1
|
Gu K, Yu C, Zhou W, Liu C. In Operando Visualization of Elementary Turnovers in Photocatalytic Organic Synthesis. J Phys Chem Lett 2024; 15:717-724. [PMID: 38214912 DOI: 10.1021/acs.jpclett.3c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
We report the in operando visualization of the photocatalytic turnovers on single eosin Y (EY) through a redox-induced photoblinking phenomenon. The photocatalytic cyclization of thiobenzamide (TB) catalyzed by EY was investigated. The analysis of the intensity-versus-time trajectories of single EYs revealed the kinetics and dynamics of the elementary photocatalytic turnovers and the heterogeneity of the activity of individual EYs. The quenching turnover time showed a fast population and a slow population, which could be attributed to the singlet and triplet states of photoexcited EY. The slow quenching turnovers were more dominant at higher TB concentrations. The activity heterogeneity of EYs was studied over a series of reactant concentrations. Excess quenching reagent was found to decrease the percentage of active EYs. The method can be broadly applied to studying the elementary processes of photocatalytic organic reactions in operando.
Collapse
Affiliation(s)
- Kai Gu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Christina Yu
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wenqiao Zhou
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Chunming Liu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
2
|
Shen M, Rackers WH, Sadtler B. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:692-715. [PMID: 38037609 PMCID: PMC10685636 DOI: 10.1021/cbmi.3c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023]
Abstract
Single-molecule fluorescence microscopy enables the direct observation of individual reaction events at the surface of a catalyst. It has become a powerful tool to image in real time both intra- and interparticle heterogeneity among different nanoscale catalyst particles. Single-molecule fluorescence microscopy of heterogeneous catalysts relies on the detection of chemically activated fluorogenic probes that are converted from a nonfluorescent state into a highly fluorescent state through a reaction mediated at the catalyst surface. This review article describes challenges and opportunities in using such fluorogenic probes as proxies to develop structure-activity relationships in nanoscale electrocatalysts and photocatalysts. We compare single-molecule fluorescence microscopy to other microscopies for imaging catalysis in situ to highlight the distinct advantages and limitations of this technique. We describe correlative imaging between super-resolution activity maps obtained from multiple fluorogenic probes to understand the chemical origins behind spatial variations in activity that are frequently observed for nanoscale catalysts. Fluorogenic probes, originally developed for biological imaging, are introduced that can detect products such as carbon monoxide, nitrite, and ammonia, which are generated by electro- and photocatalysts for fuel production and environmental remediation. We conclude by describing how single-molecule imaging can provide mechanistic insights for a broader scope of catalytic systems, such as single-atom catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - William H. Rackers
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute
of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Peacock H, Blum SA. Surfactant Micellar and Vesicle Microenvironments and Structures under Synthetic Organic Conditions. J Am Chem Soc 2023; 145:7648-7658. [PMID: 36951303 PMCID: PMC10079647 DOI: 10.1021/jacs.3c01574] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) reveals vesicle sizes, structures, microenvironments, reagent partitioning, and system evolution with two chemical reactions for widely used surfactant-water systems under conditions relevant to organic synthesis, including during steps of Negishi cross-coupling reactions. In contrast to previous investigations, the present experiments characterize surfactant systems with representative organohalide substrates at high concentrations (0.5 M) that are reflective of the preparative-scale organic reactions performed and reported in water. In the presence of representative organic substrates, 2-iodoethylbenzene and 2-bromo-6-methoxypyridine, micelles swell into emulsion droplets that are up to 20 μm in diameter, which is 3-4 orders of magnitude larger than previously measured in the absence of an organic substrate (5-200 nm). The partitioning of reagents in these systems is imaged through FLIM─demonstrated here with nonpolar, amphiphilic, organic, basic, and oxidative-addition reactive compounds, a reactive zinc metal powder, and a palladium catalyst. FLIM characterizes the chemical species and/or provides microenvironment information inside micelles and vesicles. These data show that surfactants cause surfactant-dictated microenvironments inside smaller micelles (<200 nm) but that addition of a representative organic substrate produces internal microenvironments dictated primarily by the substrate rather than by the surfactant, concurrent with swelling. Addition of a palladium catalyst causes the internal environments to differ between vesicles─information that is not available through nor predicted from prior analytical techniques. Together, these data provide immediately actionable information for revising reaction models of surfactant-water systems that underpin the development of sustainable organic chemistry in water.
