1
|
Liu P, Dong H, Gong B, Gao S, Lin A, Yao H. Palladium-Catalyzed Asymmetric Tandem Carbonylation-Heck Reaction of Cyclopentenes to Access Chiral Bicyclo[3.2.1]octenes. Org Lett 2024; 26:8244-8248. [PMID: 39311415 DOI: 10.1021/acs.orglett.4c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A palladium-catalyzed asymmetric tandem carbonylation-Heck reaction of cyclopentenes with carbon monoxide (CO) has been disclosed. This desymmetrization procedure afforded a series of bicyclo[3.2.1]octenes with one chiral quaternary and one tertiary carbon center in good yields with good enantioselectivities. This reaction proceeds via an acyl-palladium intermediate, followed by migratory insertion of the alkenes.
Collapse
Affiliation(s)
- Pengyun Liu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hongyue Dong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Baihui Gong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
2
|
Nie Z, Wu K, Zhan X, Yang W, Lian Z, Lin S, Wang SG, Yin Q. Palladium-catalyzed difluorocarbene transfer enables access to enantioenriched chiral spirooxindoles. Nat Commun 2024; 15:8510. [PMID: 39353887 PMCID: PMC11445564 DOI: 10.1038/s41467-024-52392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
We disclose herein an unprecedented Pd-catalyzed difluorocarbene transfer reaction, which assembles a series of structurally interesting chiral spiro ketones with generally over 90% ee. Commercially available BrCF2CO2K serves as the difluorocarbene precursor, which is harnessed as a user-friendly and safe carbonyl source in this transformation. Preliminary mechanistic studies exclude the formation of free CO in the reaction process, and importantly, we also find that BrCF2CO2K outcompete gaseous CO and several common CO surrogates in this asymmetric process. The reaction mechanism, including the in-situ progressive release of the difluorocarbene, the rapid migratory insertion of ArPd(II) = CF2 species, and subsequent defluorination hydrolysis by water to introduce the carbonyl group, accounts for the overall high efficiency and uniqueness. This work clearly showcases the advantage and potential of the difluorocarbene in synthesis and supplies a mechanistically distinct route for asymmetric carbonylative cyclization reactions.
Collapse
Affiliation(s)
- Zhiwen Nie
- Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Keqin Wu
- Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiaohang Zhan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Weiran Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Shaoquan Lin
- Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qin Yin
- Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| |
Collapse
|
3
|
Dean AC, Randle EH, Lacey AJD, Marczak Giorio GA, Doobary S, Cons BD, Lennox AJJ. Alkene 1,3-Difluorination via Transient Oxonium Intermediates. Angew Chem Int Ed Engl 2024; 63:e202404666. [PMID: 38695434 DOI: 10.1002/anie.202404666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 06/21/2024]
Abstract
The 1,3-difunctionalization of unactivated alkenes is an under-explored transformation that leads to moieties that are otherwise challenging to prepare. Herein, we report a hypervalent iodine-mediated 1,3-difluorination of homoallylic (aryl) ethers to give unreported 1,3-difluoro-4-oxy groups with moderate to excellent diastereoselectivity. The transformation proceeds through a different mode of reactivity for 1,3-difunctionalization, in which a regioselective addition of fluoride opens a transiently formed oxonium intermediate to rearrange an alkyl chain. The optimized protocol is scalable and shown to proceed well with a variety of functional groups and substitution on the alkenyl chain, hence providing ready access to this fluorinated, conformationally controlled moiety.
Collapse
Affiliation(s)
- Alice C Dean
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - E Harvey Randle
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - Andrew J D Lacey
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | | | - Sayad Doobary
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - Benjamin D Cons
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | | |
Collapse
|
4
|
Zhou H, Xue Y, Zhou X, Yao H, Lin A. Palladium-Catalyzed Asymmetric Desymmetrization for the Simultaneous Construction of Chiral Phosphorus and Quaternary Carbon Stereocenters. Org Lett 2024; 26:5934-5939. [PMID: 38967969 DOI: 10.1021/acs.orglett.4c01863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
A palladium-catalyzed asymmetric tandem Heck and carbonylation of bisallyl-phosphine oxides has been developed. This desymmetrization process provided an efficient route to the simultaneous synthesis of a chiral P-stereogenic center and a chiral quaternary carbon stereocenter in good yields with good diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Hengrui Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yiji Xue
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiang Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Li M, Xu S, Chen DP, Gao F, Li SX, Zhu SX, Qiu YF, Quan ZJ, Wang XC, Liang YM. Palladium-Catalyzed Three-Component Cascade Carbonylation Reaction to Construct Benzofuran Derivatives. J Org Chem 2024. [PMID: 38741558 DOI: 10.1021/acs.joc.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A novel three-component cyclization carbonylation reaction of iodoarene-tethered propargyl ethers with amine and CO is reported. This palladium-catalyzed cascade reaction undergoes a sequence of oxidative addition, unsaturated bond migration, carbonyl insertion, and nucleophilic attack to deliver the benzofuran skeleton. Both aromatic amines and aliphatic amines could proceed smoothly in this transformation under one atm of CO.
