1
|
Vilela-Picos M, Novelli F, Méndez-Ardoy A, Moretto A, Granja JR. Protocol for photo-controlling the assembly of cyclic peptide nanotubes in solution and inside microfluidic droplets. STAR Protoc 2024; 5:103031. [PMID: 38678573 PMCID: PMC11077282 DOI: 10.1016/j.xpro.2024.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/25/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
In this protocol, we describe how to perform the photo-isomerization of cyclic peptides containing an unsaturated β-amino acid. This process triggers the formation or disassembly of cyclic peptide nanotubes under appropriate light irradiation. Specifically, we start by describing the solid-phase synthesis of the cyclic peptide component. We also present a technique for performing isomerization studies in solution and how to extend it to microfluidic aqueous droplets. For complete details on the use and execution of this protocol, please refer to Vilela-Picos et al.1.
Collapse
Affiliation(s)
- Marcos Vilela-Picos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Federica Novelli
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alessandro Moretto
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, Italy
| | - Juan R Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Matsuura K, Inaba H. Photoresponsive peptide materials: Spatiotemporal control of self-assembly and biological functions. BIOPHYSICS REVIEWS 2023; 4:041303. [PMID: 38505425 PMCID: PMC10903425 DOI: 10.1063/5.0179171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Peptides work as both functional molecules to modulate various biological phenomena and self-assembling artificial materials. The introduction of photoresponsive units to peptides allows the spatiotemporal remote control of their structure and function upon light irradiation. This article overviews the photoresponsive peptide design, interaction with biomolecules, and applications in self-assembling materials over the last 30 years. Peptides modified with photochromic (photoisomerizable) molecules, such as azobenzene and spiropyran, reversibly photo-controlled the binding to biomolecules and nanostructure formation through self-assembly. Photocleavable molecular units irreversibly control the functions of peptides through cleavage of the main chain and deprotection by light. Photocrosslinking between peptides or between peptides and other biomolecules enhances the structural stability of peptide assemblies and complexes. These photoresponsive peptides spatiotemporally controlled the formation and dissociation of peptide assemblies, gene expressions, protein-drug interactions, protein-protein interactions, liposome deformation and motility, cytoskeleton structure and stability, and cell functions by appropriate light irradiation. These molecular systems can be applied to photo-control biological functions, molecular robots, artificial cells, and next-generation smart drug delivery materials.
Collapse
|
3
|
Jeong M, Park J, Seo Y, Lee KJ, Pramanik S, Ahn S, Kwon S. Hydrazone Photoswitches for Structural Modulation of Short Peptides. Chemistry 2021; 28:e202103972. [PMID: 34962683 DOI: 10.1002/chem.202103972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/11/2022]
Abstract
Molecules that undergo light-driven structural transformations constitute the core components in photoswitchable molecular systems and materials. Among various families of photoswitches, photochromic hydrazones have recently emerged as a novel class of photoswitches with superb properties, such as high photochemical conversion, spectral tunability, thermal stability, and fatigue resistance. Hydrazone photoswitches have been adopted in various adaptive materials at different length scales, however, their utilization for modulating biomolecules still has not been explored. Herein we present new hydrazone switches that can photomodulate the structures of short peptides. Systematic investigation on a set of hydrazone derivatives revealed that installation of the amide group does not significantly alter the photoswitching behaviors. Importantly, a hydrazone switch comprising an upper phenyl ring and a lower quinolinyl ring was effective for structural control of peptides. We anticipate that this work, as a new milestone in the research of hydrazone switches, will open a new avenue for structural and functional control of biomolecules.