Collapse
Affiliation(s)
- Hannah Peacock
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
4
|
Yu D, Garcia A, Blum SA, Welsher KD. Growth Kinetics of Single Polymer Particles in Solution via Active-Feedback 3D Tracking. J Am Chem Soc 2022; 144:14698-14705. [PMID: 35867381 DOI: 10.1021/jacs.2c04990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ability to directly observe chemical reactions at the single-molecule and single-particle level has enabled the discovery of behaviors otherwise obscured by ensemble averaging in bulk measurements. However powerful, a common restriction of these studies to date has been the absolute requirement to surface tether or otherwise immobilize the chemical reagent/reaction of interest. This constraint arose from a fundamental limitation of conventional microscopy techniques, which could not track molecules or particles rapidly diffusing in three dimensions, as occurs in solution. However, many chemical processes occur entirely in the solution phase, leaving single-particle/-molecule analysis of this critical area of science beyond the scope of available technology. Here, we report the first kinetics studies of freely diffusing and actively growing single polymer-particles at the single-particle level freely diffusing in solution. Active-feedback single-particle tracking was used to capture three-dimensional (3D) trajectories and real-time volumetric images of freely diffusing polymer particles (D ≈ 10-12 m2/s) and extract the growth rates of individual particles in the solution phase. The observed growth rates show that the average growth rate is a poor representation of the true underlying variability in polymer-particle growth behavior. These data revealed statistically significant populations of faster- and slower-growing particles at different depths in the sample, showing emergent heterogeneity while particles are still freely diffusing in solution. These results go against the prevailing premise that chemical processes in freely diffusing solution will exhibit uniform kinetics. We anticipate that these studies will launch new directions of solution-phase, nonensemble-averaged measurements of chemical processes.
Collapse
Affiliation(s)
- Donggeng Yu
- Department of Chemistry, Duke University; Durham, North Carolina 27708, United States
| | - Antonio Garcia
- Department of Chemistry, University of California, Irvine; Irvine, California 92697, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine; Irvine, California 92697, United States
| | - Kevin D Welsher
- Department of Chemistry, Duke University; Durham, North Carolina 27708, United States
| |
Collapse
|
5
|
Saluga SJ, Dibble DJ, Blum SA. Superresolved Motions of Single Molecular Catalysts during Polymerization Show Wide Distributions. J Am Chem Soc 2022; 144:10591-10598. [PMID: 35670469 DOI: 10.1021/jacs.2c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The motion of single molecular ruthenium catalysts during and after single turnover events of ring-opening metathesis polymerization is imaged through single-molecule superresolution tracking with a positional accuracy of ±32 nm. This tracking is achieved through the real-time incorporation of spectrally tagged monomer units into active polymer chain ends during living polymerization; thus, by design, only active-catalyst motion is detected and imaged, without convolution by inactive catalysts. The catalysts show diverse individualistic diffusive behaviors with respect to time that persist for up to 20 s. Catalysts occupy three mobility populations: quasi-stationary (23%), intermediate (53%, 65 nm), and large (24%, 145 nm) step sizes. Differences in catalyst mobility populations also exist between individual aggregates (p < 0.001). Such differential motion indicates widely different local catalyst microenvironments during the catalytic turnover. These mobility differences are uniquely observable through single-catalyst microscopy and are not measurable through traditional ensemble analytical techniques for characterizing the behavior of molecular catalysts, such as nuclear magnetic resonance spectroscopy. The measured distributions of active molecular catalyst motions would not be readily predictable through modeling or first-principles, and the range likely impacts individual catalyst turnover rate and selectivity. This range plausibly contributes to property distributions observable in bulk polymers, such as molecular weight polydispersity (e.g., 1.9 in this system), leading to a revised understanding of the mechanistic, microscale origins of macroscale polymer properties.
