1
|
Xu W, Tang C, Zhao R, Wang Y, Jiao H, Ang H, Chen Y, Wang X, Liang Y. Sydnthiones are versatile bioorthogonal hydrogen sulfide donors. Nat Commun 2024; 15:10288. [PMID: 39604436 PMCID: PMC11603141 DOI: 10.1038/s41467-024-54765-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Hydrogen sulfide (H2S) is an important endogenous gasotransmitter, but the bioorthogonal reaction triggered H2S donors are still rare. Here we show one type of bioorthogonal H2S donors, sydnthiones (1,2,3-oxadiazol-3-ium-5-thiolate derivatives), which was designed with the aid of density functional theory (DFT) calculations. The reactions between sydnthiones and strained alkynes provide a platform for controllable, tunable and mitochondria-targeted release of H2S. We investigate the reactivity of sydnthiones‒dibenzoazacyclooctyne (DIBAC) reactions and their orthogonality with two other bioorthogonal cycloaddition pairs: tetrazine‒norbornene (Nor) and tetrazine‒monohydroxylated cyclooctyne (MOHO). By taking advantage of these mutually orthogonal reactions, we can realize selective labeling or drug release. Furthermore, we explore the role of H2S, which is released from the sydnthione-DIBAC reaction, on doxorubicin-induced cytotoxicity. The results demonstrate that the viability of H9c2 cells can be significantly improved by pretreating with sydnthione 1b and DIBAC for 6 h prior to exposure to Dox.
Collapse
Affiliation(s)
- Wenyuan Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China
| | - Cheng Tang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China
| | - Ruohan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China
| | - Yajun Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China
| | - Hongyun Jiao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China
| | - Han Ang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China
| | - Yinghan Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China.
| | - Xin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Inter-disciplinary Research Center, Nanjing University, Nanjing, 210023, China.
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Misra R, Bhuyan HJ, Dutta A, Bhabak KP. Recent Developments On Activatable Turn-On Fluorogenic Donors of Hydrogen Sulfide (H 2S). ChemMedChem 2024; 19:e202400251. [PMID: 38746978 DOI: 10.1002/cmdc.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Hydrogen sulfide (H2S) is considered the third member of the gasotransmitter family, along with nitric oxide (NO) and carbon monoxide (CO). Besides its role in physiological and pathophysiological conditions, the promising therapeutic potential of this small-molecule makes it advantageous for various pharmaceutical applications. The endogenous production of H2S at a lower concentration is crucial in maintaining redox balance and cellular homeostasis, and the dysregulation leads to various disease states. In the event of H2S deficiency, the exogenous donation of H2S could help maintain the optimal cellular concentration of H2S and cellular homeostasis. Over the last several years, researchers have developed numerous small-molecule non-fluorogenic organosulfur compounds as H2S donors and investigated their pharmacological potentials. However, reports on stimuli-responsive turn-on fluorogenic donors of H2S have appeared recently. Interestingly, the fluorogenic H2S donors offer additional advantages with the non-invasive real-time monitoring of the H2S release utilizing the simultaneous turn-on fluorogenic processes. The review summarizes the recent developments in turn-on fluorogenic donors of H2S and the potential biological applications that have developed over the years.
Collapse
Affiliation(s)
- Roopjyoti Misra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Hirak Jyoti Bhuyan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Amlan Dutta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
3
|
Hankins RA, Lukesh JC. An Examination of Chemical Tools for Hydrogen Selenide Donation and Detection. Molecules 2024; 29:3863. [PMID: 39202942 PMCID: PMC11356831 DOI: 10.3390/molecules29163863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Hydrogen selenide (H2Se) is an emerging biomolecule of interest with similar properties to that of other gaseous signaling molecules (i.e., gasotransmitters that include nitric oxide, carbon monoxide, and hydrogen sulfide). H2Se is enzymatically generated in humans where it serves as a key metabolic intermediate in the production of selenoproteins and other selenium-containing biomolecules. However, beyond its participation in biosynthetic pathways, its involvement in cellular signaling or other biological mechanisms remains unclear. To uncover its true biological significance, H2Se-specific chemical tools capable of functioning under physiological conditions are required but lacking in comparison to those that exist for other gasotransmitters. Recently, researchers have begun to fill this unmet need by developing new H2Se-releasing compounds, along with pioneering methods for selenide detection and quantification. In combination, the chemical tools highlighted in this review have the potential to spark groundbreaking explorations into the chemical biology of H2Se, which may lead to its branding as the fourth official gasotransmitter.
