1
|
Zhang J, Wu K, Gao X, Zhang M, Zhou X, Bertram F, Shen C, Zhou Y. Achiral and chiral ligands synergistically harness chiral self-assembly of inorganics. SCIENCE ADVANCES 2024; 10:eado5948. [PMID: 39423258 PMCID: PMC11488542 DOI: 10.1126/sciadv.ado5948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Chiral structures and functions are essential natural components in biominerals and biological crystals. Chiral molecules direct inorganics through chiral growth of facets or screw dislocation of crystal clusters. As chirality promoters, they initiate an asymmetric hierarchical self-assembly in a quasi-thermodynamic steady state. However, achieving chiral assembly requires a delicate balance between intricate interactions. This complexity causes the roles of achiral-chiral and inorganic components in crystallization to remain ambiguous. Here, we elucidate a definitive mechanism using an achiral-chiral ligand strategy to assemble inorganics into hierarchical, self-organized superstructures. Achiral ligands cluster inorganic building blocks, while chiral ligands impart chiral rotation. Achiral and chiral ligands can flexibly modulate the chirality of superstructures by fully using their competition in coordination chemistry. This dual-ligand strategy offers a versatile framework for engineering chiroptical nanomaterials tailored to optical devices and metamaterials with optical activities across a broad wavelength range, with applications in imaging, detection, catalysis, and sensing.
Collapse
Affiliation(s)
- Jun Zhang
- Zhejiang Engineering Research Center for Tissue Repair Materials & Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Deutsches Elektronen-Synchrotron DESY, Germany
| | - Kai Wu
- Zhejiang Engineering Research Center for Tissue Repair Materials & Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Gao
- Zhejiang Engineering Research Center for Tissue Repair Materials & Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Min Zhang
- Zhejiang Engineering Research Center for Tissue Repair Materials & Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Xin Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials & Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Chen Shen
- Deutsches Elektronen-Synchrotron DESY, Germany
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials & Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
2
|
Guo Y, Zhang Z, Han H, Zhou Z. Chiral Separation of Copper Sulfide [S-Cu 36] Nanocluster Using a Chiral Adaptive Counterion. NANO LETTERS 2024; 24:11985-11991. [PMID: 39241022 DOI: 10.1021/acs.nanolett.4c03538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
This work presents a new strategy to achieve the growth of copper sulfide nanoclusters with high nuclearity. Through a phosphine-assisted C-S reductive cleavage approach, an intrinsically chiral [Cu4] cluster passes through a [S-Cu9] cluster and transforms into a higher-nuclearity [S-Cu36] cluster, which features a core-shell structure with a [Cu4]4+ core encapsulated by a chiral [Cu20S12] shell. Interestingly, the spiral arrangement of the bidental ligands on the surface of the [S-Cu36] cluster leads to the L-/R-enantiomeric configurations. Moreover, by utilization of [Na(THF)6]+ as a chiral adaptive counterion, [S-Cu36] can be interlocked separately, thus enabling the isolation of homochiral clusters. Theoretical calculation suggests that the configuration transition between two enantiomeric [Na(THF)6]+ species is favorable at room temperature, thereby promoting the cocrystallization of resulting chiral products. This study introduces a novel perspective on the synthesis of chiral copper sulfide nanoclusters and presents an innovative approach to achieving the chiral separation of nanoclusters.
Collapse
Affiliation(s)
- Yumeng Guo
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Zhenyi Zhang
- Bruker (Beijing) Scientific Technology Co., Ltd., Shanghai 200233, China
| | - Haixiang Han
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Zheng Zhou
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
3
|
Day PN, Pachter R, Nguyen KA, Hong G. Chirality-Induced Spin Selectivity: Analysis of Density Functional Theory Calculations. J Chem Theory Comput 2024; 20:5475-5486. [PMID: 38888590 DOI: 10.1021/acs.jctc.4c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Chirality-induced spin selectivity (CISS), which was demonstrated in several molecular and material systems, has drawn much interest recently. The phenomenon, described in electron transport by the difference in the transport rate of electrons of opposite spins through a chiral system, is however not fully understood. Herein, we employed density functional theory in conjunction with spin-orbit coupling to evaluate the percent spin-polarization in a device setup with finite electrodes at zero bias, using an electron transport program developed in-house. To study the interface effects and the level of theory considered, we investigated a helical oligopeptide chain, an intrinsically chiral gold cluster, and a helicene model system that was previously studied (Zöllner et al. J. Chem. Theory Comput. 2020, 16, 7357-7371). We find that the magnitude of the spin-polarization depends on the chiral system-electrode interface that is modeled by varying the interface boundary between the system's regions, on the method of calculating spin-orbit coupling, and on the exchange-correlation functional, e.g., the amount of exact exchange in the hybrid functionals. In addition, to assess the effects of bias, we employ the nonequilibrium Green's function formalism in the Quantum Atomistix Toolkit program, showing that the spin-flip terms could be important in calculating the CISS effect. Although understanding CISS in comparison to experiment is still not resolved, our study provides intrinsic responses from first-principles calculations.
Collapse
Affiliation(s)
- Paul N Day
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Ruth Pachter
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Kiet A Nguyen
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Gongyi Hong
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| |
Collapse
|
4
|
Zhang C, Si WD, Wang Z, Tung CH, Sun D. Chiral Ligand-Concentration Mediating Asymmetric Transformations of Silver Nanoclusters: NIR-II Circularly Polarized Phosphorescence Lighting. Angew Chem Int Ed Engl 2024; 63:e202404545. [PMID: 38664228 DOI: 10.1002/anie.202404545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 07/02/2024]
Abstract
Near infrared (NIR) emitter with circularly polarized phosphorescence (CPP), known as NIR CPP, has emerged as a key part in the research of cutting-edge luminescent materials. However, it remains a challenge to obtain nanoclusters with NIR CPP activity. Here, we propose an asymmetric transformation approach to efficiently synthesize two pairs of chiral silver nanoclusters (R/S-Ag29 and R/S-Ag16) using an achiral Ag10 nanocluster as starting material in the presence of different concentration chiral inducer (R/S)-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (R/S-BNP). R/S-Ag29, formed in the low-concentration R/S-BNP, exhibits a unique kernel-shell structure consisting of a distorted Ag13 icosahedron and an integrated cage-like organometallic shell with a C3 symmetry, and possesses a superatomic 6-electron configuration (1S2|1P4). By contrast, R/S-Ag16, formed in the high-concentration R/S-BNP, features a sandwich-like pentagram with AgI-pure kernel. Profiting from the hierarchically chiral structures and superatomic kernel-dominated phosphorescence, R/S-Ag29 exhibits infrequent CPP activity in the second near-infrared (975 nm) region, being the first instance of NIR-II CPP observed among CPL-active metal nanoclusters. This study presents a new approach to reduce the difficulty of de novo synthesis for chiral silver nanomaterials, and facilitates the design of CPP-active superatomic nanoclusters in NIR region.