Collapse
Affiliation(s)
- Ming Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shanmei Xu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Dong-Ping Chen
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Fan Gao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shun-Xi Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shuang-Xi Zhu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yi-Feng Qiu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
6
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
7
|
Zhang YD, Chen M, Li Y, Liu BW, Ren ZH, Guan ZH. Enantioselective Palladium-Catalyzed Domino Carbonylative Heck Esterification of o-Iodoalkenylbenzenes with Arylboronic Acids. Org Lett 2023; 25:8110-8115. [PMID: 37921830 DOI: 10.1021/acs.orglett.3c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The current investigation presents an innovative palladium-catalyzed asymmetric carbonylative Heck esterification method. This approach facilitates the efficient synthesis of various chiral γ-ketoacid esters by utilizing o-alkenyliodobenzenes and arylboronic acids as primary substrates. This reaction achieves the creation of three carbon-carbon bonds, two carbon-oxygen bonds, and the establishment of a quaternary carbon center within a single step. The α-chiral γ-ketoacid esters were obtained in yields ranging from good to high yields, displaying enantiomeric excesses (ee's) levels up to 92% under mild reaction conditions.
Collapse
Affiliation(s)
- Yao-Du Zhang
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Ming Chen
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Yang Li
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Bo-Wen Liu
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
8
|
Yang L, Liang X, Ding Y, Li X, Li X, Zeng Q. Transition Metal-Catalyzed Enantioselective Synthesis of Chiral Five- and Six-Membered Benzo O-heterocycles. CHEM REC 2023; 23:e202300173. [PMID: 37401804 DOI: 10.1002/tcr.202300173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Enantiomerically enriched five- and six-membered benzo oxygen heterocycles are privileged architectures in functional organic molecules. Over the last several years, many effective methods have been established to access these compounds. However, comprehensive documents cover updated methodologies still in highly demand. In this review, recent transition metal catalyzed transformations lead to chiral five- and six-membered benzo oxygen heterocycles are presented. The mechanism and chirality transfer or control processes are also discussed in details.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xiayu Liang
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| | - Yuyang Ding
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xinran Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| |
Collapse
|
9
|
Zhang P, Newhouse TR. Palladium-Catalyzed Carbonylative Difunctionalization of Unactivated Alkenes Initiated by Unstabilized Enolates. Angew Chem Int Ed Engl 2023; 62:e202307455. [PMID: 37319375 PMCID: PMC11090370 DOI: 10.1002/anie.202307455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
This report describes the first example of palladium-catalyzed carbonylative difunctionalization of unactivated alkenes initiated by enolate nucleophiles. The approach involves initiation by an unstabilized enolate nucleophile under an atmospheric pressure of CO and termination with a carbon electrophile. This process is compatible with a diverse range of electrophiles, including aryl, heteroaryl, and vinyl iodides to yield synthetically useful 1,5-diketone products, which were demonstrated to be precursors for multi-substituted pyridines. A PdI -dimer complex with two bridging CO units was observed although its role in catalysis is not yet understood.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT, 06511
| | - Timothy R. Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT, 06511
| |
Collapse
|
10
|
Zou L, Gao Y, Zhang Q, Ye XY, Xie T, Wang LW, Ye Y. Recent Progress in Asymmetric Domino Intramolecular Cyclization/Cascade Reactions of Substituted Olefins. Chem Asian J 2023; 18:e202300617. [PMID: 37462417 DOI: 10.1002/asia.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The domino cyclization/coupling strategy is one of the most effective methods to produce cyclized and multi-functionalized compounds from olefins, which has attracted huge attention from chemists and biochemists especially for its considerable potential of enantiocontrol. Nowadays, more and more studies are developed to achieve difunctionalization of substituted olefins through an asymmetric domino intramolecular cyclization/cascade reaction, which is still an elegant choice to accomplish several synthetic ideas such as complex natural products and drugs. This review surveys the recent advances in this field through reaction type classification. It might serve as useful knowledge desktop for the community and accelerate their research.
Collapse
Affiliation(s)
- Liang Zou
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, P. R. China
| | - Qiaoman Zhang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
11
|
Hu W, Huang J, Yao J, Guo W, Gao G, Yin F, Hu H, Pei X, Wang H, Tao C. Palladium-Catalyzed Carbonylative Dearomatization of Indoles to Achieve Carbonyl-Containing Spirocyclic Indolenines Bearing an All-Carbon Quaternary Center. Org Lett 2023; 25:5951-5956. [PMID: 37535423 DOI: 10.1021/acs.orglett.3c02013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A Pd-catalyzed carbonylative dearomatization via an acyl Pd complex has been developed. Diversified carbonyl-containing spirocyclic indolenines with an all-carbon quaternary center were constructed in an efficient and straightforward way with good to excellent yields. The protocol features a simple catalytic system, operational simplicity, a broad substrate scope, easy scale-up, and versatile transformations. In addition, the asymmetric reaction was initially explored with moderate enantioselectivity.