Collapse
Affiliation(s)
- Myeongsu Jeong
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Jiyoon Park
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Yejin Seo
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Kwon Jung Lee
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Susnata Pramanik
- SRM Institute of Science and Technology, Department of Chemistry, INDIA
| | - Sangdoo Ahn
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Sunbum Kwon
- Chung-Ang University, Chemistry, 84 Heukseok-ro, Bldg106 Rm401-2, 06974, Seoul, KOREA, REPUBLIC OF
| |
Collapse
|
4
|
Kleman AF, Dufek DL, Fobe TL, McCaslin DR, Cary BP, Shirts MR, Gellman SH. Potential Foldamers Based on an ortho-Terphenyl Amino Acid. Org Lett 2021; 23:4855-4859. [PMID: 34077213 DOI: 10.1021/acs.orglett.1c01592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the synthesis and characterization of a new class of oligomers built from a terphenyl-based amino acid. These oligomeric amides are of interest because the adoption of specific conformations could potentially be driven by the coordinated formation of inter-residue hydrogen bonds and aromatic interactions. Although high-resolution structural data have proven inaccessible, circular dichroism and nuclear magnetic resonance studies suggest that the new oligomers fold concomitantly with discrete self-association in chloroform.
Collapse
Affiliation(s)
- Adam F Kleman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Deseree L Dufek
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Theodore L Fobe
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Darrell R McCaslin
- Department of Biochemistry, Biophysics Instrumentation Facility, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian P Cary
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Marafon G, Crisma M, Masato A, Plotegher N, Bubacco L, Moretto A. Photoresponsive Prion‐Mimic Foldamer to Induce Controlled Protein Aggregation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Giulia Marafon
- Department of Chemical Sciences University of Padova 35131 Padova Italy
| | - Marco Crisma
- Institute of Biomolecular Chemistry Padova Unit CNR 35131 Padova Italy
| | - Anna Masato
- Department of Biology University of Padova 35131 Padova Italy
| | | | - Luigi Bubacco
- Department of Biology University of Padova 35131 Padova Italy
| | - Alessandro Moretto
- Department of Chemical Sciences University of Padova 35131 Padova Italy
- Institute of Biomolecular Chemistry Padova Unit CNR 35131 Padova Italy
| |
Collapse
|
6
|
Marafon G, Crisma M, Masato A, Plotegher N, Bubacco L, Moretto A. Photoresponsive Prion-Mimic Foldamer to Induce Controlled Protein Aggregation. Angew Chem Int Ed Engl 2021; 60:5173-5178. [PMID: 33180342 DOI: 10.1002/anie.202012995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 12/30/2022]
Abstract
Proteins reconfigure their 3D-structure, and consequently their function, under the control of specific molecular interactions that sense, process and transmit information from the surrounding environment. When this fundamental process is hampered, many pathologies occur as in the case of protein misfolding diseases. In this work, we follow the early steps of α-synuclein (aS) aggregation, a process associated with Parkinson's disease etiopathogenesis, that is promptly promoted by a light-mediated binding between the protein and a photoactive foldamer. The latter can switch between two conformations, one of which generates supramolecular fibrillar seeds that act as molecular templates able to induce a fast β-sheet transition for aS monomers that successively undergo fibrillar polymerization. The proposed method represents a powerful tool to study protein aggregation relevant to misfolding diseases in a controlled and inducible system.
Collapse
Affiliation(s)
- Giulia Marafon
- Department of Chemical Sciences, University of Padova, 35131, Padova, Italy
| | - Marco Crisma
- Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131, Padova, Italy
| | - Anna Masato
- Department of Biology, University of Padova, 35131, Padova, Italy
| | | | - Luigi Bubacco
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Alessandro Moretto
- Department of Chemical Sciences, University of Padova, 35131, Padova, Italy.,Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131, Padova, Italy
| |
Collapse
|
7
|
Rinaldi S. The Diverse World of Foldamers: Endless Possibilities of Self-Assembly. Molecules 2020; 25:E3276. [PMID: 32708440 PMCID: PMC7397133 DOI: 10.3390/molecules25143276] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbone type (peptidic or abiotic), the most important features of foldamers are the high stability, easy predictability and tunability of their folding, as well as the possibility to endow them with enhanced biological functions, with respect to their natural counterparts, by the correct choice of monomers. Foldamers have also recently started playing a starring role in the self-assembly of higher-order structures. In this review, selected articles will be analyzed to show the striking number of self-assemblies obtained for foldamers with different backbones, which will be analyzed in order of increasing complexity. Starting from the simplest self-associations in solution (e.g., dimers of β-strands or helices, bundles, interpenetrating double and multiple helices), the formation of monolayers, vesicles, fibers, and eventually nanostructured solid tridimensional morphologies will be subsequently described. The experimental techniques used in the structural investigation, and in the determination of the driving forces and mechanisms underlying the self-assemblies, will be systematically reported. Where applicable, examples of biomimetic self-assembled foldamers and their interactions with biological components will be described.