Collapse
Affiliation(s)
- Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| |
Collapse
|
5
|
Peluso P, Sechi B, Jibuti G. Enantioseparation of organometallic compounds by electromigration techniques. Electrophoresis 2024; 45:1018-1032. [PMID: 38279597 DOI: 10.1002/elps.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Over time, chiral organometallic compounds have attracted great interest in several fields, with applications going across several disciplines of chemical, biological, medical, and material sciences. In the last decades, due to advancements in molecular design and computational modeling, the chemistry of chiral transition metal complexes had a remarkable flowering, with the development of new structures for applications in asymmetric synthesis, bioinorganic chemistry, and molecular recognition. In these fields, fast chiral analysis to determine the enantiomeric purity of organometallic structures prepared by asymmetric synthesis, and for high-throughput screening of analytes, catalysts, and reactions, is very important. Capillary electrophoresis and related techniques proved to be extremely versatile for chiral analysis, showing unsurpassed advantages compared to chromatography like low consumption of materials, production of limited amounts of waste, fast equilibration, and possibility to replace easily type and concentration of the chiral selector, among others. Furthermore, electromigration techniques may be useful to gain details about the stereochemistry of the enantiomers of new compounds and to study analyte-selector noncovalent interactions at molecular level. On this basis, this short review aims to provide the reader with a comprehensive view on the enantioseparation of organometallic compounds by electromigration techniques, examining the topic from the historical perspective and showing what was made in this field so far, an essential know-how for developing new and advanced applications in the next future.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB CNR, Sede secondaria di Sassari, Sassari, Italy
| | - Barbara Sechi
- Istituto di Chimica Biomolecolare ICB CNR, Sede secondaria di Sassari, Sassari, Italy
| | - Giorgi Jibuti
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia
| |
Collapse
|
6
|
Li S, Liu Y, Tang X, Xu Z, Lin L, Xie Z, Huo R, Nan ZA, Guan ZJ, Shen H, Zheng N. Chiroptical Activity Amplification of Chiral Metal Nanoclusters via Surface/Interface Solidification. ACS NANO 2024; 18:13675-13682. [PMID: 38752561 DOI: 10.1021/acsnano.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
It remains a grand challenge to amplify the chiroptical activity of chiral metal nanoclusters (NCs) although it is desirable for fundamental research and practical application. Herein, we report a strategy of surface/interface solidification (SIS) for enhancing the chiroptical activity of gold NCs. Structural analysis of [Au19(2R,4R/2S,4S-BDPP)6Cl2]3+ (BDPP is 2,4-bis(diphenylphosphino)pentane) clusters reveals that one of the interfacial gold atoms is flexible between two sites and large space is present on the surface, thus hampering chirality transfer from surface chiral ligands to metal core and leading to low chiroptical activity. Following SIS by filling the flexible sites and replacing chlorides with thiolate ligands affords another pair of [Au20(2R,4R/2S,4S-BDPP)6(4-F-C6H4S)2]4+, which shows a more compact and organized structure and thus an almost 40-fold enhancement of chiroptical activity. This work not only provides an efficient approach for amplifying the chiroptical activity of metal nanoclusters but also highlights the significance of achiral components in shaping chiral nanostructures.
Collapse
Affiliation(s)
- Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Ying Liu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Xiongkai Tang
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhen Xu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lushan Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhenlang Xie
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rong Huo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Zi-Ang Nan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Nanfeng Zheng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
7
|
Chen J, Gu P, Ran G, Zhang Y, Li M, Chen B, Lu H, Han YZ, Zhang W, Tang Z, Yan Q, Sun R, Fu X, Chen G, Shi Z, Wang S, Liu X, Li J, Wang L, Zhu Y, Shen J, Tang BZ, Fan C. Atomically precise photothermal nanomachines. NATURE MATERIALS 2024; 23:271-280. [PMID: 37957270 DOI: 10.1038/s41563-023-01721-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/10/2023] [Indexed: 11/15/2023]
Abstract
Interfacing molecular machines to inorganic nanoparticles can, in principle, lead to hybrid nanomachines with extended functions. Here we demonstrate a ligand engineering approach to develop atomically precise hybrid nanomachines by interfacing gold nanoclusters with tetraphenylethylene molecular rotors. When gold nanoclusters are irradiated with near-infrared light, the rotation of surface-decorated tetraphenylethylene moieties actively dissipates the absorbed energy to sustain the photothermal nanomachine with an intact structure and steady efficiency. Solid-state nuclear magnetic resonance and femtosecond transient absorption spectroscopy reveal that the photogenerated hot electrons are rapidly cooled down within picoseconds via electron-phonon coupling in the nanomachine. We find that the nanomachine remains structurally and functionally intact in mammalian cells and in vivo. A single dose of near-infrared irradiation can effectively ablate tumours without recurrence in tumour-bearing mice, which shows promise in the development of nanomachine-based theranostics.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Peilin Gu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, China
| | - Yu Zhang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Chen
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Hui Lu
- Zhangjiang Laboratory, Shanghai, China
| | - Ying-Zi Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, China
| | - Zichao Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | | | - Rui Sun
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Xiangfu Laboratory, Jiashan, China
| | - Xiaobin Fu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Guorui Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwen Shi
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, China
- Zhangjiang Laboratory, Shanghai, China
| | - Ying Zhu
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, China.
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Wei X, Li H, Shen H, Zhou C, Wang S, Kang X, Zhu M. Symmetry breaking of highly symmetrical nanoclusters for triggering highly optical activity. FUNDAMENTAL RESEARCH 2024; 4:63-68. [PMID: 38933845 PMCID: PMC11197546 DOI: 10.1016/j.fmre.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022] Open
Abstract
Developing new approaches to fulfill the enantioseparation of nanocluster racemates and construct cluster-based nanomaterials with optical activity remains highly desired in cluster science, because it is an essential prerequisite for fundamental research and extensive applications of these nanomaterials. We herein propose a strategy termed "active-site exposing and partly re-protecting" to trigger the symmetry breaking of highly symmetrical nanoclusters and to render cluster crystals optically active. The vertex PPh3 of the symmetrical Ag29(SSR)12(PPh3)4 (SSR = 1, 3-benzenedithiol) nanocluster was firstly dissociated in the presence of counterions with large steric hindrance, and then the exposed Ag active sites of the obtained Ag29(SSR)12 nanocluster were partly re-protected by Ag+, yielding an Ag29(SSR)12-Ag2 nanocluster with a symmetry-breaking construction. Ag29(SSR)12-Ag2 followed a chiral crystallization mode, and its crystal displayed strong optical activity, derived from CD and CPL characterizations. Overall, this work presents a new approach (i.e., active-site exposing and partly re-protecting) for the symmetry breaking of highly symmetrical nanoclusters, the enantioseparation of nanocluster racemates, and the achievement of highly optical activity.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Chuanjun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| |
Collapse
|
9
|
Chandrashekar P, Jena MK, Krishnan G, Pathak B, Mandal S. Photoluminescence Properties of a Chiral One-Dimensional Silver Chalcogenolate Chain. Inorg Chem 2023. [PMID: 37988555 DOI: 10.1021/acs.inorgchem.3c03292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Atom-precise metal nanoclusters, which contain a few tens to hundreds of atoms, have drawn significant interest due to their interesting physicochemical properties. Structural analysis reveals a fundamental architecture characterized by a central core or kernel linked to a staple motif with metal-ligand bonding playing a pivotal role. Ligands not only protect the surface but also exert a significant influence in determining the overall assembly of the larger superstructures. The assemblies of nanoclusters are driven by weak interaction between the ligand molecules; it also depends on the ligand type and functional group present. Here, we report an achiral ligand and Ag(I)···Ag(I) interaction-driven spontaneous resolution of silver-thiolate structure, [Ag18(C6H11S)12(CF3COO)6(DMA)2], where silver atoms and cyclohexanethiolate are connected to form a one-dimensional chain with helicity. Notably, silver atoms adopt different types of coordination modes and geometries. The photoluminescence properties of the one-dimensional (1D) chain structure were investigated, and it was found to exhibit excitation-dependent emission properties attributed to hydrogen-bonding interactions. Experimental and theoretical investigations corroborate the presence of triplet-emitting ligand-to-metal charge-transfer transitions.
Collapse
Affiliation(s)
- Priyanka Chandrashekar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 69551, India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Gokul Krishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 69551, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 69551, India
| |
Collapse
|
10
|
Xu Z, Dong H, Gu W, He Z, Jin F, Wang C, You Q, Li J, Deng H, Liao L, Chen D, Yang J, Wu Z. Lattice Compression Revealed at the ≈1 nm Scale. Angew Chem Int Ed Engl 2023; 62:e202308441. [PMID: 37428452 DOI: 10.1002/anie.202308441] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Lattice tuning at the ≈1 nm scale is fascinating and challenging; for instance, lattice compression at such a minuscule scale has not been observed. The lattice compression might also bring about some unusual properties, which waits to be verified. Through ligand induction, we herein achieve the lattice compression in a ≈1 nm gold nanocluster for the first time, as detected by the single-crystal X-ray crystallography. In a freshly synthesized Au52 (CHT)28 (CHT=S-c-C6 H11 ) nanocluster, the lattice distance of the (110) facet is found to be compressed from 4.51 to 3.58 Å at the near end. However, the lattice distances of the (111) and (100) facets show no change in different positions. The lattice-compressed nanocluster exhibits superior electrocatalytic activity for the CO2 reduction reaction (CO2 RR) compared to that exhibited by the same-sized Au52 (TBBT)32 (TBBT=4-tert-butyl-benzenethiolate) nanocluster and larger Au nanocrystals without lattice variation, indicating that lattice tuning is an efficient method for tailoring the properties of metal nanoclusters. Further theoretical calculations explain the high CO2 RR performance of the lattice-compressed Au52 (CHT)28 and provide a correlation between its structure and catalytic activity.
