1
|
Rudin B, Stein CAM, Ballmann J. Tolane-Based Phosphino- and Arsino-Ruthenium Complexes in Three Different Oxidation States: Ru(I), Ru(II) and Ru(III). Chemistry 2025:e202404546. [PMID: 39812222 DOI: 10.1002/chem.202404546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/16/2025]
Abstract
Targeting Ru(III) and Ru(I) η2-alkyne species, 2,2'-(iPr2E)2-substituted diphenylacetylenes (1-E, E=P, As) were employed for the preparation of [ECCE]-coordinated ruthenium complexes. The reactions between 1-E and cis-(MeCN)2(COD)RuCl2 led to the required Ru(II) starting materials cis-[ECCE]RuCl2(MeCN) (3-E). Upon oxidation of 3-E with PhICl2, the Ru(III) target complexes [ECCE]RuCl3 (7-E) were detectable for E=P and E=As, but only the arsa-derivative 7-As was obtained in a pure form, namely via oxidation of cis-[AsCCAs]RuCl2(THT) (THT=tetrahydrothiophene). Upon reduction of compounds 3-E, a hitherto unprecedented Ru(I) η2-alkyne complex, [PCCP]RuCl (9), was obtained for E=P. The former square planar Ru(I) complex (9) was characterized comprehensively and examined in detail by means of DFT and CASSCF calculation. Upon treatment of 9 with TlPF6, a diamagnetic μ-Tl-bridged compound (10) with a nearly linear Ru-Tl-Ru array was formed and isolated in high yields. Careful analysis of the bonding situation suggested that the Ru-Tl-Ru moiety in 10 is best interpreted in terms of a 3c-4e- bond.
Collapse
Affiliation(s)
- Benjamin Rudin
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120, Heidelberg, Germany
| | - Carolin A M Stein
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120, Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120, Heidelberg, Germany
| |
Collapse
|
2
|
de Oliveira JC, Abreu BU, Paz ERS, Almeida RG, Honorato J, Souza CP, Fantuzzi F, Ramos VFS, Menna-Barreto RFS, Araujo MH, Jardim GAM, da Silva Júnior EN. SuFEx-Functionalized Quinones via Ruthenium-Catalyzed C-H Alkenylation: A Potential Building Block for Bioactivity Valorization. Chem Asian J 2024:e202400757. [PMID: 39136413 DOI: 10.1002/asia.202400757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Herein, we describe the Ru-catalyzed C-H alkenylation of 1,4-naphthoquinones (1,4-NQs), resulting in 1,4-naphthoquinoidal/SuFEx hybrids with moderate to good yields. This method provides a novel route for direct access to ethenesulfonyl-fluorinated quinone structures. We conducted mechanistic studies to gain an in-depth understanding of the elementary steps of the reaction. Additionally, we evaluated the prototypes against trypomastigote forms of T. cruzi, leading to the identification of compounds with potent trypanocidal activity.
Collapse
Affiliation(s)
- Joyce C de Oliveira
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Breno U Abreu
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Esther R S Paz
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Renata G Almeida
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - João Honorato
- São Carlos Institute of Physics, Physics and Interdisciplinary Sciences Department, Universidade de São Paulo, USP, São Carlos, 13560-970, Brazil
| | - Cauê P Souza
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Victor F S Ramos
- Laboratory of Cellular Biology, IOC, FIOCRUZ, Rio de Janeiro, RJ, 21045-900, Brazil
| | | | - Maria H Araujo
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme A M Jardim
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Eufrânio N da Silva Júnior
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
3
|
Hertler PR, Yu X, Brower JD, Nguyen TAD, Wu G, Autschbach J, Hayton TW. Exploring Spin-Orbit Effects in a [Cu 6Tl] + Nanocluster Featuring an Uncommon Tl-H Interaction. Chemistry 2024; 30:e202400390. [PMID: 38381600 DOI: 10.1002/chem.202400390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Reaction of [CuH(PPh3)]6 with 1 equiv. of Tl(OTf) results in formation of [Cu6TlH6(PPh3)6][OTf] ([1]OTf]), which can be isolated in good yields. Variable-temperature 1H NMR spectroscopy, in combination with density functional theory (DFT) calculations, confirms the presence of a rare Tl-H orbital interaction. According to DFT, the 1H chemical shift of the Tl-adjacent hydride ligands of [1]+ includes 7.7 ppm of deshielding due to spin-orbit effects from the heavy Tl atom. This study provides valuable new insights into a rare class of metal hydrides, given that [1][OTf] is only the third isolable species reported to contain a Tl-H interaction.