Collapse
Affiliation(s)
- Weiming Hu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Jiali Huang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Jingyu Yao
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Wenting Guo
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Gang Gao
- Jiangsu Province Lianyungang Flood Control and Motorized Rescue Team, Lianyungang 222000, Jiangsu, China
| | - Fujun Yin
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Huayou Hu
- Jiangsu Key Laboratory for Chemistry of Low Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Xiaoqin Pei
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Huiyan Wang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Chuanzhou Tao
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| |
Collapse
|
12
|
Chen JQ, Luo X, Chen M, Chen Y, Wu J. Visible-Light-Induced 1,7-Enyne Dicyclization: Synthesis of Ester-Substituted Benzo[ j]phenanthridines. Org Lett 2023; 25:1978-1983. [PMID: 36912498 DOI: 10.1021/acs.orglett.3c00544] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
A novel alkoxycarbonyl-radical-triggered cascade cyclization of 1,7-enynes, with alkyloxalyl chlorides as the ester units, for the synthesis of benzo[j]phenanthridines is described. The reaction conditions exhibit excellent compatibility with a broad range of alkoxycarbonyl radical sources and realize the installation of an ester group in the polycyclic compound. This radical cascade cyclization reaction features excellent functional group tolerance, mild reaction conditions, and good to excellent yields.
Collapse
Affiliation(s)
- Jian-Qiang Chen
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Xiangxiang Luo
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Meiling Chen
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Yi Chen
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| |
Collapse
|
13
|
Li Q, Zhang Y, Liu P, Zhong J, Gong B, Yao H, Lin A. Pd-Catalyzed Asymmetric 5-exo-trig Cyclization/Cyclopropanation/Carbonylation of 1,6-Enynes for the Construction of Chiral 3-Azabicyclo[3.1.0]hexanes. Angew Chem Int Ed Engl 2023; 62:e202211988. [PMID: 36426561 DOI: 10.1002/anie.202211988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
We herein disclose a mild and efficient access to chiral 3-azabicyclo[3.1.0]hexanes via a Pd-catalyzed asymmetric 5-exo-trig cyclization/cyclopropanation/carbonylation of 1,6-enynes. Various nucleophiles, such as alcohols, phenols, amines and water, are well compatible with the reaction system. This reaction forms three C-C bonds, two rings, two adjacent quaternary carbon stereocenters as well as one C-O/C-N bond with excellent regio- and enantioselectivities. The products could be further functionalized to generate a library of 3-azabicyclo[3.1.0]hexane frameworks.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yunchu Zhang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Pengyun Liu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jing Zhong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Baihui Gong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
14
|
Sun G, Liu H, Wang X, Zhang W, Miao W, Luo Q, Gao B, Hu J. Palladium-Catalyzed Defluorinative Coupling of Difluoroalkenes and Aryl Boronic Acids for Ketone Synthesis. Angew Chem Int Ed Engl 2023; 62:e202213646. [PMID: 36315428 DOI: 10.1002/anie.202213646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/06/2022]
Abstract
The transition-metal-catalyzed carbonylation reaction is a useful approach for ketone synthesis. However, it is often problematic to use exogenous carbonyl reagents, such as gaseous carbon monoxide. In this manuscript, we report a novel palladium-catalyzed coupling reaction of gem-difluoroalkenes and aryl boronic acids that yields bioactive indane-type ketones with an all-carbon α-quaternary center. Characterization and stoichiometric reactions of the key intermediates RCF2 PdII support a water-induced defluorination and cross-coupling cascade mechanism. The vinyl difluoromethylene motif serves as an in situ carbonyl precursor which is unprecedented in transition-metal-catalyzed coupling reactions. It is expected to raise broad research interest from the perspectives of ketone synthesis, fluoroalkene functionalization, and rational design of new synthetic protocols based on the unique reactivity of difluoroalkyl palladium(II) species.
Collapse
Affiliation(s)
- Guangwu Sun
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Herui Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Xiu Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Wenbo Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Wenjun Miao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qinyu Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
15
|
Chen L, Shi C, Li W, Li B, Zhu J, Lin A, Yao H. Palladium-Catalyzed Asymmetric C–C Bond Activation/Carbonylation of Cyclobutanones. Org Lett 2022; 24:9157-9162. [DOI: 10.1021/acs.orglett.2c04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Long Chen
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Cong Shi
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Wei Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Bo Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Jie Zhu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| |
Collapse
|
16
|
Bibi R, Khan IU, Hassan A. Steric evaluation of Pyox ligands for asymmetric intermolecular Heck-Matsuda reaction. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Wang MM, Lu SM, Li C. Carbo-Carboxylation of Alkenes via Intramolecular Heck Carbonylation Utilizing CO 2 and Hydrosilane. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Meng-Meng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Mei Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
18
|
Guo JM, Mao ZY, Liu CH, Yang SY, Wei BG. Palladium-Catalyzed Sequential Heck Reactions of Olefin-Tethered Aryl Iodides with Alkenes. J Org Chem 2022; 87:11838-11845. [PMID: 35981349 DOI: 10.1021/acs.joc.2c01694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient approach to functionalized (E)-3-cinnamyl-3-methyl-2,3-dihydrobenzofurans and (E)-(3-methyl-2,3-dihydrobenzofuran-3-yl)but-2-enones has been developed through a Pd-catalyzed one-pot cascade process involving two sequential Heck reactions, that is, an intramolecular Heck reaction of olefin-tethered aryl iodides and an intermolecular Heck reaction with substituted styrenes and α,β-unsaturated ketones. As a result, a series of desired products were obtained in moderate to good yields and with exclusive E-form selectivities.