Collapse
Affiliation(s)
| | - John C. Lukesh
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, 455 Vine Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
4
|
Chen G, Yu J, Wu L, Ji X, Xu J, Wang C, Ma S, Miao Q, Wang L, Wang C, Lewis SE, Yue Y, Sun Z, Liu Y, Tang B, James TD. Fluorescent small molecule donors. Chem Soc Rev 2024; 53:6345-6398. [PMID: 38742651 PMCID: PMC11181996 DOI: 10.1039/d3cs00124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Indexed: 05/16/2024]
Abstract
Small molecule donors (SMDs) play subtle roles in the signaling mechanism and disease treatments. While many excellent SMDs have been developed, dosage control, targeted delivery, spatiotemporal feedback, as well as the efficiency evaluation of small molecules are still key challenges. Accordingly, fluorescent small molecule donors (FSMDs) have emerged to meet these challenges. FSMDs enable controllable release and non-invasive real-time monitoring, providing significant advantages for drug development and clinical diagnosis. Integration of FSMDs with chemotherapeutic, photodynamic or photothermal properties can take full advantage of each mode to enhance therapeutic efficacy. Given the remarkable properties and the thriving development of FSMDs, we believe a review is needed to summarize the design, triggering strategies and tracking mechanisms of FSMDs. With this review, we compiled FSMDs for most small molecules (nitric oxide, carbon monoxide, hydrogen sulfide, sulfur dioxide, reactive oxygen species and formaldehyde), and discuss recent progress concerning their molecular design, structural classification, mechanisms of generation, triggered release, structure-activity relationships, and the fluorescence response mechanism. Firstly, from the large number of fluorescent small molecular donors available, we have organized the common structures for producing different types of small molecules, providing a general strategy for the development of FSMDs. Secondly, we have classified FSMDs in terms of the respective donor types and fluorophore structures. Thirdly, we discuss the mechanisms and factors associated with the controlled release of small molecules and the regulation of the fluorescence responses, from which universal guidelines for optical properties and structure rearrangement were established, mainly involving light-controlled, enzyme-activated, reactive oxygen species-triggered, biothiol-triggered, single-electron reduction, click chemistry, and other triggering mechanisms. Fourthly, representative applications of FSMDs for trackable release, and evaluation monitoring, as well as for visible in vivo treatment are outlined, to illustrate the potential of FSMDs in drug screening and precision medicine. Finally, we discuss the opportunities and remaining challenges for the development of FSMDs for practical and clinical applications, which we anticipate will stimulate the attention of researchers in the diverse fields of chemistry, pharmacology, chemical biology and clinical chemistry. With this review, we hope to impart new understanding thereby enabling the rapid development of the next generation of FSMDs.
Collapse
Affiliation(s)
- Guang Chen
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Jing Yu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Xinrui Ji
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jie Xu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chao Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Siyue Ma
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Qing Miao
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Linlin Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chen Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Yanfeng Yue
- Department of Chemistry, Delaware State University, Dover, DE, 19901, USA.
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Yuxia Liu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
5
|
Newton TD, Li K, Sharma J, Champagne PA, Pluth MD. Direct hydrogen selenide (H 2Se) release from activatable selenocarbamates. Chem Sci 2023; 14:7581-7588. [PMID: 37449078 PMCID: PMC10337719 DOI: 10.1039/d3sc01936e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Hydrogen selenide (H2Se) is a possible bioregulator, potential gasotransmitter, and important precursor in biological organoselenium compound synthesis. Early tools for H2Se research have benefitted from available mechanistic understanding of analogous small molecules developed for detecting or delivering H2S. A now common approach for H2S delivery is the use of small molecule thiocarbamates that can be engineered to release COS, which is quickly converted to H2S by carbonic anhydrase. To expand our understanding of the chemical underpinnings that enable H2Se delivery, we investigated whether selenocarbamates undergo similar chemistry to release carbonyl selenide (COSe). Using both light- and hydrolysis-activated systems, we demonstrate that unlike their lighter thiocarbamate congeners, selenocarbamates release H2Se directly with concomitant isocyanate formation rather than by the intermediate release of COSe. This reaction mechanism for direct H2Se release is further supported by computational investigations that identify a ΔΔG‡ ∼ 25 kcal mol-1 between the H2Se and COSe release pathways in the absence of protic solvent. This work highlights fundamentally new approaches for H2Se release from small molecules and advances the understanding of reactivity differences between reactive sulfur and selenium species.
Collapse
Affiliation(s)
- Turner D Newton
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon Eugene Oregon 97403-1253 USA
| | - Keyan Li
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon Eugene Oregon 97403-1253 USA
| | - Jyoti Sharma
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology Newark New Jersey 07103 USA
| | - Pier Alexandre Champagne
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology Newark New Jersey 07103 USA
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon Eugene Oregon 97403-1253 USA
| |
Collapse
|
6
|
Ishkaeva RA, Khaertdinov NN, Yakovlev AV, Esmeteva MV, Salakhieva DV, Nizamov IS, Sitdikova GF, Abdullin TI. Characterization of Glutathione Dithiophosphates as Long-Acting H 2S Donors. Int J Mol Sci 2023; 24:11063. [PMID: 37446245 DOI: 10.3390/ijms241311063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Considering the important cytoprotective and signaling roles but relatively narrow therapeutic index of hydrogen sulfide (H2S), advanced H2S donors are required to achieve a therapeutic effect. In this study, we proposed glutathione dithiophosphates as new combination donors of H2S and glutathione. The kinetics of H2S formation in dithiophosphate solutions suggested a continuous H2S release by the donors, which was higher for the dithiophosphate of reduced glutathione than oxidized glutathione. The compounds, unlike NaHS, inhibited the proliferation of C2C12 myoblasts at submillimolar concentrations due to an efficient increase in intracellular H2S. The H2S donors more profoundly affected reactive oxygen species and reduced glutathione levels in C2C12 myocytes, in which these parameters were elevated compared to myoblasts. Oxidized glutathione dithiophosphate as well as control donors exerted antioxidant action toward myocytes, whereas the effect of reduced glutathione dithiophosphate at (sub-)micromolar concentrations was rather modulating. This dithiophosphate showed an enhanced negative inotropic effect mediated by H2S upon contraction of the atrial myocardium, furthermore, its activity was prolonged and reluctant for washing. These findings identify glutathione dithiophosphates as redox-modulating H2S donors with long-acting profile, which are of interest for further pharmacological investigation.