Collapse
Affiliation(s)
- Shannon J Saluga
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - David Josh Dibble
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
6
|
|
7
|
Swart M, Marais C, Erasmus E. Comparison of the Spectroscopically Measured Catalyst Transformation and Electrochemical Properties of Grubbs' First- and Second-Generation Catalysts. ACS OMEGA 2021; 6:28642-28653. [PMID: 34746559 PMCID: PMC8567268 DOI: 10.1021/acsomega.1c03109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
According to UV-vis spectroscopy (0.10 mM, CH2Cl2 at 25 °C), the catalyst transformation (which could possibly include ligand dissociation with active catalyst formation, dimer formation, and decomposition) rate constants (k obs) of Grubbs' first (1) and second (2) generation catalysts are 7.48 × 10-5 and 1.52 × 10-4 s-1, respectively. From 31P NMR (0.1 M, CD2Cl2, at 25 °C), the catalyst transformation was 5.1% for 1 and 16.5% for 2 after 72 h. However, due to the larger concentrations of the NMR samples compared to the UV-vis samples, the extent of transformation did not correspond. The oxidation potential of the RuII/RuIII couple of 2 (E°' = 27.5 mV at v = 200 mV s-1) was considerably lower than that of 1 (E°' = 167 mV at v = 200 mV s-1). In the case of 1, a second reduction peak appeared at slow scan rates. This may probably be ascribed to an electrochemically active compound that was formed from the intermediate cation 1 •+ and the subsequent reduction of the latter. The oxidation/reduction of 1 proceeds according to an ErCi electrochemical mechanism (Er = electrochemically reversible step, Ci = chemically irreversible step), whereas 2 proceeds according to an ErCr electrochemical mechanism (Er = electrochemically reversible step, Ci = chemically reversible step).
Collapse
|
8
|
Easter QT. Biopolymer hydroxyapatite composite materials: Adding fluorescence lifetime imaging microscopy to the characterization toolkit. NANO SELECT 2021. [DOI: 10.1002/nano.202100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Quinn T. Easter
- Department of Innovation and Technology Research ADA Science & Research Institute Gaithersburg MD USA
| |
Collapse
|
9
|
|
10
|
Garcia A, Saluga SJ, Dibble DJ, López PA, Saito N, Blum SA. Does Selectivity of Molecular Catalysts Change with Time? Polymerization Imaged by Single‐Molecule Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Antonio Garcia
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Shannon J. Saluga
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - David J. Dibble
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Pía A. López
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Nozomi Saito
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Suzanne A. Blum
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| |
Collapse
|
11
|
Garcia A, Saluga SJ, Dibble DJ, López PA, Saito N, Blum SA. Does Selectivity of Molecular Catalysts Change with Time? Polymerization Imaged by Single‐Molecule Spectroscopy. Angew Chem Int Ed Engl 2020; 60:1550-1555. [DOI: 10.1002/anie.202010101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/03/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Antonio Garcia
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Shannon J. Saluga
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - David J. Dibble
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Pía A. López
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Nozomi Saito
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Suzanne A. Blum
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| |
Collapse
|
12
|
Mai DJ, Schroeder CM. 100th Anniversary of Macromolecular Science Viewpoint: Single-Molecule Studies of Synthetic Polymers. ACS Macro Lett 2020; 9:1332-1341. [PMID: 35638639 DOI: 10.1021/acsmacrolett.0c00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Single polymer studies have revealed unexpected and heterogeneous dynamics among identical or seemingly similar macromolecules. In recent years, direct observation of single polymers has uncovered broad distributions in molecular behavior that play a key role in determining bulk properties. Early single polymer experiments focused primarily on biological macromolecules such as DNA, but recent advances in synthesis, imaging, and force spectroscopy have enabled broad exploration of chemically diverse polymer systems. In this Viewpoint, we discuss the recent study of synthetic polymers using single-molecule methods. In terms of polymer synthesis, direct observation of single chain polymerization has revealed heterogeneity in monomer insertion events at catalytic centers and decoupling of local and global growth kinetics. In terms of single polymer visualization, recent advances in super-resolution imaging, atomic force microscopy (AFM), and liquid-cell transmission electron microscopy (LC-TEM) can resolve structure and dynamics in single synthetic chains. Moreover, single synthetic polymers can be probed in the context of bulk material environments, including hydrogels, nanostructured polymers, and crystalline polymers. In each area, we highlight key challenges and exciting opportunities in using single polymer techniques to enhance our understanding of polymer science. Overall, the expanding versatility of single polymer methods will enable the molecular-scale design and fundamental understanding of a broad range of chemically diverse and functional polymeric materials.