Collapse
Affiliation(s)
- Jia-Ming Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhuo-Ya Mao
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chang-Hong Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Shang-Ye Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
19
|
Kang Y, Lu JL, Zhang Z, Liang YK, Ma AJ, Peng JB. Palladium-Catalyzed Intramolecular Heck/Aminocarbonylation of Alkene-Tethered Iodobenzenes with Nitro Compounds: Synthesis of Carbamoyl-Substituted Benzoheterocycles. J Org Chem 2022; 88:5097-5107. [PMID: 35877191 DOI: 10.1021/acs.joc.2c01253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A palladium-catalyzed intramolecular Heck/aminocarbonylation of alkene-tethered iodobenzenes with nitro compounds has been developed for the synthesis of carbamoyl-substituted benzoheterocycles. Using Mo(CO)6 as a solid CO source, no external reductant or additives were needed in this procedure. Both nitroarenes and nitroalkanes were well tolerated. A range of carbamoyl-substituted dihydrobenzofurans and indolines were prepared in moderate to high yields.
Collapse
Affiliation(s)
- Yun Kang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jin-Liang Lu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ying-Kang Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
20
|
Wu X, Luan B, Zhao W, He F, Wu XY, Qu J, Chen Y. Catalytic Desymmetric Dicarbofunctionalization of Unactivated Alkenes. Angew Chem Int Ed Engl 2022; 61:e202111598. [PMID: 35286744 DOI: 10.1002/anie.202111598] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 12/16/2022]
Abstract
The construction of multi-stereocenters by a transition metal-catalyzed cross-coupling reaction is a major challenge. The catalytic desymmetric functionalization of unactivated alkenes remains largely unexplored. Herein, we disclose -a desymmetric dicarbofunctionalization of 1,6-dienes via a nickel-catalyzed reductive cross-coupling reaction. The leverage of the underdeveloped chiral 8-Quinox enables the Ni-catalyzed desymmetric carbamoylalkylation of both unactivated mono- and disubstituted alkenes to form pyrrolidinone bearing two nonadjacent stereogenic centers in high enantio- and stereoselectivitives with broad functional-group tolerance. The synthetic application of pyrrolidinones allows the rapid access to complex chiral fused-heterocycles.
Collapse
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Baixue Luan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenyu Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
21
|
Sun L, Zhao Y, Liu B, Chang J, Li X. Rhodium III-catalyzed remote difunctionalization of arenes assisted by a relay directing group. Chem Sci 2022; 13:7347-7354. [PMID: 35799802 PMCID: PMC9214915 DOI: 10.1039/d2sc02205b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022] Open
Abstract
Rhodium-catalyzed diverse tandem twofold C-H bond activation reactions of para-olefin-tethered arenes have been realized, with unsaturated reagents such as internal alkynes, dioxazolones, and isocyanates being the coupling partner as well as a relay directing group which triggers cyclization of the para-olefin group under oxidative or redox-neutral conditions. The reaction proceeded via initial ortho-C-H activation assisted by a built-in directing group in the arene, and the ortho-incorporation of the unsaturated coupling partner simultaneously generated a relay directing group that allows sequential C-H activation at the meta-position and subsequent cyclization of the para-olefins. The overall reaction represents C-C or N-C difunctionalization of the arene with the generation of diverse 2,3-dihydrobenzofuran platforms. The catalytic system proceeded with good efficiency, simple reaction conditions, and broad substrate scope. The diverse transformations of the products demonstrated the synthetic utility of this tandem reaction.
Collapse
Affiliation(s)
- Lincong Sun
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Yuyao Zhao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Xingwei Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 250100 China
| |
Collapse
|
22
|
Wu X, Luan B, Zhao W, He F, Wu X, Qu J, Chen Y. Catalytic Desymmetric Dicarbofunctionalization of Unactivated Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Baixue Luan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Wenyu Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xin‐Yan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
23
|
Li Q, Zhang Y, Zeng Y, Fan Y, Lin A, Yao H. Palladium-Catalyzed Asymmetric Dearomative Carbonylation of Indoles. Org Lett 2022; 24:3033-3037. [PMID: 35436128 DOI: 10.1021/acs.orglett.2c00962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we disclose a strategy for the asymmetric dearomatization of N-arylacyl indoles via a palladium-catalyzed tandem Heck/carbonylation, leading to an array of indoline-3-carboxylates bearing vicinal C2-aza-quaternary and C3 tertiary stereocenters in high yields and excellent enantio- and diastereoselectivities. This study is an important advance in the field of asymmetric carbonylation and enantioselective dearomatization reactions.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yunchu Zhang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuye Zeng
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yujing Fan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
24
|
Bai X, Zheng W, Ge S, Lu Y. Enantioselective Palladium-Catalyzed Arylborylation/Cyclization of Alkenes to Access Boryl-Functionalized Heterocyclic Compounds Containing Quaternary Stereogenic Centers. Org Lett 2022; 24:3080-3085. [PMID: 35436402 DOI: 10.1021/acs.orglett.2c01082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Asymmetric palladium-catalyzed arylboration/cyclization of both nonactivated and activated alkenes with B2pin2 was developed. A wide range of N-allyl-o-iodobenzamides and o-iodoacryanilides reacted with B2pin2 to afford borylated 3,4-dihydroisoquinolinones and oxindoles, respectively, in high yields with high enantioselectivities. The synthetic utility of this enantioselective protocol was highlighted by synthesizing various chiral 3,4-dihydroisoquinolinone and oxindole derivatives containing quaternary stereogenic carbon centers, including enantioenriched Roche anticancer agent (S)-RO4999200.