Collapse
Grants
- 21829501, 21925303, 21771186, 22075290, 22075291, 22272179, 21222301, 21171170, and 21528303 Natural Science Foundation of China
- BJPY2019A02 CASHIPS Director's Fund
- MPCS-2021-A-05 State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences
- 2020HSC-CIP005, 2022HSC-CIP018 the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology
- CAS/SAFEA International Partnership Program for Creative Research Teams
Collapse
Affiliation(s)
- Ziwei Xu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongwei Dong
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhen He
- Department of Chemistry, City University of Hong Kong and Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), Hong Kong, 999077, P. R. China
| | - Fengming Jin
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Chengming Wang
- Instruments' Center for Physical Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Dong Chen
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
11
|
Wang S, He W, Cui Y, Zhou Z, Ma L, Zang SQ. Atomically precise chiral silver clusters based on non-chiral ligands for acid/base stimulated luminescence response. NANOSCALE 2023. [PMID: 37466042 DOI: 10.1039/d3nr03095d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Chiral metal nanoclusters synthesized by non-chiral ligands are usually in the form of racemates. Thus, resolving racemic compounds continues to be a great challenge. Herein, we report a case of the racemic compound hexanuclear silver cluster (Ag6-Rac) protected by the non-chiral sulfhydryl ligand sodium 1H-1,2,3-triazole-5-thiolate (SHTT) and 2,6-bis(diphenylphosphino)pyridine (dpppy). The homochiral clusters in Ag6-Rac are able to spontaneously crystallize and undergo chiral resolution to obtain a racemic conglomerate (Ag6-S/Ag6-R) by solvent-induced crystallization. Interestingly, the Ag6-Rac clusters exhibit strong luminescence in solid and solution, which can respond to trifluoroacetic acid (TFA) and reversible cycling over five times using diethylamine (DEA). This work provides a new research model for resolving racemic clusters and constructing stimulus-responsive clusters.
Collapse
Affiliation(s)
- Shuaibo Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Weimiao He
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yujia Cui
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhan Zhou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Lufang Ma
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
12
|
Liu C, Zhao Y, Zhang TS, Tao CB, Fei W, Zhang S, Li MB. Asymmetric transformation of achiral gold nanoclusters with negative nonlinear dependence between chiroptical activity and enantiomeric excess. Nat Commun 2023; 14:3730. [PMID: 37349326 DOI: 10.1038/s41467-023-39462-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
The investigation of chirality at the nanoscale is important to bridge the gap between molecular and macroscopic chirality. Atomically precise metal nanoclusters provide an ideal platform for this research, while their enantiopure preparation poses a challenge. Here, we describe an efficient approach to enantiopure metal nanoclusters via asymmetric transformation, that is, achiral Au23(SC6H11)16 nanoclusters are converted into chiral and enantiopure Au24(L)2(SC6H11)16 nanoclusters by a chiral inducer phosphoramidite (L). Two enantiomers of Au24(L)2(SC6H11)16 are obtained and the crystal structures reveal their hierarchical chirality, which originates from the two introduced chiral L molecules, the transformation-triggered asymmetric rearrangement of the staple motifs on the surface of the gold core, and the helical arrangement of nanocluster molecules. The construction of this type of enantiomerically pure nanoclusters is achieved based on the easy-to-synthesize and modular L. Lastly, the chirality-related chiroptical performance was investigated, revealing a negative nonlinear CD-ee dependence.
Collapse
Affiliation(s)
- Chang Liu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601, Hefei, P. R. China
| | - Yan Zhao
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601, Hefei, P. R. China
| | - Tai-Song Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601, Hefei, P. R. China
| | - Cheng-Bo Tao
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601, Hefei, P. R. China
| | - Wenwen Fei
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601, Hefei, P. R. China
| | - Sheng Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601, Hefei, P. R. China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601, Hefei, P. R. China.
| |
Collapse
|
13
|
Zhang Y, He SR, Yang Y, Zhang TS, Zhu ZM, Fei W, Li MB. Preorganized Nitrogen Sites for Au 11 Amidation: A Generalizable Strategy toward Precision Functionalization of Metal Nanoclusters. J Am Chem Soc 2023. [PMID: 37235477 DOI: 10.1021/jacs.3c01961] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Atomically precise metal nanoclusters have received tremendous attention due to their unique structures and properties. Although synthetic approaches to this kind of nanomaterial have been well developed, methods toward precision functionalization of the as-synthesized metal nanoclusters are extremely limited, hindering their interfacial modification and related performance improvement. Herein, an amidation strategy has been developed for the precision functionalization of the Au11 nanocluster based on preorganized nitrogen sites. The nanocluster amidation did not change the number of gold atoms in the Au11 kernel and their bonding mode to the surface ligands but slightly modified the arrangement of gold atoms with the introduction of functionality and chirality, thus representing a relatively mild method for the modification of metal nanoclusters. The stability and oxidation barrier of the Au11 nanocluster are also improved accordingly. The method developed here would be a generalizable strategy for the precision functionalization of metal nanoclusters.
Collapse
Affiliation(s)
- Ying Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Sheng-Rong He
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Ying Yang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237015, P. R. China
| | - Tai-Song Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Ze-Min Zhu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Wenwen Fei
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
14
|
Lin Z, Lv Y, Jin S, Yu H, Zhu M. Size Growth of Au 4Cu 4: From Increased Nucleation to Surface Capping. ACS NANO 2023; 17:8613-8621. [PMID: 37115779 DOI: 10.1021/acsnano.3c01238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The size conversion of atomically precise metal nanoclusters is fundamental for elucidating structure-property correlations. In this study, copper salt (CuCl)-induced size growth from [Au4Cu4(Dppm)2(SAdm)5]+ (abbreviated as [Au4Cu4S5]+) to [Au4Cu6(Dppm)2(SAdm)4Cl3]+ (abbreviated as [Au4Cu6S4Cl3]+) (SAdmH = 1-adamantane mercaptan, Dppm = bis-(diphenylphosphino)methane) was investigated via experiments and density functional theory calculations. The [Au4Cu4S5]+ adopts a defective pentagonal bipyramid core structure with surface cavities, which could be easily filled with the sterically less hindered CuCl and CuSCy (i.e., core growth) (HSCy = cyclohexanethiol) but not the bulky CuSAdm. As long as the Au4Cu5 framework is formed, ligand exchange or size growth occurs easily. However, owing to the compact pentagonal bipyramid core structure, the latter growth mode occurs only for the surface-capped [Au4Cu6(Dppm)2(SAdm)4Cl3]+ structure (i.e., surface-capped size growth). A preliminary mechanistic study with density functional theory (DFT) calculations indicated that the overall conversion occurred via CuCl addition, core tautomerization, Cl migration, the second [CuCl] addition, and [CuCl]-[CuSR] exchange steps. And the [Au4Cu6(Dppm)2(SAdm)4Cl3]+ alloy nanocluster exhibits aggregation-induced emission (AIE) with an absolute luminescence quantum yield of 18.01% in the solid state. This work sheds light on the structural transformation of Au-Cu alloy nanoclusters induced by Cu(I) and contributes to the knowledge base of metal-ion-induced size conversion of metal nanoclusters.
Collapse
Affiliation(s)
- Zidong Lin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Ying Lv
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Shan Jin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Haizhu Yu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
15
|
Wang L, Yan X, Tian G, Xie Z, Shi S, Zhang Y, Li S, Sun X, Sun J, He J, Shen H. Chiral copper-hydride nanoclusters: synthesis, structure, and assembly. Dalton Trans 2023; 52:3371-3377. [PMID: 36810425 DOI: 10.1039/d2dt03788b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An effective strategy is developed to synthesize a novel and stable layered Cu nanocluster using a one-pot reduction method. The cluster, with a molecular formula of [Cu14(tBuS)3(PPh3)7H10]BF4 which has been unambiguously characterized by single crystal X-ray diffraction analysis, exhibits different structures from previously reported analogues with core-shell geometries. In the absence of chiral ligands, the cluster displays intrinsic chirality owing to the non-covalent ligand-ligand interactions (e.g., C-H⋯Cu interactions and C-H⋯π interactions) to lock the central copper core. The interlacing of chiral-cluster enantiomers forms a large cavity, which lays the foundation for a series of potential applications such as drug filling and gas adsorption. Moreover, the C-H⋯H-C interactions of phenyl groups between different cluster moieties promote the formation of a dextral helix and realization of the self-assembly of nanostructures.