Collapse
Affiliation(s)
- Phoebe R Hertler
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260
| | - Jordan D Brower
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Thuy-Ai D Nguyen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106
| |
Collapse
|
4
|
Lyczko K, Lyczko M, Banasiewicz M, Wegrzynska K, Ziółko A, Baraniak A, Dobrowolski JC. Thallium(I) Tropolonates: Synthesis, Structure, Spectral Characteristics, and Antimicrobial Activity Compared to Lead(II) and Bismuth(III) Analogues. Molecules 2021; 27:molecules27010183. [PMID: 35011415 PMCID: PMC8746424 DOI: 10.3390/molecules27010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Synthesis, single-crystal X-ray determination diffraction and FT-IR, NMR (1H, 13C, 19F and 205Tl), UV–vis, and luminescence spectra characteristics were described for series of thallium(I) compounds: thallium(I) triflate (Tl(OTf)), 1:1 co-crystals of thallium(I) triflate and tropolone (Htrop), Tl(OTf)·Htrop, as well as simple thallium(I) chelates: Tl(trop) (1), Tl(5-metrop) (2), Tl(hino) (3), with Htrop, 5-methyltropolone (5-meHtrop), 4-isopropyltropolone (hinokitiol, Hhino), respectively, and additionally more complex {Tl@[Tl(hino)]6}(OTf) (4) compound. Comparison of their antimicrobial activity with selected lead(II) and bismuth(III) analogs and free ligands showed that only bismuth(III) complexes demonstrated significant antimicrobial activity, from two- to fivefold larger than the free ligands.
Collapse
Affiliation(s)
- Krzysztof Lyczko
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.L.); (J.C.D.)
- Correspondence:
| | - Monika Lyczko
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.L.); (J.C.D.)
| | | | - Karolina Wegrzynska
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (K.W.); (A.Z.); (A.B.)
| | - Anna Ziółko
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (K.W.); (A.Z.); (A.B.)
| | - Anna Baraniak
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (K.W.); (A.Z.); (A.B.)
| | - Jan Cz. Dobrowolski
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.L.); (J.C.D.)
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (K.W.); (A.Z.); (A.B.)
| |
Collapse
|
5
|
Roy MMD, Omaña AA, Wilson ASS, Hill MS, Aldridge S, Rivard E. Molecular Main Group Metal Hydrides. Chem Rev 2021; 121:12784-12965. [PMID: 34450005 DOI: 10.1021/acs.chemrev.1c00278] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.
Collapse
Affiliation(s)
- Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Andrew S S Wilson
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Michael S Hill
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
6
|
Charles RM, Brewster TP. H 2 and carbon-heteroatom bond activation mediated by polarized heterobimetallic complexes. Coord Chem Rev 2021; 433:213765. [PMID: 35418712 PMCID: PMC9004596 DOI: 10.1016/j.ccr.2020.213765] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The field of heterobimetallic chemistry has rapidly expanded over the last decade. In addition to their interesting structural features, heterobimetallic structures have been found to facilitate a range of stoichiometric bond activations and catalytic processes. The accompanying review summarizes advances in this area since January of 2010. The review encompasses well-characterized heterobimetallic complexes, with a particular focus on mechanistic details surrounding their reactivity applications.
Collapse
Affiliation(s)
- R Malcolm Charles
- Department of Chemistry, The University of Memphis, 3744 Walker Ave., Smith Chemistry Building, Memphis, TN 38152, United States
| | - Timothy P Brewster
- Department of Chemistry, The University of Memphis, 3744 Walker Ave., Smith Chemistry Building, Memphis, TN 38152, United States
| |
Collapse
|
7
|
Gyton MR, Leverett AR, Cole ML, McKay AI. Bulky bis(aryl)triazenides: just aspiring amidinates? A structural and spectroscopic study. Dalton Trans 2020; 49:5653-5661. [DOI: 10.1039/d0dt00285b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The triazenide ligand is compared to the isoelectronic formamidinate with regards donor capacity, coordination chemistry and capacity to stabilise reactive main group species.
Collapse
Affiliation(s)
- Matthew R. Gyton
- School of Chemistry
- University of New South Wales
- Kensington
- Australia
| | | | - Marcus L. Cole
- School of Chemistry
- University of New South Wales
- Kensington
- Australia
| | - Alasdair I. McKay
- School of Chemistry
- University of New South Wales
- Kensington
- Australia
- School of Chemistry
| |
Collapse
|
8
|
Joshi M, Ghanty TK. Predicted M(H 2) 12n+ (M = Ac, Th, Pa, U, La and n = 3, 4) complexes with twenty-four hydrogen atoms bound to the metal ion. Chem Commun (Camb) 2019; 55:7788-7791. [PMID: 31210209 DOI: 10.1039/c9cc02458a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we have shown that La(iii), Ac(iii), Th(iii), Th(iv), Pa(iv) and U(iv) can directly bind with a maximum of 24 hydrogen atoms in M(H2)12 in the first sphere of coordination, which would be a new record in any metal-hydrogen complex investigated at the molecular level, where all the hydrogen atoms are directly connected to the central metal ion through M-η2(H2) bonds. Moreover, Ac(H2)n3+ (n = 9-12) systems satisfy the 18-electron rule.
Collapse
Affiliation(s)
- Meenakshi Joshi
- Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai-400085, India.
| | | |
Collapse
|