Collapse
Affiliation(s)
- Rezeda A Ishkaeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Nail N Khaertdinov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Aleksey V Yakovlev
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Marina V Esmeteva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Diana V Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Ilyas S Nizamov
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Guzel F Sitdikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| |
Collapse
|
7
|
Hankins RA, Carter ME, Zhu C, Chen C, Lukesh JC. Enol-mediated delivery of H 2Se from γ-keto selenides: mechanistic insight and evaluation. Chem Sci 2022; 13:13094-13099. [PMID: 36425500 PMCID: PMC9667953 DOI: 10.1039/d2sc03533b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/19/2022] [Indexed: 08/22/2024] Open
Abstract
Like hydrogen sulfide (H2S), its chalcogen congener, hydrogen selenide (H2Se), is an emerging molecule of interest given its endogenous expression and purported biological activity. However, unlike H2S, detailed investigations into the chemical biology of H2Se are limited and little is known about its innate physiological functions, cellular targets, and therapeutic potential. The obscurity surrounding these fundamental questions is largely due to a lack of small molecule donors that can effectively increase the bioavailability of H2Se through their continuous liberation of the transient biomolecule under physiologically relevant conditions. Driven by this unmet demand for H2Se-releasing moieties, we report that γ-keto selenides provide a useful platform for H2Se donation via an α-deprotonation/β-elimination pathway that is highly dependent on both pH and alpha proton acidity. These attributes afforded a small library of donors with highly variable rates of release (higher alpha proton acidity = faster selenide liberation), which is accelerated under neutral to slightly basic conditions-a feature that is unique and complimentary to previously reported H2Se donors. We also demonstrate the impressive anticancer activity of γ-keto selenides in both HeLa and HCT116 cells in culture, which is likely to stimulate additional interest and research into the biological activity and anticancer effects of H2Se. Collectively, these results indicate that γ-keto selenides provide a highly versatile and effective framework for H2Se donation.
Collapse
Affiliation(s)
- Rynne A Hankins
- Department of Chemistry, Wake Forest University Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Molly E Carter
- Department of Chemistry, Wake Forest University Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Changlei Zhu
- Department of Chemistry, Wake Forest University Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Chen Chen
- Department of Chemistry, Wake Forest University Wake Downtown Campus Winston-Salem NC 27101 USA
| | - John C Lukesh
- Department of Chemistry, Wake Forest University Wake Downtown Campus Winston-Salem NC 27101 USA
| |
Collapse
|
8
|
Ji X, Zhong Z. External stimuli-responsive gasotransmitter prodrugs: Chemistry and spatiotemporal release. J Control Release 2022; 351:81-101. [PMID: 36116579 DOI: 10.1016/j.jconrel.2022.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Gasotransmitters like nitric oxide, carbon monoxide, and hydrogen sulfide with unique pleiotropic pharmacological effects in mammals are an emerging therapeutic modality for different human diseases including cancer, infection, ischemia-reperfusion injuries, and inflammation; however, their clinical translation is hampered by the lack of a reliable delivery form, which delivers such gasotransmitters to the action site with precisely controlled dosage. The external stimuli-responsive prodrug strategy has shown tremendous potential in developing gasotransmitter prodrugs, which affords precise temporospatial control and better dose control compared with endogenous stimuli-sensitive prodrugs. The promising external stimuli employed for gasotransmitter activation range from photo, ultrasound, and bioorthogonal click chemistry to exogenous enzymes. Herein, we highlight the recent development of external stimuli-mediated decaging chemistry for the temporospatial delivery of gasotransmitters including nitric oxide, carbon monoxide, hydrogen sulfide and sulfur dioxide, and discuss the pros and cons of different designs.
Collapse
Affiliation(s)
- Xingyue Ji
- College of Pharmaceutical Sciences, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
9
|
Liu Q, Ji G, Chu Y, Hao T, Qian M, Zhao Q. Enzyme-responsive hybrid prodrug of nitric oxide and hydrogen sulfide for heart failure therapy. Chem Commun (Camb) 2022; 58:7396-7399. [PMID: 35686984 DOI: 10.1039/d2cc02267b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hybrid prodrug was synthesized to realize the combined delivery of nitric oxide and hydrogen sulfide. The NO-H2S donor can release nitric oxide and hydrogen sulfide step by step in response to the endogenous enzymes β-galactosidase and carbonic anhydrase, providing potent therapeutic efficacy for heart failure post- myocardial infarction.
Collapse
Affiliation(s)
- Qi Liu
- State key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Guangbo Ji
- State key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Yushu Chu
- State key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Tian Hao
- State key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Meng Qian
- State key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Qiang Zhao
- State key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
10
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
11
|
Rong F, Wang T, Wang K, Zhou Q, Peng H, Li P. Core-Cross-Linking of Polymeric Micelles by Di- para-Substituted S-Aroylthiooximes as Linkers for Controlled H 2S Release. ACS Macro Lett 2022; 11:622-629. [PMID: 35570816 DOI: 10.1021/acsmacrolett.2c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As one of the gasotransmitters, the therapeutic effects of hydrogen sulfide (H2S) were reported widespread in recent years. Considering the short physiological half-life and significant dose-dependent effects of H2S, it is vital to achieve controlled H2S delivery for biomedical applications. Polymeric micelles have been explored to regulate H2S delivery. However, the dilution-induced dissociation of micelles in physiological conditions limits their therapeutic effects. The circulation stability of polymeric micelles could be improved through core-cross-linking, but reduced H2S releasing efficiency is usually unavoidable. To solve these problems, we developed di-para-substituted S-aroylthiooximes (p-diSATOs) as linkers, which integrated cross-linking of micelle core and conjugation of H2S donors through one simple reaction. Compared with SATO-bearing non-cross-linked micelle, the core-cross-linked micelle (CCM) prepared through this method exhibited initial rapid H2S release owing to the electron-withdrawing effect of p-diSATOs, and subsequently, a sustained release could last for a long period of time. Considering the characteristic H2S releasing behavior of CCM, it may accelerate wound healing through initial efficient and subsequent prolonged pro-healing effects. As a proof of concept, we explored the therapeutic potential of CCM using a murine burn wound model, which exhibited pro-healing effect on burn wounds.