Collapse
Affiliation(s)
- Lin Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China. .,College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Xiaodan Yan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Guolong Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhenlang Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shanshan Shi
- Department of Chemistry and Chemical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China.
| | - Yuhao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Jinlu He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
16
|
Zhang TS, Fei W, Li N, Zhang Y, Xu C, Luo Q, Li MB. Open Nitrogen Site-Induced Kinetic Resolution and Catalysis of a Gold Nanocluster. NANO LETTERS 2023; 23:235-242. [PMID: 36574348 DOI: 10.1021/acs.nanolett.2c04163] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The emerging metal nanocluster provides a platform for the investigation of structural features, unique properties, and structure-property correlation of nanomaterials at the atomic level. Construction of open sites on the surface of the metal nanocluster is a long-pursued but challenging goal. Herein, we realized the construction of "open organic sites" in a metal nanocluster for the first time. Specifically, we introduce the PNP (2,6-bis(diphenylphosphinomethyl)pyridine) pincer ligand in the synthesis of the gold nanocluster, enabling the construction of a structurally precise Au8(PNP)4 nanocluster. The rigidity and the unique bonding mode of PNP lead to open nitrogen sites on the surface of the Au8(PNP)4 nanocluster, which have been utilized as multifunctional sites in this work for efficient kinetic resolution and catalysis. The gold pincer nanocluster and the open nitrogen site-induced performance will be enlightening for the construction of multifunctional metal nanoclusters.
Collapse
Affiliation(s)
- Tai-Song Zhang
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Wenwen Fei
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Na Li
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Ying Zhang
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Chang Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Qiquan Luo
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Man-Bo Li
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
17
|
Qi ZQ, Wang MY, Shen JC, Lan YZ, Jiang ZG, Zhan CH. Supramolecular hybrids of chiral Waugh polyoxometalate with cyclodextrins. Chem Commun (Camb) 2022; 58:13616-13619. [PMID: 36408598 DOI: 10.1039/d2cc05529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of novel systems for chiral polyoxometalates (POMs) is an attractive research field because of their fascinating topological structures and well-defined functions. Herein, we have developed a new reaction route for the synthesis of two unprecedented chiral Waugh POM-based supramolecular architectures. Single-crystal X-ray diffraction reveals that the architectures exhibit a wavy three-dimensional framework and bamboo-rod-connected framework upon regulating the size of the cyclodextrin and the stacking pattern of the D3 symmetric Waugh {MnMo9}. Solution studies using NMR, circular dichroism and isothermal titration calorimetry corroborate nicely the very weak interactions between the components. The intricate chiral microenvironment originating from the hybrid frameworks may be responsible for the selective recognition of the Λ-{MnMo9} enantiomer. This study highlights the importance of the asymmetric configuration of the POM for designing CD/POM assemblies and understanding their chirality.
Collapse
Affiliation(s)
- Zhen-Qing Qi
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, No. 688, Yingbin Avenue, Jinhua, Zhejiang 321004, China.
| | - Ming-Yue Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, No. 688, Yingbin Avenue, Jinhua, Zhejiang 321004, China.
| | - Jia-Chi Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, No. 688, Yingbin Avenue, Jinhua, Zhejiang 321004, China.
| | - You-Zhao Lan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, No. 688, Yingbin Avenue, Jinhua, Zhejiang 321004, China.
| | - Zhan-Guo Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, No. 688, Yingbin Avenue, Jinhua, Zhejiang 321004, China.
| | - Cai-Hong Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, No. 688, Yingbin Avenue, Jinhua, Zhejiang 321004, China.
| |
Collapse
|
18
|
|
19
|
Liu Y, Zhang P, Zhang L, Wang Y, Li J, Liu Y, Ji L, Yu H. Controlled helicity inversion, selective enantiomer release, and methanol recognition in azobenzene gel. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Zhang J, Lin X, Yin W, Tang J, Zhang Q, Wang W, Zhu C, Liang D, Liu C. The one-step direct synthesis and structure of Au12Ag27Cu5 nanocluster. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Qi F, Jeong KJ, Gong J, Tang Z. Modulation of Nano-superstructures and Their Optical Properties. Acc Chem Res 2022; 55:2425-2438. [PMID: 35977155 DOI: 10.1021/acs.accounts.2c00202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Self-assembly, which enables spontaneous arrangement of objects, is of particular importance for nanomaterials in both fundamental and applied research fields. Multiple types of nanoparticle superstructures have been successfully built in highly controllable and efficient manners through balancing the nanoscale interactions. Uniform and proper arrangement of nanoparticles inside the assembled superstructures is essential to exhibit their constant, reliable, and homogeneous functionalities. To be specific, the long-range ordered superlattices not only succeed with their building blocks' intrinsic property, but also, more importantly, can display collective properties that are absent both in individual nanoparticles and in their bulk states. One of the most attractive aspects of nanomaterials is their exceptional optical properties that have tremendous application potential in multidisciplinary fields. In this regard, constructing the superstructures from optical nano units like noble metal nanostructures, semiconductor nanoparticles, or hybrid nanomaterials is critical for attaining the unique optical properties and exploring their practical applications in multiple fields including photonics, optoelectronics, optical sensing, photocatalysis, etc. In this Account, we provide guidelines for self-assembly strategies to fabricate the superstructures and discuss the optical properties that the superstructures display. In the first part, we categorize and discuss the key factors that strongly affect the self-assembly process and determine the configurational and integral quality of the superstructures. On one hand, the diversity and designability of nanoparticles offer the intrinsic complexity of the building blocks, including geometry, size, composition, and surface ligand, which efficiently tailors the assembly process and superstructure configuration. On the other hand, multiple factors originating from the introduction of extrinsic features are recognized to facilitate the metastable or dynamic self-assembly process. Such extrinsic features include both matter like DNA origami, peptides, small molecules, etc. and nonmatter involved with electric fields, magnetic fields, light, temperature, etc. In the second part, we introduce the state-of the art progress on the collective optical performances of the assembled superstructures, including (1) chiral optics, such as circular dichroism and circularly polarized luminescence, (2) plasmonic properties and related applications, and (3) luminescence related optics and their applications. Finally, we summarize the existing problems and main challenges briefly, and some future directions of this field are proposed. We envision that, with deep understanding of the assembly mechanism and development of the synthetic and surface chemistry, rational modulation of nanoassemblies will be the trend of this field, which is beneficial to achieve the emerging collective performances and create new generation devices with advanced functions.
Collapse
Affiliation(s)
- Fenglian Qi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Ki-Jae Jeong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Jianxiao Gong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
22
|
Nakashima T, Tanibe R, Yoshida H, Ehara M, Kuzuhara M, Kawai T. Self‐Regulated Pathway‐Dependent Chirality Control of Silver Nanoclusters. Angew Chem Int Ed Engl 2022; 61:e202208273. [DOI: 10.1002/anie.202208273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Takuya Nakashima
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
- Department of Chemistry Graduate School of Science Osaka Metropolitan University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Riku Tanibe
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Hiroto Yoshida
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Masahiro Ehara
- Research Center for Computational Science Institute for Molecular Science 38 Nishigo-Naka, Myodaiji Okazaki 444-8585 Japan
| | - Miwa Kuzuhara
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Tsuyoshi Kawai
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| |
Collapse
|
23
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
24
|
Nakashima T, Tanibe R, Yoshida H, Ehara M, Kuzuhara M, Kawai T. Self‐regulated Pathway‐dependent Chirality Control of Silver Nanoclusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takuya Nakashima
- Osaka Metropolitan University: Osaka Koritsu Daigaku Department of Chemistry, Graduate School of Science 3-3-138 SugimotoSumiyoshi-ku 558-8585 Osaka JAPAN
| | - Riku Tanibe
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Hiroto Yoshida
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Masahiro Ehara
- Bunshi Kagaku Kenkyujo Research Center for Computational Science JAPAN
| | - Miwa Kuzuhara
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Tsuyoshi Kawai
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| |
Collapse
|
25
|
Chiral Nanocluster Complexes Formed by Host-Guest Interaction between Enantiomeric 2,6-Helic[6]arenes and Silver Cluster Ag 20: Emission Enhancement and Chirality Transfer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123932. [PMID: 35745054 PMCID: PMC9230552 DOI: 10.3390/molecules27123932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022]
Abstract
A pair of chiral nanocluster complexes were formed by the host−guest interaction between the enantiomeric 2,6-helic[6]arenes and nanocluster Ag20. The formation and stability of the nanocluster complexes were experimentally and theoretically confirmed. Meanwhile, the chiral nanocluster complexes exhibited enhanced luminescence and induced CD signals at room temperature in the solid state, revealing the stable complexation and chirality transfer from the chiral macrocycles to the nanocluster Ag20.