Collapse
Affiliation(s)
- Xingfeng Bai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Wenrui Zheng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Yixin Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| |
Collapse
|
25
|
Yu W, Chen C, Feng L, Xia T, Shi C, Yang Y, Zhou B. Rhodium(III)-Catalyzed Asymmetric 1,2-Carboamidation of Alkenes Enables Access to Chiral 2,3-Dihydro-3-benzofuranmethanamides. Org Lett 2022; 24:1762-1767. [PMID: 35234476 DOI: 10.1021/acs.orglett.2c00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Through the initial screening and further rational design of chiral cyclopentadienyl ligands, a chiral rhodium-catalyzed enantioselective 1,2-carboamidation of aromatic tethered alkenes was developed, enabling the asymmetric preparation of various chiral 2,3-dihydro-3-benzofuranmethanamides with an enantioenriched all-carbon quaternary center at the β position of amide. This robust transformation has a broad functional group tolerance, excellent enantioselectivities (up to 98.5:1.5 er), and a mild reaction conditions, releasing CO2 as the single byproduct.
Collapse
Affiliation(s)
- Wenwen Yu
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Chen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lei Feng
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqi Xia
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Shi
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaxi Yang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Zhou
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Abstract
AbstractCarbonylation, one of the most powerful approaches to the preparation of carbonylated compounds, has received significant attention from researchers active in various fields. Indeed, impressive progress has been made on this subject over the past few decades. Among the various types of carbonylation reactions, asymmetric carbonylation is a straightforward methodology for constructing chiral compounds. Although rhodium-catalyzed enantioselective hydroformylations have been discussed in several elegant reviews, a general review on palladium-catalyzed asymmetric carbonylations is still missing. In this review, we summarize and discuss recent achievements in palladium-catalyzed asymmetric carbonylation reactions. Notably, this review’s contents are categorized by reaction type.
Collapse
|
27
|
Hu H, Yu T, Cheng S, Li J, Gan C, Luo S, Zhu Q. Palladium-catalyzed tandem Heck/carbonylation/aminocarbonylation en route to chiral heterocyclic α-ketoamides. Org Chem Front 2022. [DOI: 10.1039/d1qo01680f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An unprecedented tandem carbonylation/aminocarbonylation triggered by palladium-catalyzed enantioselective Heck-type exocyclopalladation delivering chiral heterocyclic α-ketoamides has been developed.
Collapse
Affiliation(s)
- Huaanzi Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China
| |
Collapse
|
28
|
Cheng S, Luo Y, Yu T, Li J, Gan C, Luo S, Zhu Q. Palladium-Catalyzed Four-Component Cascade Imidoyl-Carbamoylation of Unactivated Alkenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Yu Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| |
Collapse
|
29
|
Cao K, Zhang ZM, Zhang J, Chen F. Palladium-Catalyzed Asymmetric Cross-Coupling Reactions of Cyclobutanols and Unactivated Olefins. Org Lett 2021; 23:9520-9525. [PMID: 34851121 DOI: 10.1021/acs.orglett.1c03739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transition-metal-catalyzed activations of carbon-carbons bonds of small strained rings have widespread applications in synthetic and medicinal chemistry. However, coupling reactions of cyclobutanols involving β-carbon elimination to construct C(sp3)-C(sp3) bonds have scarcely been developed. Here, we demonstrate a highly enantioselective Pd-catalyzed intermolecular C(sp3)-C(sp3) coupling reaction of a broad range of cyclobutanol derivatives and unactivated alkenes, allowing convenient access to a series of chiral benzene-fused cyclic compounds in a highly regio-, chemo-, and enantioselective manner.
Collapse
Affiliation(s)
- Kangning Cao
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Fener Chen
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
30
|
Zhang D, Xiong Y, Guo Y, Zhang L, Wang Z, Ding K. Palladium-Catalyzed Enantioselective Intramolecular Heck Carbonylation Reactions: Asymmetric Synthesis of 2-Oxindole Ynones and Carboxylic Acids. Chemistry 2021; 28:e202103670. [PMID: 34643304 DOI: 10.1002/chem.202103670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 12/28/2022]
Abstract
Herein, we report a Pd-catalyzed enantioselective domino Heck carbonylation reaction of o-iodoacrylanilides with terminal alkynes and water as the nucleophiles, affording a diversity of β-carbonylated 2-oxindole derivatives bearing a 3,3-disubstituted all-carbon quaternary stereocenter, in high yields (55-99 %) with good to excellent enantioselectivities (up to 99 % ee). The synthetic utilities of the protocol were demonstrated in the gram-scale synthesis of 2-oxindole-derived ynone 3 ea and carboxylic acid 4 a, as well as the facile synthesis of chiral 2-oxindoles with a pyrazole or isoxazole moiety.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Youyuan Xiong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yingjie Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Lei Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049 (P. R. China), Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
31
|
Qiao JB, Zhang YQ, Yao QW, Zhao ZZ, Peng X, Shu XZ. Enantioselective Reductive Divinylation of Unactivated Alkenes by Nickel-Catalyzed Cyclization Coupling Reaction. J Am Chem Soc 2021; 143:12961-12967. [PMID: 34384022 DOI: 10.1021/jacs.1c05670] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Catalytic asymmetric dicarbofunctionalization of tethered alkenes has emerged as a promising tool for producing chiral cyclic molecules; however, it typically relies on aryl-tethered alkenes to form benzene-fused compounds. Herein, we report an enantioselective cross-electrophile divinylation reaction of nonaromatic substrates, 2-bromo-1,6-dienes. The approach thus offers a route to new chiral cyclic architectures, which are key structural motifs found in various biologically active compounds. The reaction proceeds under mild conditions, and the use of chiral t-Bu-pmrox and 3,5-difluoro-pyrox ligands resulted in the formation of divinylated products with high chemo-, regio-, and enantioselectivity. The method is applicable for the incorporation of chiral hetero- and carbocycles into complex molecules.