Collapse
Affiliation(s)
- Fan Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Qian Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Haowei Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an, Shaanxi 710072, People’s Republic of China
| |
Collapse
|
12
|
Li L, Zhang Z. A fluorogenic H 2S donor activated by reactive oxygen species for real-time monitoring in cells and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120243. [PMID: 34371313 DOI: 10.1016/j.saa.2021.120243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S) is an important gasotransmitter in biological system, and plays a crucial role in varied physiological and pathological processes. Exogenous H2S is widely employed as a positive control in H2S related biological study. Herein, we develop a reactive oxygen species (ROS) triggered donor HSD545 that delivers H2S and simultaneously generates a fluorophore to real-time monitoring the process of H2S release in vitro and in vivo. The donor exhibits low cytotoxicity and strong cytoprotection against ROS-induce oxidative stress.
Collapse
Affiliation(s)
- Li Li
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ziqian Zhang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
13
|
Hamsath A, Lederberg OL, Cui Q, Shieh M, Lam Y, Brummett BJ, Xu S, Robinson JR, Xian M. Intramolecular tetrazine-acryloyl cycloaddition: chemistry and applications. Chem Sci 2022; 13:10336-10341. [PMID: 36277625 PMCID: PMC9473534 DOI: 10.1039/d2sc04331a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
An unprecedented intramolecular [4 + 2] tetrazine-olefin cycloaddition with α,β-unsaturated substrates was discovered. The reaction produces unique coumarin-dihydropyridazine heterocycles that exhibited strong fluorescence with large Stokes shifts and excellent photo- and pH-stability. This property can be used for reaction analysis. The rate of cycloaddition was found to be solvent dependent and was determined using experimental data with a kinetic modeling software (COPASI) as well as DFT calculations (k1 = 0.64 ± 0.019 s−1 and 4.1 s−1, respectively). The effects of steric and electronic properties of both the tetrazine and α,β-unsaturated carbonyl on the reaction were studied and followed the known trends characteristic of the intermolecular reaction. Based on these results, we developed a “release-then-click” strategy for the ROS triggered release of methylselenenic acid (MeSeOH) and a fluorescent tracer. This strategy was demonstrated in HeLa cells via fluorescence imaging. Tetrazines rapidly react with tethered acrylates/acrylamides to produce fused coumarin derivatives. This template can be used in prodrug designs by depleting toxic α,β-unsaturated byproducts while also producing an imaging agent.![]()
Collapse
Affiliation(s)
- Akil Hamsath
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Oren L. Lederberg
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Qi Cui
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Meg Shieh
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Yannie Lam
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Brock J. Brummett
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Jerome R. Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
14
|
Jiao Y, Ye H, Huang H, Yi L, Sun L. Thiobenzophenones: tunable hydrolysis-based donors for intracellular H2S delivery. NEW J CHEM 2022. [DOI: 10.1039/d2nj01152b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H2S, the third gasotransmitter, is involved in many physiological and pathological processes. Compounds that can release H2S slowly under physiological conditions are useful chemical tools for studying H2S biology as...
Collapse
|
15
|
Liang T, Zhang D, Hu W, Tian C, Zeng L, Wu T, Lei D, Qiang T, Yang X, Sun X. A dual lock-and-key two photon fluorescence probe in response to hydrogen peroxide and viscosity: Application in cellular imaging and inflammation therapy. Talanta 2021; 235:122719. [PMID: 34517587 DOI: 10.1016/j.talanta.2021.122719] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Here, a dual lock-and-key fluorescence probe was developed for visualizing the inflammatory process in myocardial H9C2 cells. The probe possessed two-photon properties, viscosity sensitivity, and hydrogen peroxide (H2O2) responsiveness. A thiocarbamate spacer between fluorophore and H2O2 responsive unit enabled the release of carbonyl sulfide (COS). This rapidly converts to the anti-inflammatory hydrogen sulfide (H2S) by the ubiquitous enzyme carbon anhydrase. The probe displayed a dual response towards hydrogen peroxide and viscosity in vitro. No obvious fluorescence changes were observed towards either hydrogen peroxide or viscosity alone. In cellular experiments, the probe demonstrated good biocompatibility, low toxicity, and was shown responses towards exogenous and endogenous hydrogen peroxide under viscosity conditions. LPS induced cell inflammation showed it was able to effectively alleviate the inflammation-caused damage by releasing H2S and eliminating H2O2. The new protocol demonstrates its promising to achieve diagnosis and treatment of cellular inflammatory process.
Collapse
Affiliation(s)
- Tianyu Liang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Dongliang Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi 'an, 710032, China
| | - Wei Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chenyang Tian
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi 'an, 710032, China
| | - Lingyu Zeng
- Department of Chemistry, The University of Texas at Austin, Texas, 78712, United States
| | - Tianhong Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dongqing Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi 'an, 710032, China.
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
16
|
Pluth M. Moving Past Quinone-Methides: Recent Advances toward Minimizing Electrophilic Byproducts from COS/H2S Donors. Curr Top Med Chem 2021; 21:2882-2889. [PMID: 34161211 DOI: 10.2174/1568026621666210622130002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Hydrogen sulfide (H2S) is an important biomolecule that plays key signaling and protective roles in different physiological processes. With the goals of advancing both the available research tools and the associated therapeutic potential of H2S, researchers have developed different methods to deliver H2S on-demand in different biological contexts. A recent approach to develop such donors has been to design compounds that release carbonyl sulfide (COS), which is quickly converted to H2S in biological systems by the ubiquitous enzyme carbonic anhydrase (CA). Although highly diversifiable, many approaches using this general platform release quinone methides or related electrophiles after donor activation. Many such electrophiles are likely scavenged by water, but recent efforts have also expanded alternative approaches that minimize the formation of electrophilic byproducts generated after COS release. This mini-review focuses specifically on recent examples of COS-based H2S donors that do not generate quinone methide byproducts after donor activation.