Collapse
Affiliation(s)
- Samuele Rinaldi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
8
|
Marafon G, Moretto A, Zanuy D, Alemán C, Crisma M, Toniolo C. Effect on the Conformation of a Terminally Blocked, ( E) β,γ-Unsaturated δ-Amino Acid Residue Induced by Carbon Methylation. J Org Chem 2020; 85:1513-1524. [PMID: 31769989 DOI: 10.1021/acs.joc.9b02544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptides are well-known to play a fundamental therapeutic role and to represent building blocks for numerous useful biomaterials. Stabilizing their active 3D-structure by appropriate modifications remains, however, a challenge. In this study, we have expanded the available literature information on the conformational propensities of a promising backbone change of a terminally blocked δ-amino acid residue, a dipeptide mimic, by replacing its central amide moiety with an (E) Cβ═Cγ alkene unit. Specifically, we have examined by DFT calculations, X-ray diffraction in the crystalline state, and FT-IR absorption/NMR spectroscopies in solution the extended vs folded preferences of analogues of this prototype system either unmodified or possessing single or multiple methyl group substituents on each of its four -CH2-CH═CH-CH2- main-chain carbon atoms. The theoretical and experimental results obtained clearly point to the conclusion that increasing the number of adequately positioned methylations will enhance the preference of the original sequence to fold, thus opening interesting perspectives in the design of conformationally constrained peptidomimetics.
Collapse
Affiliation(s)
- Giulia Marafon
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy
| | - Alessandro Moretto
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy.,Institute of Biomolecular Chemistry , Padova Unit, CNR , 35131 Padova , Italy
| | - David Zanuy
- Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering , Universitat Polytècnica de Catalunya , 08019 Barcelona , Spain
| | - Carlos Alemán
- Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering , Universitat Polytècnica de Catalunya , 08019 Barcelona , Spain.,Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona Spain
| | - Marco Crisma
- Institute of Biomolecular Chemistry , Padova Unit, CNR , 35131 Padova , Italy
| | - Claudio Toniolo
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy.,Institute of Biomolecular Chemistry , Padova Unit, CNR , 35131 Padova , Italy
| |
Collapse
|
9
|
Peddie V, Abell AD. Photocontrol of peptide secondary structure through non-azobenzene photoswitches. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Marafon G, Crisma M, Moretto A. Tunable E- Z Photoisomerization in α,β-Peptide Foldamers Featuring Multiple ( E/ Z)-3-Aminoprop-2-enoic Acid Units. Org Lett 2019; 21:4182-4186. [PMID: 31090420 DOI: 10.1021/acs.orglett.9b01360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Systems in which an external stimulus elicits a response through some sort of modification at the molecular or supramolecular level bear potential for the development of smart materials and devices. This work describes a versatile synthetic approach suitable for the stepwise incorporation of multiple, even consecutive, units of the simplest Cα,β-unsaturated β-amino acid, ( E/ Z)-3-aminoprop-2-enoic acid, in peptide-based foldamers. The properties of these, including photoinduced E/ Z isomerizations, were investigated.
Collapse
Affiliation(s)
- Giulia Marafon
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy
| | - Marco Crisma
- Institute of Biomolecular Chemistry , Padova Unit, CNR , 35131 Padova , Italy
| | - Alessandro Moretto
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy.,Institute of Biomolecular Chemistry , Padova Unit, CNR , 35131 Padova , Italy
| |
Collapse
|
11
|
Liu Y, Chi C, Wu R, Huang Y, Liu S, Sun M, Sun Y, Yang Z, Chen H, Wu Z. A new class of meta-pyridine-urea oligomers for selective identification of mercury(II) ions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|