Collapse
Affiliation(s)
- Danielle J. Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Charles M. Schroeder
- Department of Materials Science and Engineering, Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Peng L, Zeng X, Qi Q, Zhang H, Fu J, Zhou M, Yuan J. Sialic acid–targeted drug delivery and imaging system for pH- and glutathione-triggered multiple anticancer drug release and enhanced oxidative stress. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520913913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The emergence of multiple drug delivery systems can solve the disadvantages of single-drug therapy, such as high dose and easy generation of drug resistance. Here, we designed a sialic acid–targeted dextran-mercaptopurine prodrug linked by carbonyl vinyl sulfide for coordinate ZnO quantum dots to achieve multiple drug delivery (doxorubicin, 5-fluorouracil, 6-mercaptopurine), which can be released under the trigger of pH and glutathione. To enhance the antitumor effect, we used inorganic photosensitizer CdSe quantum dots to achieve photodynamic therapy, which can produce cytotoxic reactive oxygen species (hydroxyl radicals) under light conditions. Notably, we found that glutathione is consumed by the delivery of 6-mercaptopurine. It is able to efficiently amplify intracellular oxidative stress via increasing •OH generation. After chelating 99mTc4+ radioisotopes by diethylenetriamine pentaacetic acid, the drug delivery system could be tracked under in vivo single-photon emission computed tomography imaging. The results showed that the phenylboronic acid targeting substance can specifically recognize sialic acid, so that the drug system has a good accumulation in the tumor site, which can better increase the therapeutic effect. Compared to free doxorubicin, the drug system can reduce the IC50 value of cells 4.4-fold under light conditions and significantly inhibit tumor growth in vivo. These data indicate that the sialic acid–targeted nanomedicine system has achieved ideal antitumor effects and apparent photodynamic therapy effects and has broad application prospects.
Collapse
Affiliation(s)
- Licong Peng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Xianwu Zeng
- Department of Nuclear Medicine, Gansu Academy of Medical Sciences, Gansu Provincial Tumor Hospital, Lanzhou, China
| | - Qianqian Qi
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Hailiang Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Jinping Fu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Miao Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Jianchao Yuan
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| |
Collapse
|
14
|
Menges JA, Grandjean A, Clasen A, Jung G. Kinetics of Palladium(0)‐Allyl Interactions in the Tsuji‐Trost Reaction, derived from Single‐Molecule Fluorescence Microscopy. ChemCatChem 2020. [DOI: 10.1002/cctc.202000032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Johannes A. Menges
- Department of Biophysical Chemistry Saarland University Building B2 2 66123 Saarbrücken Germany
| | - Alexander Grandjean
- Department of Biophysical Chemistry Saarland University Building B2 2 66123 Saarbrücken Germany
| | - Anne Clasen
- Department of Biophysical Chemistry Saarland University Building B2 2 66123 Saarbrücken Germany
| | - Gregor Jung
- Department of Biophysical Chemistry Saarland University Building B2 2 66123 Saarbrücken Germany
| |
Collapse
|
15
|
Forcina V, García-Domínguez A, Lloyd-Jones GC. Kinetics of initiation of the third generation Grubbs metathesis catalyst: convergent associative and dissociative pathways. Faraday Discuss 2019; 220:179-195. [PMID: 31531438 DOI: 10.1039/c9fd00043g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics of the nominally irreversible reaction of the third generation Grubbs catalyst G-III-Br (4.6 μM) with ethyl vinyl ether (EVE) in toluene at 5 °C have been re-visited. There is a rapid equilibrium between the bispyridyl form of G-III-Br, 1, and its monopyridyl form, 2 (K ≈ 0.001 M). The empirical rate constants (kobs.) for the reaction with EVE, determined UV-vis spectrophotometrically under optimised anaerobic stopped-flow conditions, are found by testing the quality of fit of a series of steady-state approximations. The kinetics do not correlate with solely dissociative or associative pathways, but do correlate with a mechanism where these pathways converge at an alkene complex primed to undergo metathesis. In the presence of traces of air there is a marked increased in the rate of decay of G-III-Br due to competing oxidation to yield benzaldehyde; a process that appears to be very efficiently catalysed by trace metal contaminants. The apparent acceleration of the initiation process may account for the rates determined herein being over an order of magnitude lower than previously estimated.