Collapse
Affiliation(s)
- Michael Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology. University of Oregon. Eugene, OR, United States
| |
Collapse
|
17
|
Zhu C, Suarez SI, Lukesh JC. Illuminating and alleviating cellular oxidative stress with an ROS-activated, H2S-donating theranostic. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Saju A, Mondal A, Chattopadhyay T, Kolliyedath G, Kundu S. H2S Generation from CS2 Hydrolysis at a Dinuclear Zinc(II) Site. Inorg Chem 2020; 59:16154-16159. [DOI: 10.1021/acs.inorgchem.0c01194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ananya Saju
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| | - Aditesh Mondal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| | - Taraknath Chattopadhyay
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| | - Gayathri Kolliyedath
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| | - Subrata Kundu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| |
Collapse
|
19
|
Hankins RA, Suarez SI, Kalk MA, Green NM, Harty MN, Lukesh JC. An Innovative Hydrogen Peroxide‐Sensing Scaffold and Insight Towards its Potential as an ROS‐Activated Persulfide Donor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rynne A. Hankins
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - S. Israel Suarez
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Madison A. Kalk
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Nolan M. Green
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Megan N. Harty
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - John C. Lukesh
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| |
Collapse
|
20
|
Hankins RA, Suarez SI, Kalk MA, Green NM, Harty MN, Lukesh JC. An Innovative Hydrogen Peroxide‐Sensing Scaffold and Insight Towards its Potential as an ROS‐Activated Persulfide Donor. Angew Chem Int Ed Engl 2020; 59:22238-22245. [DOI: 10.1002/anie.202010530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Rynne A. Hankins
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - S. Israel Suarez
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Madison A. Kalk
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Nolan M. Green
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Megan N. Harty
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| | - John C. Lukesh
- Department of Chemistry Wake Forest University, Wake Downtown Campus Winston-Salem NC 27101 USA
| |
Collapse
|
21
|
Zhou S, Mou Y, Liu M, Du Q, Ali B, Ramprasad J, Qiao C, Hu LF, Ji X. Insights into the Mechanism of Thiol-Triggered COS/H 2S Release from N-Dithiasuccinoyl Amines. J Org Chem 2020; 85:8352-8359. [PMID: 32496068 DOI: 10.1021/acs.joc.0c00559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hydrolysis of carbonyl sulfide (COS) to form H2S by carbonic anhydrase has been demonstrated to be a viable strategy to deliver H2S in a biological system. Herein, we describe N-dithiasuccinoyl amines as thiol-triggered COS/H2S donors. Notably, thiol species especially GSH and homocysteine can trigger the release of both COS and H2S directly from several specific analogues via an unexpected mechanism. Importantly, two representative analogues Dts-1 and Dts-5 show intracellular H2S release, and Dts-1 imparts potent anti-inflammatory effects in LPS-challenged microglia cells. In conclusion, N-dithiasuccinoyl amine could serve as promising COS/H2S donors for either H2S biological studies or H2S-based therapeutics development.
Collapse
Affiliation(s)
- Shengchao Zhou
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yujie Mou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Miao Liu
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Qian Du
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Basharat Ali
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Jurupula Ramprasad
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Chunhua Qiao
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Li-Fang Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xingyue Ji
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|
22
|
Hua W, Zhao J, Gou S. A naphthalimide derivative can release COS and form H 2S in a light-controlled manner and protect cells against ROS with real-time monitoring ability. Analyst 2020; 145:3878-3884. [PMID: 32297624 DOI: 10.1039/d0an00371a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As an important gasotransmitter, hydrogen sulfide having multiple biological roles cannot be easily probed in cells. In this study, a light controllable H2S donor, Nap-Sul-ONB, derived from naphthalimide was developed. Under the irradiation of 365 nm light, a readily controlled stimulus, the donor could release COS to form H2S and exhibit turn on fluorescence to indicate the release of payload and its cellular location. Besides, the ROS scavenging ability and cell protective effect of Nap-Sul-ONB against endogenous and exogenous ROS were studied. The results showed that upon 365 nm light irradiation, Nap-Sul-ONB could reduce the cellular ROS level and increase the survival rate of PMA-treated cells.
Collapse
Affiliation(s)
- Wuyang Hua
- Pharmaceutical Research Centre and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | | | | |
Collapse
|
23
|
YUAN ZN, ZHENG YQ, WANG BH. Prodrugs of hydrogen sulfide and related sulfur species: recent development. Chin J Nat Med 2020; 18:296-307. [DOI: 10.1016/s1875-5364(20)30037-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 10/24/2022]
|
24
|
Zhang N, Hu P, Wang Y, Tang Q, Zheng Q, Wang Z, He Y. A Reactive Oxygen Species (ROS) Activated Hydrogen Sulfide (H 2S) Donor with Self-Reporting Fluorescence. ACS Sens 2020; 5:319-326. [PMID: 31913018 DOI: 10.1021/acssensors.9b01093] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is an important cellular signaling molecule, and its physiological and pathophysiological properties have been under intensive investigation. In this study, a novel ratiometric fluorescent H2S donor (HSD-B) has been developed, which exhibited the following advantages: (i) scavenging ROS and producing H2S simultaneously; (ii) providing ratiometric fluorescence for visualization and quantification of H2S releasing; and (iii) targeting mitochondrion specifically. Moreover, it demonstrated protective effects on myocardial ischemia reperfusion injury in a cellular model. These attractive features promise this HSD-B as a fluorescent H2S donor for future research studies.