Collapse
Affiliation(s)
- Jin-Bao Qiao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Ya-Qian Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qi-Wei Yao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xuejing Peng
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
32
|
Liu L, Cheng F, Meng C, Zhang AA, Zhang M, Xu K, Ishida N, Murakami M. Pd-Catalyzed Ring-Closing/Ring-Opening Cross Coupling Reactions: Enantioselective Diarylation of Unactivated Olefins. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02277] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Lantao Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Fangyuan Cheng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chenxiang Meng
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - An-An Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Mingliang Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Kai Xu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
33
|
Oliveira CC, Correia CRD. Enantioselective Heck-Matsuda Reactions: From Curiosity to a Game-Changing Methodology. CHEM REC 2021; 21:2688-2701. [PMID: 34174155 DOI: 10.1002/tcr.202100149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/14/2021] [Indexed: 11/06/2022]
Abstract
The enantioselective palladium-catalyzed Heck arylation of olefins using arenediazonium salts is one of the last features in the evolution of a synthetic method known as the Heck-Matsuda reaction. This personal account highlights the development of the enantioselective Heck-Matsuda reaction in its initial stages, the challenges faced along the way, and the interesting findings that opened new synthetic opportunities, mainly from our laboratory, featuring the Heck-Matsuda reaction as a central player in the synthesis of bioactive and functional molecules.
Collapse
Affiliation(s)
- Caio C Oliveira
- Institute of Chemistry, University of Campinas, Josué de, Castro, 10384-612, São Paulo, Brazil
| | | |
Collapse
|
34
|
Feng Z, Li Q, Chen L, Yao H, Lin A. Palladium-catalyzed asymmetric carbamoyl-carbonylation of alkenes. Sci China Chem 2021. [DOI: 10.1007/s11426-021-9992-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Hong K, Dong S, Xu X, Zhang Z, Shi T, Yuan H, Xu X, Hu W. Enantioselective Intermolecular Mannich-Type Interception of Phenolic Oxonium Ylide for the Direct Assembly of Chiral 2,2-Disubstituted Dihydrobenzofurans. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kemiao Hong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanliang Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinxin Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhijing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Taoda Shi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haoxuan Yuan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
36
|
Ren X, Tang L, Shen C, Li H, Wang P, Dong K. Enantioselective Hydroesterificative Cyclization of 1,6-Enynes to Chiral γ-Lactams Bearing a Quaternary Carbon Stereocenter. Org Lett 2021; 23:3561-3566. [PMID: 33908782 DOI: 10.1021/acs.orglett.1c00952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A palladium-catalyzed asymmetric hydroesterification-cyclization of 1,6-enynes with CO and alcohol was developed to efficiently prepare a variety of enantioenriched γ-lactams bearing a chiral quaternary carbon center and a carboxylic ester group. The approach featured good to high chemo-, region-, and enantioselectivities, high atom economy, and mild reaction conditions as well as broad substrate scope. The correlation between the multiple selectivities of such process and the N-substitutes of the amide linker in the 1,6-enyne substrate has been depicted by the crystallographic evidence and control experiments.
Collapse
Affiliation(s)
- Xinyi Ren
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lin Tang
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Chaoren Shen
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Huimin Li
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Peng Wang
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| |
Collapse
|
37
|
Mondal S, Ballav T, Biswas K, Ghosh S, Ganesh V. Exploiting the Versatility of Palladium Catalysis: A Modern Toolbox for Cascade Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sourav Mondal
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Tamal Ballav
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Krishna Biswas
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Suman Ghosh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Venkataraman Ganesh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| |
Collapse
|
38
|
Wu T, Zhou Q, Tang W. Enantioselective α-Carbonylative Arylation for Facile Construction of Chiral Spirocyclic β,β'-Diketones. Angew Chem Int Ed Engl 2021; 60:9978-9983. [PMID: 33599064 DOI: 10.1002/anie.202101668] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 01/03/2023]
Abstract
We herein describe the first enantioselective α-carbonylative arylation, providing a diverse set of chiral spiro β,β'-diketones bearing various ring sizes and functionalities in high yields and good to excellent enantioselectivities. Calculations suggest the transformation proceeds through reductive elimination instead of nucleophilic addition pathway.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai, 200032, China
| | - Qinghai Zhou
- College of Chemistry and Materials Science, Shanghai Normal University, 106 Guilin Road, Shanghai, 200233, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai, 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
39
|
Wu T, Zhou Q, Tang W. Enantioselective α‐Carbonylative Arylation for Facile Construction of Chiral Spirocyclic β,β′‐Diketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| | - Qinghai Zhou
- College of Chemistry and Materials Science Shanghai Normal University 106 Guilin Road Shanghai 200233 China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
40
|
Hu H, Peng Y, Yu T, Cheng S, Luo S, Zhu Q. Palladium-Catalyzed Enantioselective 7- exo-Trig Carbopalladation/Carbonylation: Cascade Reactions To Achieve Atropisomeric Dibenzo[ b, d]azepin-6-ones. Org Lett 2021; 23:3636-3640. [PMID: 33886342 DOI: 10.1021/acs.orglett.1c01036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enantioselective 7-exo-trig cyclocarbopalladation-initiated carbonylation cascade reactions, leading to seven-membered dibenzo[b,d]azepin-6-ones containing a thermodynamically controlled stereogenic axis, have been realized for the first time. A series of 7-acetate- or 7-acetamide-substituted dibenzo[b,d]azepin-6-ones are obtained under atmospheric pressure of CO in good yields with excellent diastereo- and enantioselectivities. The calculated energy difference between the diastereoisomers generated from the stereogenic biaryl axis and the stereogenic center is approximately 2.8 kcal/mol, which agrees with the excellent diastereoselectivity observed.