Collapse
|
26
|
Chen T, Lin H, Cao Y, Yao Q, Xie J. Interactions of Metal Nanoclusters with Light: Fundamentals and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103918. [PMID: 34617332 DOI: 10.1002/adma.202103918] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The interactions of materials with light determine their applications in various fields. In the past decade, ultrasmall metal nanoclusters (NCs) have emerged as a promising class of optical materials due to their unique molecular-like properties. Herein, the basic principles of optical absorption and photoluminescence of metal NCs, their interactions with polarized light, and light-induced chemical reactions, are discussed, highlighting the roles of the core and protecting ligands/motifs of metal NCs in their interactions with light. The metal core and protecting ligands/motifs determine the electronic structures of metal NCs, which are closely related to their optical properties. In addition, the protecting ligands/motifs of metal NCs contribute to their photoluminescence and chiral origin, further promoting the interactions of metal NCs with light through various pathways. The fundamentals of light-NC interactions provide guidance for the design of metal NCs in optical applications, which are discussed in the second part. In the last section, some strategies are proposed to further understand light-NC interactions, highlighting the challenges and opportunities. It is hoped that this work will stimulate more research on the optical properties of metal NCs and their applications in various fields.
Collapse
Affiliation(s)
- Tiankai Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hongbin Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yitao Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
27
|
Adnan RH, Madridejos JML, Alotabi AS, Metha GF, Andersson GG. A Review of State of the Art in Phosphine Ligated Gold Clusters and Application in Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105692. [PMID: 35332703 PMCID: PMC9130904 DOI: 10.1002/advs.202105692] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Indexed: 05/28/2023]
Abstract
Atomically precise gold clusters are highly desirable due to their well-defined structure which allows the study of structure-property relationships. In addition, they have potential in technological applications such as nanoscale catalysis. The structural, chemical, electronic, and optical properties of ligated gold clusters are strongly defined by the metal-ligand interaction and type of ligands. This critical feature renders gold-phosphine clusters unique and distinct from other ligand-protected gold clusters. The use of multidentate phosphines enables preparation of varying core sizes and exotic structures beyond regular polyhedrons. Weak gold-phosphorous (Au-P) bonding is advantageous for ligand exchange and removal for specific applications, such as catalysis, without agglomeration. The aim of this review is to provide a unified view of gold-phosphine clusters and to present an in-depth discussion on recent advances and key developments for these clusters. This review features the unique chemistry, structural, electronic, and optical properties of gold-phosphine clusters. Advanced characterization techniques, including synchrotron-based spectroscopy, have unraveled substantial effects of Au-P interaction on the composition-, structure-, and size-dependent properties. State-of-the-art theoretical calculations that reveal insights into experimental findings are also discussed. Finally, a discussion of the application of gold-phosphine clusters in catalysis is presented.
Collapse
Affiliation(s)
- Rohul H. Adnan
- Department of Chemistry, Faculty of ScienceCenter for Hydrogen EnergyUniversiti Teknologi Malaysia (UTM)Johor Bahru81310Malaysia
| | | | - Abdulrahman S. Alotabi
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
- Department of PhysicsFaculty of Science and Arts in BaljurashiAlbaha UniversityBaljurashi65655Saudi Arabia
| | - Gregory F. Metha
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Gunther G. Andersson
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
| |
Collapse
|
28
|
Wang Y, Feng Z, Sun Y, Zhu L, Xia D. Chiral induction in a novel self-assembled supramolecular system composed of α-cyclodextrin porous liquids, chiral silver nanoparticles and planar conjugated molecules. SOFT MATTER 2022; 18:975-982. [PMID: 35014653 DOI: 10.1039/d1sm01248g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The newly developed porous liquids known as liquids with permanent microporosity, have considerable application potential in many unknown areas. Herein, a supramolecular system composed of α-cyclodextrin porous liquid, chiral silver nanoparticles and planar conjugated molecules (methylene blue and indigo carmine) was designed and the induced chirality of the system was observed. It was found that the induced chirality can be easily tuned by changing the pH value of the mixture solution. The induced chiral signal of methylene blue in the developed self-assembled supramolecular system occurred when the pH was between 8 and 10, and furthermore the induced chirality of indigo carmine was found when the pH was between 6.5 and 7.5. The intensity of induced chirality decreases upon increasing temperatures and ionic strength. This study may offer a new approach for the creation of a chiral supramolecular system based on host-guest and electrostatic interaction and make cyclodextrin porous liquids promising candidates for applications in chiral induction.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
- Oil & Gas Technology Research Institute, Changqing Oilfield Company, Xi'an 710018, China
| | - Zhen Feng
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| | - Yawei Sun
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| | - Lijun Zhu
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| | - Daohong Xia
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
29
|
He J, Deng CL, Sun CF, Zhang XX, Cui Y, Wu SH, Luo GG. Controllable spontaneous resolution in ultrasmall Cu-Ag bimetallic cluster ion pairs from achiral components. Chem Commun (Camb) 2022; 58:1577-1580. [PMID: 35014990 DOI: 10.1039/d1cc05135k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bimetallic cluster ion pairs containing a quaternary phosphonium and an ultrasmall Cu2Ag3 anionic cluster protected by thiolates: (PPh3R'')[Cu2Ag3(SR')6] (R'SH = cyclohexylthiol (CySH), R'' = Ph, 1; Me, 2; Et, 3; Pr, 4; R'SH = tert-butylthiol (tBuSH) and R'' = Ph, 5) were reported. Without any chiral source, 1 crystallizes as conglomerate crystals with homochiral packings and spontaneous resolution occurs, while four other clusters 2-5 crystallize as racemic crystals with heterochiral packings. These results indicate that racemic and homochiral crystallization in the cluster system could be controlled through fine-tuning internal achiral structural components.
Collapse
Affiliation(s)
- Jiao He
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Cheng-Long Deng
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Cun-Fa Sun
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Xiao-Xiao Zhang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Ying Cui
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Sheng-Hui Wu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Geng-Geng Luo
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China. .,State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
30
|
Man RWY, Yi H, Malola S, Takano S, Tsukuda T, Häkkinen H, Nambo M, Crudden CM. Synthesis and Characterization of Enantiopure Chiral Bis NHC-Stabilized Edge-Shared Au 10 Nanocluster with Unique Prolate Shape. J Am Chem Soc 2022; 144:2056-2061. [PMID: 35100506 DOI: 10.1021/jacs.1c11857] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein we report the first chiral Au10 nanoclusters stabilized by chiral bis N-heterocyclic carbene (bisNHC) ligands. ESI-MS and single-crystal X-ray crystallography confirmed the molecular formula to be [Au10(bisNHC)4Br2](O2CCF3)2. The chiral Au10 nanocluster adopts a linear edge-shared tetrahedral geometry with a prolate shape. DFT calculations provide insight into the electronic structure, optical absorption, and circular dichroism (CD) characteristics of this unique Au10 nanocluster. CD spectra demonstrate chirality transfer from the chiral bisNHC ligand to the inner Au10 nanocluster core. Examination of ESI-MS and UV-vis spectra show that cluster [Au9(bisNHC)4Br]Br2 is formed initially and then transformed into the Au10 nanocluster in solution.
Collapse
Affiliation(s)
- Renee W Y Man
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| | - Hong Yi
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| | - Sami Malola
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hannu Häkkinen
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| | - Cathleen M Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan.,Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
31
|
Abstract
Controlled assembly of inorganic nanoparticles with different compositions, sizes and shapes into higher-order structures of collective functionalities is a central pursued objective in chemistry, physics, materials science and nanotechnology. The emerging chiral superstructures, which break spatial symmetries at the nanoscale, have attracted particular attention, owing to their unique chiroptical properties and potential applications in optics, catalysis, biology and so on. Various bottom-up strategies have been developed to build inorganic chiral superstructures based on the intrinsic configurational preference of the building blocks, external fields or chiral templates. Self-assembled inorganic chiral superstructures have demonstrated significant superior optical activity from the strong electric/magnetic coupling between the building blocks, as compared with the organic counterparts. In this Review, we discuss recent progress in preparing self-assembled inorganic chiral superstructures, with an emphasis on the driving forces that enable symmetry breaking during the assembly process. The chiroptical properties and applications are highlighted and a forward-looking trajectory of where research efforts should be focused is discussed.