Collapse
Affiliation(s)
- Ning Zhang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Ping Hu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Yanfang Wang
- First Affiliated Hospital of the Medical College , Shihezi University , Xinjiang 832008 , PR China
| | - Qing Tang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Qiang Zheng
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Zhanlong Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Yun He
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| |
Collapse
|
25
|
Levinn CM, Cerda MM, Pluth MD. Activatable Small-Molecule Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:96-109. [PMID: 31554416 PMCID: PMC6918874 DOI: 10.1089/ars.2019.7841] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022]
Abstract
Significance: Hydrogen sulfide (H2S) is an important biological signaling molecule involved in many physiological processes. These diverse roles have led researchers to develop contemporary methods to deliver H2S under physiologically relevant conditions and in response to various stimuli. Recent Advances: Different small-molecule donors have been developed that release H2S under various conditions. Key examples include donors activated in response to hydrolysis, to endogenous species, such as thiols, reactive oxygen species, and enzymes, and to external stimuli, such as photoactivation and bio-orthogonal chemistry. In addition, an alternative approach to release H2S has utilized the catalyzed hydrolysis of carbonyl sulfide (COS) by carbonic anhydrase to generate libraries of activatable COS-based H2S donors. Critical Issues: Small-molecule H2S donors provide important research and pharmacological tools to perturb H2S levels. Key needs, both in the development and in the use of such donors, include access to new donors that respond to specific stimuli as well as donors with well-defined control compounds that allow for clear delineation of the impact of H2S delivery from other donor byproducts. Future Directions: The abundance of reported small-molecule H2S donors provides biologists and physiologists with a chemical toolbox to ask key biological questions and to develop H2S-related therapeutic interventions. Further investigation into different releasing efficiencies in biological contexts and a clear understanding of biological responses to donors that release H2S gradually (e.g., hours to days) versus donors that generate H2S quickly (e.g., seconds to minutes) is needed.
Collapse
Affiliation(s)
- Carolyn M. Levinn
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Matthew M. Cerda
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| |
Collapse
|
26
|
Levinn CM, Cerda MM, Pluth MD. Development and Application of Carbonyl Sulfide-Based Donors for H 2S Delivery. Acc Chem Res 2019; 52:2723-2731. [PMID: 31390174 PMCID: PMC7047812 DOI: 10.1021/acs.accounts.9b00315] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In addition to nitric oxide and carbon monoxide, hydrogen sulfide (H2S) has been recently recognized as an important biological signaling molecule with implications in a wide variety of processes, including vasodilation, cytoprotection, and neuromodulation. In parallel to the growing number of reports highlighting the biological impact of H2S, interest in developing H2S donors as both research tools and potential therapeutics has led to the growth of different H2S-releasing strategies. Many H2S investigations in model systems use direct inhalation of H2S gas or aqueous solutions of NaSH or Na2S; however, such systems do not mimic endogenous H2S production. This stark contrast drives the need to develop better sources of caged H2S. To address these limitations, different small organosulfur donor compounds have been prepared that release H2S in the presence of specific activators or triggers. Such compounds, however, often lack suitable control compounds, which limits the use of these compounds in probing the effects of H2S directly. To address these needs, our group has pioneered the development of carbonyl sulfide (COS) releasing compounds as a new class of H2S donor motifs. Inspired by a commonly used carbamate prodrug scaffold, our approach utilizes self-immolative thiocarbamates to access controlled release of COS, which is rapidly converted to H2S by the ubiquitous enzyme carbonic anhydrase (CA). In addition, this design enables access to key control compounds that release CO2/H2O rather than COS/H2S, which enables delineation of the effects of COS/H2S from the organic donor byproducts. In this Account, we highlight a library of first-generation COS/H2S donors based on self-immolative thiocarbamates developed in our lab and also highlight challenges related to H2S donor development. We showcase the release of COS in the presence of specific triggers and activators, including biological thiols and bio-orthogonal reactants for targeted applications. We also demonstrate the design and development of a series of H2O2/reactive oxygen species (ROS)-triggered donors and show that such compounds can be activated by endogenous levels of ROS production. Utilizing approaches in bio-orthogonal activation, we establish that donors functionalized with an o-nitrobenzyl photocage can enable access to light-activated donors. Similar to endogenous production by cysteine catabolism, we also prepared a cysteine-selective COS donor activated by a Strongin ligation mechanism. In efforts to help delineate potential differences in the chemical biology of COS and H2S, we also report a simple esterase-activated donor, which demonstrated fast COS-releasing kinetics and inhibition of mitochondrial respiration in BEAS-2B cells. Additional investigations revealed that COS release rates and cytotoxicity correlated directly within this series of compounds with different ester motifs. In more recent and applied applications of this H2S donation strategy, we also highlight the development of donors that generate either a colorimetric or fluorescent optical response upon COS release. Overall, the work described in this Account outlines the development and initial application of a new class of H2S donors, which we anticipate will help to advance our understanding of the rapidly emerging chemical biology of H2S and COS.