Collapse
Affiliation(s)
- Huaanzi Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yan Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China.,Bioland Laboratory, Guangzhou 510005, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China.,Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.,Bioland Laboratory, Guangzhou 510005, China
| |
Collapse
|
41
|
Lin Z, Jin Y, Hu W, Wang C. Nickel-catalyzed asymmetric reductive aryl-allylation of unactivated alkenes. Chem Sci 2021; 12:6712-6718. [PMID: 34040746 PMCID: PMC8133004 DOI: 10.1039/d1sc01115d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
Herein we report a nickel-catalyzed asymmetric reductive aryl-allylation of aryl iodide-tethered unactivated alkenes, wherein both acyclic allyl carbonates and cyclic vinyl ethylene carbonates can serve as the coupling partners. Furthermore, the direct use of allylic alcohols as the electrophilic allyl source in this reaction is also viable in the presence of BOC anhydride. Remarkably, this reaction proceeds with high linear/branched-, E/Z- and enantio-selectivity, allowing the synthesis of various chiral indanes and dihydrobenzofurans (50 examples) containing a homoallyl-substituted quaternary stereocenter with high optical purity (90-98% ee). In this reductive reaction, the use of pregenerated organometallics can be circumvented, giving this process good functionality tolerance and high step-economy.
Collapse
Affiliation(s)
- Zhiyang Lin
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 20237 P. R. China
| | - Youxiang Jin
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 20237 P. R. China
| | - Weitao Hu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 20237 P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 20237 P. R. China
| |
Collapse
|
42
|
Bonfield HE, Valette D, Lindsay DM, Reid M. Stereoselective Remote Functionalization via Palladium-Catalyzed Redox-Relay Heck Methodologies. Chemistry 2021; 27:158-174. [PMID: 32744766 PMCID: PMC7821197 DOI: 10.1002/chem.202002849] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 11/29/2022]
Abstract
Exploration of novel, three-dimensional chemical space is of growing interest in the drug discovery community and with this comes the challenge for synthetic chemists to devise new stereoselective methods to introduce chirality in a rapid and efficient manner. This Minireview provides a timely summary of the development of palladium-catalyzed asymmetric redox-relay Heck-type processes. These reactions represent an important class of transformation for the selective introduction of remote stereocenters, and have risen to prominence over the past decade. Within this Minireview, the vast scope of these transformations will be showcased, alongside applications to pharmaceutically relevant chiral building blocks and drug substances. To complement this overview, a mechanistic summary and discussion of the current limitations of the transformation are presented, followed by an outlook on future areas of investigation.
Collapse
Affiliation(s)
- Holly E. Bonfield
- Chemical DevelopmentGlaxoSmithKlineGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
- Department of Pure and Applied Chemistry WestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| | - Damien Valette
- Chemical DevelopmentGlaxoSmithKlineGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
| | - David M. Lindsay
- Department of Pure and Applied Chemistry WestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| | - Marc Reid
- Department of Pure and Applied Chemistry WestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| |
Collapse
|
43
|
|
44
|
Reznikov AN, Ashatkina MA, Klimochkin YN. Recent developments in asymmetric Heck type cyclization reactions for constructions of complex molecules. Org Biomol Chem 2021; 19:5673-5701. [PMID: 34113939 DOI: 10.1039/d1ob00496d] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intramolecular carbometallation-initiated asymmetric transformations are a general and powerful approach for the construction of carbo- and heterocyclic systems with one and more stereocenters. In addition, the newly developed multiple cascade reactions are an attractive strategy for increasing the molecular complexity in one step. In recent years, great progress has been made in this area with the use of various palladium and nickel complexes with P- and N-donor chiral ligands. This review highlights recent developments in intramolecular asymmetric Heck reactions, reductive Heck reactions and various types of cascade transformations (intramolecular Heck/Heck, Heck/nucleophilic trapping, Heck/Tsuji-Trost, Heck/Suzuki-Miyaura, Heck/Sonogashira, and Heck/carbonylation) in the synthesis of complex molecules over the past 5 years. A number of examples from before 2016 are included as background information. Particular attention is paid to the use of inexpensive nickel complexes as highly efficient catalysts for a number of asymmetric reactions considered here. A perspective on current challenges and potential future developments in the field of asymmetric Heck type cyclizations is also provided.