Collapse
|
32
|
Patty JB, Havenridge S, Tietje-Mckinney D, Siegler MA, Singh KK, Hajy Hosseini R, Ghabin M, Aikens CM, Das A. Crystal Structure and Optical Properties of a Chiral Mixed Thiolate/Stibine-Protected Au 18 Cluster. J Am Chem Soc 2021; 144:478-484. [PMID: 34957826 DOI: 10.1021/jacs.1c10778] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report the first example of a chiral mixed thiolate/stibine-protected gold cluster, formulated as Au18(S-Adm)8(SbPh3)4Br2 (where S-Adm = 1-adamantanethiolate). Single crystal X-ray crystallography reveals the origin of chirality in the cluster to be the introduction of the rotating arrangement of Au2(S-Adm)3 and Au(S-Adm)2 staple motifs on an achiral Au13 core and the subsequent capping of the remaining gold atoms by SbPh3 and Br- ligands. Interestingly, the structure and properties of this new Au18 cluster are found to be different from other reported achiral Au18 clusters and the only other stibine-protected [Au13(SbPh3)8Cl4]+ cluster. Detailed analyses on the geometric and electronic structures of the new cluster are carried out to gain insights into its optical properties as well as reactivity and stability of such mixed monolayer-protected clusters.
Collapse
Affiliation(s)
- Justin B Patty
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Shana Havenridge
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Dylan Tietje-Mckinney
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kundan K Singh
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Roumina Hajy Hosseini
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Mohamed Ghabin
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Anindita Das
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
33
|
Si WD, Li YZ, Zhang SS, Wang S, Feng L, Gao ZY, Tung CH, Sun D. Toward Controlled Syntheses of Diphosphine-Protected Homochiral Gold Nanoclusters through Precursor Engineering. ACS NANO 2021; 15:16019-16029. [PMID: 34592104 DOI: 10.1021/acsnano.1c04421] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controllable syntheses of Au nanoclusters (NCs) with different nuclearities are of great significance due to the kernel-dependent physicochemical properties. Herein, two pairs of enantiomeric Au NCs [Au19(R/S-BINAP)4(PhC≡C)Cl4] (SD/Au19) and [Au11(R/S-BINAP)4(PhC≡C)2]·Cl (SD/Au11), both with atropos (rigid axial chirality) diphosphine BINAP (2,2'-bis(diphenylphosphino)-1,1'-binaphthalene) as the predominant organic ligands, were controllably synthesized through precursor engineering. The former was obtained by direct reduction of HAuCl4·4H2O, while the latter was obtained by reduction of [Au(SMe2)Cl] instead. Intriguingly, the kernel of SD/Au19 contains an Au7 pentagonal bipyramid capped by two boat-like Au6 rings, which represents another type of Au19 kernel, making SD/Au19 a good candidate for comparative study with other Au19 NCs to get more insight into the distinct structural evolution of phosphine-protected Au NCs. Despite the previous chiroptical studies on some other chiral undecagold NCs, the successful attainment of the X-ray crystal structures for SD/Au11 not only provides a step forward toward better correlating the chiroptical activities with their structural details but also reveals that even the auxiliary protecting ligands also play a nontrivial role in tuning the geometrical structures of the metal NCs. The chiroptical activities of both SD/Au19 and SD/Au11 were found to originate from the chiral ligands and core distortions; the extended π-electron systems in the BINAP ligands have proved to positively contribute to the electronic absorptions and thus disturb the corresponding circular dichroism (CD) responses.
Collapse
Affiliation(s)
- Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Ying-Zhou Li
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan 250353, People's Republic of China
| | - Shan-Shan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| |
Collapse
|
34
|
A reasonable approach for the generation of hollow icosahedral kernels in metal nanoclusters. Nat Commun 2021; 12:6186. [PMID: 34702816 PMCID: PMC8548331 DOI: 10.1038/s41467-021-26528-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
Although the hollow icosahedral M12 kernel has been extensively observed in metal nanoclusters, its origin remains a mystery. Here we report a reasonable avenue for the generation of the hollow icosahedron: the kernel collapse from several small nano-building blocks to an integrated hollow icosahedron. On the basis of the Au alloying processes from Ag28Cu12(SR)24 to the template-maintained AuxAg28-xCu12(SR)24 and then to the template-transformed Au12CuyAg32-y(SR)30, the kernel evolution/collapse from “tetrahedral Ag4 + 4∗Ag3” to “tetrahedral Au4 + 4∗M3 (M = Au/Ag)” and then to “hollow icosahedral Au12” is mapped out. Significantly, the “kernel collapse” from small-sized nano-building blocks to large-sized nanostructures not only unveils the formation of hollow icosahedral M12 in this work, but also might be a very common approach in constructing metallic kernels of nanoclusters and nanoparticles (not limited to the M12 structure). The origin of the hollow icosahedral M12 kernel in metal nanoclusters is under debate. Here the authors demonstrate the Au alloying-induced kernel collapse from small-sized nano-building blocks as a viable approach for the generation of hollow icosahedral M12 kernel in metal nanoclusters.
Collapse
|
35
|
Huang JH, Si Y, Dong XY, Wang ZY, Liu LY, Zang SQ, Mak TCW. Symmetry Breaking of Atomically Precise Fullerene-like Metal Nanoclusters. J Am Chem Soc 2021; 143:12439-12444. [PMID: 34355894 DOI: 10.1021/jacs.1c05568] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here we report a neutral fullerene-like core-shell homosilver Ag13@Ag20 nanocluster that is fully protected by an achiral bidentate thiolate ligand (9,12-dimercapto-1,2-closo-carborane, C2B10H10S2H2), which crystallizes in centrosymmetric space group R3̅. Continuous Cu doping in the dodecahedral shell first induced symmetry breaking to generate chiral Ag13@Ag20-nCun (6 ≥ n ≥ 2) containing two acetonitrile ligands in space group P212121, and then produced symmetric all-thiolated Ag13@Ag20-nCun (20 ≥ n ≥ 13) in the higher space group Im3̅. The selectively copper-doped Ag13@Ag20-nCun (6 ≥ n ≥ 2) cluster has its structure reorganized to a lower symmetry that shows chiroptical activity. Moreover, structural distortion of Ag13@Ag20-nCun (6 ≥ n ≥ 2) further expanded in chiral R-/S-propylene oxide, which induced a more prominent core-based CD response. This work revealed a novel mechanism of chirality generation at the atomic level through asymmetric shell-doping of metal nanoclusters, which provides new insight into the origin of chirality in inorganic nanostructures.
Collapse
Affiliation(s)
- Jia-Hong Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yubing Si
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Ying Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
36
|
Liang XQ, Li YZ, Wang Z, Zhang SS, Liu YC, Cao ZZ, Feng L, Gao ZY, Xue QW, Tung CH, Sun D. Revealing the chirality origin and homochirality crystallization of Ag 14 nanocluster at the molecular level. Nat Commun 2021; 12:4966. [PMID: 34404784 PMCID: PMC8371133 DOI: 10.1038/s41467-021-25275-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
Although chirality is an ever-present characteristic in biology and some artificial molecules, controlling the chirality and demystifying the chirality origin of complex assemblies remain challenging. Herein, we report two homochiral Ag14 nanoclusters with inherent chirality originated from identical rotation of six square faces on a Ag8 cube driven by intra-cluster π···π stacking interaction between pntp− (Hpntp = p-nitrothiophenol) ligands. The spontaneous resolution of the racemic (SD/rac-Ag14a) to homochiral nanoclusters (SD/L-Ag14 and SD/R-Ag14) can be realized by re-crystallizing SD/rac-Ag14a in acetonitrile, which promotes the homochiral crystallization in solid state by forming C–H···O/N hydrogen bonds with nitro oxygen atoms in pntp− or aromatic hydrogen atoms in dpph (dpph = 1,6-bis(diphenylphosphino)hexane) on Ag14 nanocluster. This work not only provides strategic guidance for the syntheses of chiral silver nanoclusters in an all-achiral environment, but also deciphers the origin of chirality at molecular level by identifying the special effects of intra- and inter-cluster supramolecular interactions. The preparation of chiral monolayer-protected metal clusters is interesting for their potential applications in a variety of fields, including catalysis. Here, the authors synthesize chiral Ag14 nanoclusters in an all-achiral environment, and decipher the origin of chirality at the molecular level; the solvent choice is key to achieve homochiral crystallization.