Collapse
Affiliation(s)
| | | | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403, USA
| |
Collapse
|
27
|
Zhao Y, Steiger AK, Pluth MD. Cyclic Sulfenyl Thiocarbamates Release Carbonyl Sulfide and Hydrogen Sulfide Independently in Thiol-Promoted Pathways. J Am Chem Soc 2019; 141:13610-13618. [PMID: 31373809 PMCID: PMC7023849 DOI: 10.1021/jacs.9b06319] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule that provides protective activities in a variety of physiological and pathological processes. Among the different types of H2S donor compounds, thioamides have attracted attention due to prior conjugation to nonsteroidal anti-inflammatory drugs (NSAIDs) to access H2S-NSAID hybrids with significantly reduced toxicity, but the mechanism of H2S release from thioamides remains unclear. Herein, we reported the synthesis and evaluation of a class of thioamide-derived sulfenyl thiocarbamates (SulfenylTCMs) that function as a new class of H2S donors. These compounds are efficiently activated by cellular thiols to release carbonyl sulfide (COS), which is quickly converted to H2S by carbonic anhydrase (CA). In addition, through mechanistic investigations, we establish that COS-independent H2S release pathways are also operative. In contrast to the parent thioamide-based donors, the SulfenylTCMs exhibit excellent H2S releasing efficiencies of up to 90% and operate through mechanistically well-defined pathways. In addition, we demonstrate that the sulfenyl thiocarbamate group is readily attached to common NSAIDs, such as naproxen, to generate YZ-597 as an efficient H2S-NSAID hybrid, which we demonstrate releases H2S in cellular environments. Taken together, this new class of H2S donor motifs provides an important platform for new donor development.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - Andrea K. Steiger
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
28
|
Hu Y, Li X, Fang Y, Shi W, Li X, Chen W, Xian M, Ma H. Reactive oxygen species-triggered off-on fluorescence donor for imaging hydrogen sulfide delivery in living cells. Chem Sci 2019; 10:7690-7694. [PMID: 31803407 PMCID: PMC6836935 DOI: 10.1039/c9sc02323b] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/08/2019] [Indexed: 01/20/2023] Open
Abstract
A reactive oxygen species-triggered off-on fluorescence H2S donor is develop for the real-time imaging of H2S delivery and the cytoprotection against the hazardous oxidative environment.
Hydrogen sulfide (H2S), an important gasotransmitter, can mediate a variety of pathophysiological processes, and H2S-based donors have been intensively explored for the therapy of cardiovascular injury, nerve damage and intestinal disorders. However, most of the H2S donors are not capable of simultaneously real-time tracking intracellular H2S delivery, which limits their biological application for elucidating the specific function of H2S. Herein we develop the first reactive oxygen species (ROS)-triggered off-on fluorescence H2S donor (NAB) by incorporating ROS-responsive arylboronate into a fluorophore through thiocarbamate. The donor NAB can release carbonyl sulfide (COS) and the fluorophore with a fluorescence off-on response via a ROS-triggered self-immolative reaction, and then COS is quickly converted to H2S by the ubiquitous carbonic anhydrase. This dual function makes NAB suitable for not only in situ and real-time monitoring of the intracellular H2S release but also rescuing RAW264.7 cells from the hazardous oxidative environment under the stimulation of phorbol-12-myristate-13-acetate, revealing the possible potential of NAB as a therapeutic prodrug with the fluorescence imaging capacity.
Collapse
Affiliation(s)
- Yiming Hu
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . .,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaoyi Li
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Yu Fang
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . .,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Wei Chen
- Department of Chemistry , Washington State University , Pullman , Washington 99164 , USA
| | - Ming Xian
- Department of Chemistry , Washington State University , Pullman , Washington 99164 , USA
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . .,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
29
|
Jiang YY, Zhu L, Fan X, Zhang Q, Fu YJ, Li H, Hu B, Bi S. A computational study on H 2S release and amide formation from thionoesters and cysteine. Org Biomol Chem 2019; 17:5771-5778. [PMID: 31135017 DOI: 10.1039/c9ob00854c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The recognition of the biological activity of H2S has drawn much attention to the development of biocompatible H2S release reactions. Thiol-, particularly cysteine-triggered systems which mimic the enzymatic conversion of cysteine or homocysteine to H2S have been intensively reported recently. Herein, a density functional theory (DFT) study was performed to address the reaction mechanism of H2S release and potential amide bond formation from thionoesters and cysteine to gain deeper mechanistic insights. Three possible mechanisms were considered and we found that the one starting from the nucleophilic addition of the ionized mercapto of cysteine on thionoester to generate a dithioester intermediate (Path A) is kinetically favored over the others starting from the nucleophilic addition of the amine of cysteine to generate thionoamide intermediates (Paths B and C). Dithioester then undergoes intramolecular nucleophilic addition of an amine group and the rate-limiting water-assisted proton transfer to generate a cyclic thiol intermediate, and finally affords H2S and dihydrothiazole via water-assisted elimination. The hydrolysis of thionoamide or dihydrothiazole to produce amide is highly difficult under neutral conditions but is operative under strong basic conditions, which explains the experimental observation that dihydrothiazole rather than amide is the major product. Meanwhile, the ring opening reaction of the cyclic thiol intermediate to form the more stable thionoamide is detrimental to H2S release and becomes competitive under basic conditions.
Collapse
Affiliation(s)
- Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Activity-based proteomic profiling: The application of photoaffinity probes in the target identification of bioactive molecules. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Liang W, Chen J, Li L, Li M, Wei X, Tan B, Shang Y, Fan G, Wang W, Liu W. Conductive Hydrogen Sulfide-Releasing Hydrogel Encapsulating ADSCs for Myocardial Infarction Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14619-14629. [PMID: 30939870 DOI: 10.1021/acsami.9b01886] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrogen sulfide (H2S) exhibits extensive protective actions in cardiovascular systems, such as anti-inflammatory and stimulating angiogenesis, but its therapeutic potential is severely discounted by the short half-life and the poorly controlled releasing behavior. Herein, we developed a macromolecular H2S prodrug by grafting 2-aminopyridine-5-thiocarboxamide (a small-molecule H2S donor) on partially oxidized alginate (ALG-CHO) to mimic the slow and continuous release of endogenous H2S. In addition, tetraaniline (a conductive oligomer) and adipose-derived stem cells (ADSCs) were introduced to form a stem cell-loaded conductive H2S-releasing hydrogel through the Schiff base reaction between ALG-CHO and gelatin. The hydrogel exhibited adhesive property to ensure a stable anchoring to the wet and beating hearts. After myocardial injection, longer ADSCs retention period and elevated sulfide concentration in rat myocardium were demonstrated, accompanied by upregulation of cardiac-related mRNA (Cx43, α-SMA, and cTnT) and angiogenic factors (VEGFA and Ang-1) and downregulation of inflammatory factors (tumor necrosis factor-α). Echocardiography and histological analysis strongly demonstrated an increase in the ejection fraction value and smaller infarction size, suggesting a remarkable improvement of the cardiac functions of Sprague-Dawley rats. The ADSC-loaded conductive hydrogen sulfide-releasing hydrogel dramatically promoted the therapeutic effects, offering a promising therapeutic strategy for treating myocardial infarction.