Collapse
Affiliation(s)
- Alexander N Reznikov
- Samara State Technical University, 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation.
| | - Maria A Ashatkina
- Samara State Technical University, 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation.
| | - Yuri N Klimochkin
- Samara State Technical University, 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation.
| |
Collapse
|
45
|
Xu Z, Shen C, Zhang H, Wang P, Dong K. Constructing chiral aza-quaternary carbon centers by enantioselective carbonylative Heck reaction of o-iodoanilines with allenes. Org Chem Front 2021. [DOI: 10.1039/d0qo01486a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The construction of chiral aza-quaternary C-centers via C–N bond formation is achieved by a Pd-catalysed asymmetric carbonylative Heck reaction of o-iodoanilines with allenes, providing chiral dihydroquinolinone derivatives with moderate to high yield and enantiomeric ratio.
Collapse
Affiliation(s)
- Zhengshuai Xu
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Chaoren Shen
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Hongru Zhang
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Peng Wang
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Kaiwu Dong
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| |
Collapse
|
46
|
Li Y, Zhang FP, Wang RH, Qi SL, Luan YX, Ye M. Carbamoyl Fluoride-Enabled Enantioselective Ni-Catalyzed Carbocarbamoylation of Unactivated Alkenes. J Am Chem Soc 2020; 142:19844-19849. [PMID: 33170685 DOI: 10.1021/jacs.0c09949] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A carbamoyl fluoride-enabled enantioselective Ni-catalyzed carbocarbamoylation of unactivated alkenes was developed, providing a broad range of chiral γ-lactams bearing an all-carbon quaternary center in 45-96% yield and 38-97% ee.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Feng-Ping Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Hua Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shao-Long Qi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
47
|
Dearomative 1,4-difunctionalization of naphthalenes via palladium-catalyzed tandem Heck/Suzuki coupling reaction. Nat Commun 2020; 11:4380. [PMID: 32873772 PMCID: PMC7463262 DOI: 10.1038/s41467-020-18137-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Dearomative functionalization reactions represent an important strategy for the synthesis of valuable three-dimensional molecules from simple planar aromatics. Naphthalene is a challenging arene towards transition-metal-catalyzed dearomative difunctionalization reactions. Reported herein is an application of naphthalene as a masked conjugated diene in a palladium-catalyzed dearomative 1,4-diarylation or 1,4-vinylarylation reaction via tandem Heck/Suzuki sequence. Three types of 1,4-dihydronaphthalene-based spirocyclic compounds are achieved in excellent regio- and diastereoselectivities. Key to this transformation is the inhibition of a few competitive side reactions, including intramolecular naphthalenyl C-H arylation, intermolecular Suzuki cross-coupling, dearomative 1,2-difunctionalization, and dearomative reductive-Heck reaction. Density functional theory (DFT) calculations imply that the facile exergonic dearomative insertion of a naphthalene double bond disrupts the sequence of direct Suzuki coupling, leading to the tandem Heck/Suzuki coupling reaction. The observed regioselectivity towards 1,4-difunctionalization is due to the steric repulsions between the introduced aryl group and the spiro-scaffold in 1,2-difunctionalization. Naphthalene is a challenging arene towards transition-metal-catalyzed dearomative difunctionalization. Here, the authors show that naphthalene may act as a masked conjugated diene in palladium-catalyzed dearomative 1,4-diarylation or 1,4-vinylarylation via a tandem Heck/Suzuki sequence.
Collapse
|
48
|
Affiliation(s)
- Jin‐Bao Peng
- School of Biotechnology and Health SciencesWuyi University Jiangmen, Guangdong 529020 People's Republic of China
| |
Collapse
|
49
|
Facile access to chiral 4-substituted chromanes through Rh-catalyzed asymmetric hydrogenation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
50
|
Yuan Z, Zeng Y, Feng Z, Guan Z, Lin A, Yao H. Constructing chiral bicyclo[3.2.1]octanes via palladium-catalyzed asymmetric tandem Heck/carbonylation desymmetrization of cyclopentenes. Nat Commun 2020; 11:2544. [PMID: 32439921 PMCID: PMC7242361 DOI: 10.1038/s41467-020-16221-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Transition-metal-catalyzed tandem Heck/carbonylation reaction has emerged as a powerful tool for the synthesis of structurally diverse carbonyl molecules, as well as natural products and pharmaceuticals. However, the asymmetric version was rarely reported, and remains a challenging topic. Herein, we describe a palladium-catalyzed asymmetric tandem Heck/carbonylation desymmetrization of cyclopentenes. Alcohols, phenols and amines are employed as versatile coupling reagents for the construction of multifunctional chiral bicyclo[3.2.1]octanes with one all-carbon quaternary and two tertiary carbon stereogenic centers in high diastereo- and enantioselectivities. This study represents an important progress in both the asymmetric tandem Heck/carbonylation reactions and enantioselective difunctionalization of internal alkenes.
Collapse
Affiliation(s)
- Zhenbo Yuan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yuye Zeng
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Ziwen Feng
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Zhe Guan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| |
Collapse
|