Collapse
Affiliation(s)
- Xiao-Qian Liang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Ying-Zhou Li
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Shan-Shan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Yi-Cheng Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Zhao-Zhen Cao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang, People's Republic of China
| | - Qing-Wang Xue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China.
| |
Collapse
|
37
|
Wei X, Kang X, Duan T, Li H, Wang S, Pei Y, Zhu M. [Au 16Ag 43H 12(SPhCl 2) 34] 5-: An Au-Ag Alloy Nanocluster with 12 Hydrides and Its Enlightenment on Nanocluster Structural Evolution. Inorg Chem 2021; 60:11640-11647. [PMID: 34286977 DOI: 10.1021/acs.inorgchem.1c01624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The structural determination of alloy hydride nanoclusters with high nuclearity remains challenging. We herein report the synthetic procedure and the structural elucidation of an Au-Ag alloy nanocluster with 12 hydride ligands-[Au16Ag43H12(SPhCl2)34]5-. The structure of [Au16Ag43H12(SPhCl2)34]5- comprises an Au16Ag3 kernel that is stabilized by 12 hydride ligands, 8 thiol bridges, and 6 Agm(SR)n motif units. The 12 hydride ligands in Au16Ag43 have been confirmed by both 2H NMR and ESI-MS measurements, and their positions have been theoretically evaluated, located at the interlayer between the Au16Ag3 kernel and the Ag-SR shell. The metastable [Au16Ag43H12(SPhCl2)34]5- can convert to [Au12Ag32(SPhCl2)30]4- spontaneously. Structurally, the Au16Ag3 kernel of [Au16Ag43H12(SPhCl2)34]5- could be regarded as the overlapping of two hollow Au8Ag3 cages via sharing an Ag3 line, which is in contrast to the solely icosahedral Au12 kernel of [Au12Ag32(SPhCl2)30]4-. Besides, the overall construction of Au16Ag43 or Au12Ag32 follows a complementing or overlapping assembly mode, respectively. Overall, the structural anatomy of Au16Ag43H12(SPhCl2)34 sheds some new insight into the structural evolution of metal nanoclusters.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Tengfei Duan
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, P. R. China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
38
|
Rival JV, Mymoona P, Lakshmi KM, Pradeep T, Shibu ES. Self-Assembly of Precision Noble Metal Nanoclusters: Hierarchical Structural Complexity, Colloidal Superstructures, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005718. [PMID: 33491918 DOI: 10.1002/smll.202005718] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/07/2020] [Indexed: 06/12/2023]
Abstract
Ligand protected noble metal nanoparticles are excellent building blocks for colloidal self-assembly. Metal nanoparticle self-assembly offers routes for a wide range of multifunctional nanomaterials with enhanced optoelectronic properties. The emergence of atomically precise monolayer thiol-protected noble metal nanoclusters has overcome numerous challenges such as uncontrolled aggregation, polydispersity, and directionalities faced in plasmonic nanoparticle self-assemblies. Because of their well-defined molecular compositions, enhanced stability, and diverse surface functionalities, nanoclusters offer an excellent platform for developing colloidal superstructures via the self-assembly driven by surface ligands and metal cores. More importantly, recent reports have also revealed the hierarchical structural complexity of several nanoclusters. In this review, the formulation and periodic self-assembly of different noble metal nanoclusters are focused upon. Further, self-assembly induced amplification of physicochemical properties, and their potential applications in molecular recognition, sensing, gas storage, device fabrication, bioimaging, therapeutics, and catalysis are discussed. The topics covered in this review are extensively associated with state-of-the-art achievements in the field of precision noble metal nanoclusters.
Collapse
Affiliation(s)
- Jose V Rival
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| | - Paloli Mymoona
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| | - Kavalloor Murali Lakshmi
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| | - Thalappil Pradeep
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, 600036, India
| | - Edakkattuparambil Sidharth Shibu
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
39
|
Omoda T, Takano S, Tsukuda T. Toward Controlling the Electronic Structures of Chemically Modified Superatoms of Gold and Silver. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2001439. [PMID: 32696588 DOI: 10.1002/smll.202001439] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Atomically precise gold/silver clusters protected by organic ligands L, [(Au/Ag)x Ly ]z , have gained increasing interest as building units of functional materials because of their novel photophysical and physicochemical properties. The properties of [(Au/Ag)x Ly ]z are intimately associated with the quantized electronic structures of the metallic cores, which can be viewed as superatoms from the analogy of naked Au/Ag clusters. Thus, establishment of the correlation between the geometric and electronic structures of the superatomic cores is crucial for rational design and improvement of the properties of [(Au/Ag)x Ly ]z . This review article aims to provide a qualitative understanding on how the electronic structures of [(Au/Ag)x Ly ]z are affected by geometric structures of the superatomic cores with a focus on three factors: size, shape, and composition, on the basis of single-crystal X-ray diffraction data. The knowledge accumulated here will constitute a basis for the development of ligand-protected Au/Ag clusters as new artificial elements on a nanometer scale.
Collapse
Affiliation(s)
- Tsubasa Omoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto, 615-8520, Japan
| |
Collapse
|
40
|
Chai J, Yang S, Chen T, Li Q, Wang S, Zhu M. Chiral Inversion and Conservation of Clusters: A Case Study of Racemic Ag 32Cu 12 Nanocluster. Inorg Chem 2021; 60:9050-9056. [PMID: 34061506 DOI: 10.1021/acs.inorgchem.1c01049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chiral metal nanoclusters have been widely reported, but their separation and optical stabilization remain challenging. We used a deracemization strategy to accomplish the enantioseparation of a racemic mixture of [Ag32Cu12(CH3COO)12(SAdm)12(P(CH3OPh)3)4] (M44) in a yield exceeding 50%, forming two optically active [Ag32Cu12(R/S-Cl(CH3)CHCOO)12(SAdm)12(P(CH3OPh)3)4] (R/S-M44') enantiomers. The optical activity of these products was conserved after exchange of the chiral carboxyl ligands with achiral ligand (Br-), to give two additional optically active nanoclusters R/S-[Ag28Cu16Br12(SAdm)12(P(CH3OPh)3)4] (R/S(Br)-M44). The crystal structures of the above nanoclusters were determined by single-crystal X-ray crystallography. Based on these structures, the chiral transformation and conservation are mapped out.
Collapse
Affiliation(s)
- Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.,Department Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Sha Yang
- Department Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Tao Chen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.,School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.,Department Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
41
|
Deng G, Malola S, Yuan P, Liu X, Teo BK, Häkkinen H, Zheng N. Enhanced Surface Ligands Reactivity of Metal Clusters by Bulky Ligands for Controlling Optical and Chiral Properties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guocheng Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Peng Yuan
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xianhu Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Boon K. Teo
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
42
|
Liu W, Wang J, Yuan S, Chen X, Wang Q. Chiral Superatomic Nanoclusters Ag
47
Induced by the Ligation of Amino Acids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wen‐Di Liu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Jia‐Qi Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Shang‐Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Xi Chen
- Department of Applied Physics Aalto University Otakaari 1 02150 Espoo Finland
| | - Quan‐Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
43
|
Shen H, Wei X, Xu C, Jin S, Wang S, Kang X, Zhu M. Cocrystallization-driven stabilization of metastable nanoclusters: a case study of Pd 1Au 9. NANOSCALE 2021; 13:7694-7699. [PMID: 33928981 DOI: 10.1039/d1nr00721a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structural determination of metastable nanoclusters remains challenging, which impedes the in-depth understanding of their structural evolution. Herein, based on a case study of Pd1Au9, we present a "cocrystallization-driven stabilization" approach to stabilize the metastable nanocluster and then determine its atomically precise structure. The [Pd1Au9(TFPP)7Br2]+ nanocluster is unstable in solution and would spontaneously convert to Pd2Au23(TFPP)10Br7. The introduction of Au11(TFPP)7Br3 nanocluster to the crystallization process of [Pd1Au9(TFPP)7Br2]+ gives rise to the cocrystallized Pd1Au9(TFPP)6Br3@Au11(TFPP)7Br3, although the composition of Pd1Au9 changes from [Pd1Au9(TFPP)7Br2]+ to Pd1Au9(TFPP)6Br3 among this cocrystallization. With this approach, the overall structure of the metastable Pd1Au9 has been determined. Owing to the very similar cluster size and surface ligand environment between Au11 and Pd1Au9, the obtained Pd1Au9@Au11 cocrystal exhibits almost the same cell parameters as those of the single crystalized Au11. Overall, the proposed "cocrystallization-driven stabilization" approach hopefully sheds light on the structural determination of more metastable nanoclusters.
Collapse
Affiliation(s)
- Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China. and Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China.