Collapse
Affiliation(s)
- Wei Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Jingrui Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Lingyan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Min Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Xiaojuan Wei
- Institute of Microsurgery on Extremities , Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University , Shanghai 200233 , China
| | - Baoyu Tan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Yingying Shang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Wei Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
32
|
Cerda MM, Newton TD, Zhao Y, Collins BK, Hendon CH, Pluth MD. Dithioesters: simple, tunable, cysteine-selective H 2S donors. Chem Sci 2019; 10:1773-1779. [PMID: 30842844 PMCID: PMC6368244 DOI: 10.1039/c8sc04683b] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
Dithioesters have a rich history in polymer chemistry for RAFT polymerizations and are readily accessible through different synthetic methods. Here we demonstrate that the dithioester functional group is a tunable motif that releases H2S upon reaction with cysteine and that structural and electronic modifications enable the rate of cysteine-mediated H2S release to be modified. In addition, we use (bis)phenyl dithioester to carry out kinetic and mechanistic investigations, which demonstrate that the initial attack by cysteine is the rate-limiting step of the reaction. These insights are further supported by complementary DFT calculations. We anticipate that the results from these investigations will allow for the further development of dithioesters as important chemical motifs for studying H2S chemical biology.
Collapse
Affiliation(s)
- Matthew M Cerda
- Department of Chemistry and Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , Oregon 97403 , USA .
| | - Turner D Newton
- Department of Chemistry and Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , Oregon 97403 , USA .
| | - Yu Zhao
- Department of Chemistry and Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , Oregon 97403 , USA .
| | - Brylee K Collins
- Department of Chemistry and Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , Oregon 97403 , USA .
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , Oregon 97403 , USA .
| | - Michael D Pluth
- Department of Chemistry and Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , Oregon 97403 , USA .
| |
Collapse
|
33
|
Zhao Y, Cerda MM, Pluth MD. Fluorogenic hydrogen sulfide (H 2S) donors based on sulfenyl thiocarbonates enable H 2S tracking and quantification. Chem Sci 2019; 10:1873-1878. [PMID: 30842856 PMCID: PMC6371758 DOI: 10.1039/c8sc05200j] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/10/2018] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) is an important cellular signaling molecule that exhibits promising protective effects. Although a number of triggerable H2S donors have been developed, spatiotemporal feedback from H2S release in biological systems remains a key challenge in H2S donor development. Herein we report the synthesis, evaluation, and application of caged sulfenyl thiocarbonates as new fluorescent H2S donors. These molecules rely on thiol cleavage of sulfenyl thiocarbonates to release carbonyl sulfide (COS), which is quickly converted to H2S by carbonic anhydrase (CA). This approach is a new strategy in H2S release and does not release electrophilic byproducts common from COS-based H2S releasing motifs. Importantly, the release of COS/H2S is accompanied by the release of a fluorescent reporter, which enables the real-time tracking of H2S by fluorescence spectroscopy or microscopy. Dependent on the choice of fluorophore, either one or two equivalents of H2S can be released, thus allowing for the dynamic range of the fluorescent donors to be tuned. We demonstrate that the fluorescence response correlates directly with quantified H2S release and also demonstrate the live-cell compatibility of these donors. Furthermore, these fluorescent donors exhibit anti-inflammatory effects in RAW 264.7 cells, indicating their potential application as new H2S-releasing therapeutics. Taken together, sulfenyl thiocarbonates provide a new platform for H2S donation and readily enable fluorescent tracking of H2S delivery in complex environments.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry and Biochemistry , Institute of Molecular Biology , Materials Science Institute , University of Oregon , Eugene , OR 97403 , USA .
| | - Matthew M Cerda
- Department of Chemistry and Biochemistry , Institute of Molecular Biology , Materials Science Institute , University of Oregon , Eugene , OR 97403 , USA .
| | - Michael D Pluth
- Department of Chemistry and Biochemistry , Institute of Molecular Biology , Materials Science Institute , University of Oregon , Eugene , OR 97403 , USA .
| |
Collapse
|
34
|
Xu S, Hamsath A, Neill DL, Wang Y, Yang C, Xian M. Strategies for the Design of Donors and Precursors of Reactive Sulfur Species. Chemistry 2018; 25:4005-4016. [DOI: 10.1002/chem.201804895] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/27/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Shi Xu
- Department of ChemistryWashington State University Pullman WA 99164 USA
| | - Akil Hamsath
- Department of ChemistryWashington State University Pullman WA 99164 USA
| | - Deshka L. Neill
- Department of ChemistryWashington State University Pullman WA 99164 USA
| | - Yingying Wang
- Department of ChemistryWashington State University Pullman WA 99164 USA
| | - Chun‐tao Yang
- School of Pharmaceutics ScienceGuangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Ming Xian
- Department of ChemistryWashington State University Pullman WA 99164 USA
- School of Pharmaceutics ScienceGuangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| |
Collapse
|