Collapse
Affiliation(s)
- Veronica Forcina
- EaStChem, School of Chemistry, Joseph Black Building, David Brewster Road, EH9 3FJ, Edinburgh, UK.
| | | | | |
Collapse
|
16
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Easter QT, Blum SA. Organic and Organometallic Chemistry at the Single-Molecule, -Particle, and -Molecular-Catalyst-Turnover Level by Fluorescence Microscopy. Acc Chem Res 2019; 52:2244-2255. [PMID: 31310095 DOI: 10.1021/acs.accounts.9b00219] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mechanistic studies have historically played a key role in the discovery and optimization of reactions in organic and organometallic chemistry. However, even apparently simple organic and organometallic transformations may have surprisingly complicated multistep mechanisms, increasing the difficulty of extracting this mechanistic information. The resulting reaction intermediates often constitute a small fraction of the total reaction mixture, for example, creating a long-term analytical challenge of detection. This challenge is particularly pronounced in cases where the positions of intermediates on the reaction energy surface mean that they do not "build up" to the quantities needed for observation by traditional ensemble analytical tools. Thus, their existence and single-step elementary reactivity cannot be studied directly. New approaches for obtaining this otherwise-missing mechanistic information are therefore needed. Single-turnover, single-molecule, single-particle, and other subensemble fluorescence microscopy techniques are ideally suited for this role because of their sensitivity and spatiotemporal resolution. Inspired by the robust development of single-molecule fluorescence microscopy tools for studying enzyme catalysis, our laboratory has developed analogous fluorescence microscopy techniques to overcome mechanistic challenges in synthetic chemistry, with sensitivity as high as the single-complex, single-turnover, and single-molecule level. These techniques free the experimenter from the previous restriction that intermediates must "build up" to quantities needed for detection by ensemble analytical tools and are suited to systems where synchronization through flash photolysis or stopped flow would be inconvenient or inaccessible. In this process, the techniques transform certain previously "unobservable" intermediates and their elementary single-step reactivities into "observable" ones through sensitive and selective spectral handles. Our program has focused on imaging reactions in small-molecule, organic, and polymer synthetic chemistry with an accent on the reactivity of molecular transition metal complexes and catalysts. Our laboratory initiated studies in this area in 2008 with the imaging of individual palladium complexes that were tagged with spectator fluorophores. To enable imaging, we started with fluorophore selection and development, overcame challenges with imaging in organic solvents, and developed strategies compatible with air-sensitive chemistry and concentrations of reagents generally used in small-molecule synthesis. These studies grew to include characterization of previously unknown organometallic intermediates in the synthesis of organozinc reagents and the direct study of their elementary-step reactivity. The ability to directly observe this behavior generated predictive power for selecting salts that accelerated organozinc reagent formation in synthesis, including salts that had not yet been reported synthetically. In 2017 we also developed the first single-turnover imaging of molecular (chemo)catalysts, which through the technique's spatiotemporal resolution revealed abruptly time-variable polymerization kinetics wherein molecular ruthenium ring-opening metathesis polymerization (ROMP) catalysts changed rates independently from other catalysts less than 1 μm away. Individual catalytic turnovers, each corresponding to one single-chain-elongation reaction arising from insertion of single ROMP or enyne monomers at individual Grubbs II molecular ruthenium catalysts, were spatiotemporally resolved as green flashes in growing polymers. In this Account, we discuss the development of this technique from idea to application, including challenges overcome and strategies created to image synthetic organic and organometallic molecular chemistry at the highest levels of detection sensitivity. We also describe challenges not yet solved and provide an outlook for this growing field at the intersection of microscopy and synthetic/molecular chemistry.
Collapse
Affiliation(s)
- Quinn T. Easter
- Department of Chemistry, University of California, Irvine, California 92697−2025, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, California 92697−2025, United States
| |
Collapse
|
18
|
Easter QT, Garcia A, Blum SA. Single-Polymer–Particle Growth Kinetics with Molecular Catalyst Speciation and Single-Turnover Imaging. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Quinn T. Easter
- Department of Chemistry, University of California, Irvine, Irvine, California 92697−2925, United States
| | - Antonio Garcia
- Department of Chemistry, University of California, Irvine, Irvine, California 92697−2925, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697−2925, United States
| |
Collapse
|
19
|
Coceancigh H, Higgins DA, Ito T. Optical Microscopic Techniques for Synthetic Polymer Characterization. Anal Chem 2018; 91:405-424. [PMID: 30350610 DOI: 10.1021/acs.analchem.8b04694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Herman Coceancigh
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| | - Daniel A Higgins
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| | - Takashi Ito
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| |
Collapse
|