfolanol, cucumin, etc. Hence, the current strategy may be suitable for the synthesis of various complex natural and unnatural cyclopentanoid targets. Moreover, our approach to the newly synthesized pentaquinane 5 has paved the way for various complex polyquinanes/molecules having significant applications in theoretical and medicinal chemistry.
Collapse
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry , Indian Institute of Technology-Bombay , Powai , Mumbai 400 076 , India
| | | | - Ambareen Fatma
- Department of Chemistry , Indian Institute of Technology-Bombay , Powai , Mumbai 400 076 , India
| | - Rama Gunta
- Department of Chemistry , Indian Institute of Technology-Bombay , Powai , Mumbai 400 076 , India
| |
Collapse
|
31
|
Zhang J, Yan Y, Hu R, Li T, Bai W, Yang Y. Enantioselective Total Syntheses of Lyconadins A–E through a Palladium‐Catalyzed Heck‐Type Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jiayang Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Yangtian Yan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Rong Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Ting Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Wen‐Ju Bai
- Department of ChemistryStanford University Stanford CA 94305-5080 USA
| | - Yang Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyHuazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| |
Collapse
|
32
|
Affiliation(s)
- Naifeng Hu
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Changming Dong
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Cuifang Zhang
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Guangxin Liang
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
33
|
Hu N, Dong C, Zhang C, Liang G. Total Synthesis of (-)-Indoxamycins A and B. Angew Chem Int Ed Engl 2019; 58:6659-6662. [PMID: 30835916 DOI: 10.1002/anie.201902043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Indexed: 11/07/2022]
Abstract
The concise total syntheses of (-)-indoxamycins A and B is reported. The chemistry features a seven-step preparation of a highly congested [5.5.6] tricyclic advanced common intermediate from a readily available R-carvone derivative. Key steps involve a Pauson-Khand reaction for the rapid construction of a basic scaffold bearing a quaternary carbon, a copper-catalyzed Michael addition for the introduction of another adjacent all-carbon quaternary stereocenter, and a tandem retro-oxa-Michael addition/1,2-addition/oxa-Michael addition for the installation of a trisubstituted olefin side chain. This synthetic strategy allows for easy access to both enantiomers of this family of natural products and their analogues from cost-effective starting material through straightforward chemical transformations.
Collapse
Affiliation(s)
- Naifeng Hu
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Changming Dong
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Cuifang Zhang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guangxin Liang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
34
|
Theoretical prediction on the reactivity of the Co-mediated intramolecular Pauson-Khand reaction for constructing bicyclo-skeletons in natural products. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Long R, Yang Z. Concise synthesis of the core structure of madreporanone by Rh-catalyzed [3+2] cycloaddition. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Abstract
Total syntheses of biologically and structurally fascinating sesterterpenoids published between Jan. 2012 and Jan. 2018 are summarized and discussed here.
Collapse
Affiliation(s)
- Yuye Chen
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- China
- Department of Chemistry and Shenzhen Grubbs Institute
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- China
| | - Shaoping Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
37
|
Zhao N, Xie S, Tian P, Tong R, Ning C, Xu J. Asymmetric total synthesis of (+)-astellatol and (−)-astellatene. Org Chem Front 2019. [DOI: 10.1039/c9qo00384c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we describe the full account of the total synthesis of (+)-astellatol, as well as the first total synthesis of (−)-astellatene.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology
- Shenzhen
- China
| | - Shengling Xie
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology
- Shenzhen
- China
| | - Peilin Tian
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology
- Shenzhen
- China
| | - Rongbiao Tong
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- China
| | - Chengqing Ning
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology
- Shenzhen
- China
- SUSTech Academy for Advanced Interdisciplinary Studies
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
38
|
Marsili LA, Pergomet JL, Gandon V, Riveira MJ. Iodine-Catalyzed Iso-Nazarov Cyclization of Conjugated Dienals for the Synthesis of 2-Cyclopentenones. Org Lett 2018; 20:7298-7303. [PMID: 30403484 DOI: 10.1021/acs.orglett.8b03229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular iodine was identified as an efficient catalyst for the cycloisomerization of conjugated dienals to substituted 2-cyclopentenones. DFT calculations suggested an unexpected concerted character for this cyclization.
Collapse
Affiliation(s)
- Lucía A Marsili
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET , Suipacha 531 , S2002LRK , Rosario , Argentina
| | - Jorgelina L Pergomet
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET , Suipacha 531 , S2002LRK , Rosario , Argentina
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Univ Paris-Sud, Université Paris-Saclay , 91405 Orsay cedex , France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Université Paris-Saclay , route de Saclay , 91128 Palaiseau cedex , France
| | - Martín J Riveira
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET , Suipacha 531 , S2002LRK , Rosario , Argentina
| |
Collapse
|