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China. and Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China.
| | - Chao Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China. and Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China.
| | - Shan Jin
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China. and Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China.
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China. and Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China. and Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China.
| |
Collapse
|
44
|
Deng G, Malola S, Yuan P, Liu X, Teo BK, Häkkinen H, Zheng N. Enhanced Surface Ligands Reactivity of Metal Clusters by Bulky Ligands for Controlling Optical and Chiral Properties. Angew Chem Int Ed Engl 2021; 60:12897-12903. [PMID: 33719174 DOI: 10.1002/anie.202101141] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Surface ligands play critical roles in determining the surface properties of metal clusters. However, modulating the properties and controlling the surface structure of clusters through surface-capping-agent displacement is challenging. Herein, [Ag14 (SPh(CF3 )2 )12 (PPh3 )4 (DMF)4 ] (Ag14 -DMF; DMF=N,N-dimethylformamide), with weakly coordinated DMF ligands on surface silver sites, was synthesized by a mixed-ligands strategy. Owing to the high surface reactivity of Ag14 -DMF, the surface ligands are labile, easily dissociated or exchanged by other ligands. Based on the enhanced surface reactivity, easy modulation of the optical properties of Ag14 by reversible "on-off" DMF ligation was realized. When chiral amines were introduced to as-prepared products, all eight surface ligands were replaced by amines and the racemic Ag14 clusters were converted to optically pure homochiral Ag14 clusters as evidenced by circular dichroism (CD) activity and single-crystal X-ray diffraction (SCXRD). This work provides a new insight into modulation of the optical properties of metal clusters and atomically precise homochiral clusters for specific applications are obtained.
Collapse
Affiliation(s)
- Guocheng Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Peng Yuan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xianhu Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Boon K Teo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
45
|
Liu W, Wang J, Yuan S, Chen X, Wang Q. Chiral Superatomic Nanoclusters Ag
47
Induced by the Ligation of Amino Acids. Angew Chem Int Ed Engl 2021; 60:11430-11435. [DOI: 10.1002/anie.202100972] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Di Liu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Jia‐Qi Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Shang‐Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Xi Chen
- Department of Applied Physics Aalto University Otakaari 1 02150 Espoo Finland
| | - Quan‐Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
46
|
Shichibu Y, Ogawa Y, Sugiuchi M, Konishi K. Chiroptical activity of Au 13 clusters: experimental and theoretical understanding of the origin of helical charge movements. NANOSCALE ADVANCES 2021; 3:1005-1011. [PMID: 36133296 PMCID: PMC9416943 DOI: 10.1039/d0na00833h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/05/2020] [Indexed: 05/07/2023]
Abstract
Ligand-protected gold clusters with an asymmetric nature have emerged as a novel class of chiral compounds, but the origins of their chiroptical activities associated with helical charge movements in electronic transitions remain unexplored. Herein, we perform experimental and theoretical studies on the structures and chiroptical properties of Au13 clusters protected by mono- and di-phosphine ligands. Based on the experimental reevaluation of diphosphine-ligated Au13 clusters, we show that these surface ligands slightly twist the Au13 cores from a true icosahedron to generate intrinsic chirality in the gold frameworks. Theoretical investigation of a monophosphine-ligated cluster model reproduced the experimentally observed circular dichroism (CD) spectrum, indicating that such a torsional twist of the Au13 core, rather than the surrounding chiral environment by helically arranged diphosphine ligands, contributes to the appearance of the chiroptical response. We also show that the calculated CD signals are dependent on the degree of asymmetry (torsion angle between the two equatorial Au5 pentagons), and provide a visual understanding of the origin of helical charge movements with transition-moment and transition-density analyses. This work provides novel insights into the chiroptical activities of ligand-protected metal clusters with intrinsically chiral cores.
Collapse
Affiliation(s)
- Yukatsu Shichibu
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
- Faculty of Environmental Earth Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| | - Yuri Ogawa
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| | - Mizuho Sugiuchi
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| | - Katsuaki Konishi
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
- Faculty of Environmental Earth Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| |
Collapse
|
47
|
Yuan X, Malola S, Deng G, Chen F, Häkkinen H, Teo BK, Zheng L, Zheng N. Atomically Precise Alkynyl- and Halide-Protected AuAg Nanoclusters Au 78Ag 66(C≡CPh) 48Cl 8 and Au 74Ag 60(C≡CPh) 40Br 12: The Ligation Effects of Halides. Inorg Chem 2021; 60:3529-3533. [PMID: 33615777 DOI: 10.1021/acs.inorgchem.0c03462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reported herein are the synthesis and structures of two high-nuclearity AuAg nanoclusters, namely, [Au78Ag66(C≡CPh)48Cl8]q- and [Au74Ag60(C≡CPh)40Br12]2-. Both clusters possess a three-concentric-shell Au12@Au42@Ag60 structure. However, the dispositions of the metal atoms, and the ligand coordination modes, of the outermost shells of these clusters are distinctly different. These structural differences reflect the bonding characteristics of the halide ligands. As revealed by density functional theory analysis, these clusters exhibit superatomic electron shell closings at magic numbers of 92 (for q = 4) and 84, respectively, consistent with their spherical shapes. Both clusters exhibit unusual multivalent redox properties.
Collapse
Affiliation(s)
- Xiting Yuan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Guocheng Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fengjiao Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Boon K Teo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lansun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
48
|
Zhu C, Duan T, Li H, Wei X, Kang X, Pei Y, Zhu M. Structural determination of a metastable Ag 27 nanocluster and its transformations into Ag 8 and Ag 29 nanoclusters. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00684c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The atomically precise structure of a metastable nanocluster, Ag27H11(SPhMe2)12(DPPM)6, was determined, and its transformations into size-reduction Ag8 and size-growth Ag29 nanoclusters have been mapped out.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Tengfei Duan
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, P. R. China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
49
|
Yao Q, Xie J. Pasteur-like Separation of Silver Nanocluster Racemates by Conglomerate Crystallization. ACS CENTRAL SCIENCE 2020; 6:1862-1865. [PMID: 33274265 PMCID: PMC7706071 DOI: 10.1021/acscentsci.0c01301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Qiaofeng Yao
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Jianping Xie
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
- Joint
Institute of Tianjin University and National University of Singapore, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
50
|
Yao Q, Wu Z, Liu Z, Lin Y, Yuan X, Xie J. Molecular reactivity of thiolate-protected noble metal nanoclusters: synthesis, self-assembly, and applications. Chem Sci 2020; 12:99-127. [PMID: 34163584 PMCID: PMC8178751 DOI: 10.1039/d0sc04620e] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
Thiolate-protected noble metal (e.g., Au and Ag) nanoclusters (NCs) are ultra-small particles with a core size of less than 3 nm. Due to the strong quantum confinement effects and diverse atomic packing modes in this ultra-small size regime, noble metal NCs exhibit numerous molecule-like optical, magnetic, and electronic properties, making them an emerging family of "metallic molecules". Based on such molecule-like structures and properties, an individual noble metal NC behaves as a molecular entity in many chemical reactions, and exhibits structurally sensitive molecular reactivity to various ions, molecules, and other metal NCs. Although this molecular reactivity determines the application of NCs in various fields such as sensors, biomedicine, and catalysis, there is still a lack of systematic summary of the molecular interaction/reaction fundamentals of noble metal NCs at the molecular and atomic levels in the current literature. Here, we discuss the latest progress in understanding and exploiting the molecular interactions/reactions of noble metal NCs in their synthesis, self-assembly and application scenarios, based on the typical M(0)@M(i)-SR core-shell structure scheme, where M and SR are the metal atom and thiolate ligand, respectively. In particular, the continuous development of synthesis and characterization techniques has enabled noble metal NCs to be produced with molecular purity and atomically precise structural resolution. Such molecular purity and atomically precise structure, coupled with the great help of theoretical calculations, have revealed the active sites in various structural hierarchies of noble metal NCs (e.g., M(0) core, M-S interface, and SR ligand) for their molecular interactions/reactions. The anatomy of such molecular interactions/reactions of noble metal NCs in synthesis, self-assembly, and applications (e.g., sensors, biomedicine, and catalysis) constitutes another center of our discussion. The basis and practicality of the molecular interactions/reactions of noble metal NCs exemplified in this Review may increase the acceptance of metal NCs in various fields.
Collapse
Affiliation(s)
- Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
| | - Zhennan Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
| | - Zhihe Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou China 350207
| | - Yingzheng Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou China 350207
| | - Xun Yuan
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao China 266042
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou China 350207
| |
Collapse
|