1
|
Hu ZF, Zhong K, Cao H. Recent advances in enzymatic and chemoenzymatic synthesis of N- and O-glycans. Curr Opin Chem Biol 2024; 78:102417. [PMID: 38141531 DOI: 10.1016/j.cbpa.2023.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Glycosylation is one of the most common post-translational modifications of proteins, which plays essential roles in regulating the biological functions of proteins. Efficient and versatile methods for the synthesis of homogeneous and well-defined N- and O-glycans remain an urgent need for biological studies and biomedical applications. Despite their structural complexity, tremendous progress has been made in the synthesis of N- and O-glycans in recent years. This review discusses some recent advances in the enzymatic and chemoenzymatic synthesis of N- and O-glycans.
Collapse
Affiliation(s)
- Zhi-Fei Hu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Kan Zhong
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Fukase K, Manabe Y, Shimoyama A. Diacetyl strategy for synthesis of NHAc containing glycans: enhancing glycosylation reactivity via diacetyl imide protection. Front Chem 2023; 11:1319883. [PMID: 38116104 PMCID: PMC10728286 DOI: 10.3389/fchem.2023.1319883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
The presence of NHAc groups in the substrates (both glycosyl donors and acceptors) significantly reduced the reactivity of glycosylation. This decrease was attributed to the NHAc groups forming intermolecular hydrogen bonds by the NHAc groups, thereby reducing molecular mobility. Hence, a diacetyl strategy involving the temporary conversion of NHAc to diacetyl imide (NAc2) was developed for the synthesis of NHAc-containing glycans. This strategy has two significant advantages for oligosaccharide synthesis. The NAc2 protection of NHAc substantially enhances the rate of glycosylation reactions, resulting in improved yields. Moreover, NAc2 can be readily reverted to NHAc by the simple removal of one acetyl group under mild basic conditions, obviating the necessity for treating the polar amino group. We have achieved the efficient synthesis of oligosaccharides containing GlcNHAc and N-glycans containing sialic acid using the diacetyl strategy.
Collapse
Affiliation(s)
- Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Abstract
The structural complexity of glycans poses a serious challenge in the chemical synthesis of glycosides, oligosaccharides and glycoconjugates. Glycan complexity, determined by composition, connectivity, and configuration far exceeds what nature achieves with nucleic acids and proteins. Consequently, glycoside synthesis ranks among the most complex tasks in organic synthesis, despite involving only a simple type of bond-forming reaction. Here, we introduce the fundamental principles of glycoside bond formation and summarize recent advances in glycoside bond formation and oligosaccharide synthesis.
Collapse
Affiliation(s)
- Conor J Crawford
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
4
|
Shirakawa A, Manabe Y, Marchetti R, Yano K, Masui S, Silipo A, Molinaro A, Fukase K. Chemical Synthesis of Sialyl
N
‐Glycans and Analysis of Their Recognition by Neuraminidase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Asuka Shirakawa
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Roberta Marchetti
- Department of Chemical Science University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Kumpei Yano
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Seiji Masui
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Alba Silipo
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Department of Chemical Science University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Antonio Molinaro
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Department of Chemical Science University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Koichi Fukase
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
5
|
Shirakawa A, Manabe Y, Marchetti R, Yano K, Masui S, Silipo A, Molinaro A, Fukase K. Chemical Synthesis of Sialyl N-Glycans and Analysis of Their Recognition by Neuraminidase. Angew Chem Int Ed Engl 2021; 60:24686-24693. [PMID: 34520098 DOI: 10.1002/anie.202111035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/07/2022]
Abstract
The chemical synthesis of a fully sialylated tetraantennary N-glycan has been achieved for the first time by using the diacetyl strategy, in which NHAc is protected as NAc2 to improve reactivity by preventing intermolecular hydrogen bonds. Another key was the glycosylation to the branched mannose in an ether solvent, which promoted the desired glycosylation by stabilizing the oxocarbenium ion intermediate. Furthermore, high α-selectivity of these glycosylation reactions was realized by utilizing remote participation. Two asymmetrically deuterium labeled sialyl N-glycans were also synthesized by the same strategy. The synthesized N-glycans were used to probe the molecular basis of H1N1 neuraminidase recognition. The asymmetrically deuterated N-glycans revealed a difference in the recognition of sialic acid on each branch. Meanwhile, the tetraantennary N-glycan was used to evaluate the effects of multivalency and steric hinderance by forming branching structures.
Collapse
Affiliation(s)
- Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Roberta Marchetti
- Department of Chemical Science, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Kumpei Yano
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Seiji Masui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Alba Silipo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Department of Chemical Science, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Antonio Molinaro
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Department of Chemical Science, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
6
|
Manabe Y. Chemical Biology Study on N-glycans. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2109.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University
| |
Collapse
|
7
|
Manabe Y. Chemical Biology Study on N-glycans. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2109.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University
| |
Collapse
|
8
|
Shirakawa A, Manabe Y, Fukase K. Recent Advances in the Chemical Biology of N-Glycans. Molecules 2021; 26:molecules26041040. [PMID: 33669465 PMCID: PMC7920464 DOI: 10.3390/molecules26041040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
Asparagine-linked N-glycans on proteins have diverse structures, and their functions vary according to their structures. In recent years, it has become possible to obtain high quantities of N-glycans via isolation and chemical/enzymatic/chemoenzymatic synthesis. This has allowed for progress in the elucidation of N-glycan functions at the molecular level. Interaction analyses with lectins by glycan arrays or nuclear magnetic resonance (NMR) using various N-glycans have revealed the molecular basis for the recognition of complex structures of N-glycans. Preparation of proteins modified with homogeneous N-glycans revealed the influence of N-glycan modifications on protein functions. Furthermore, N-glycans have potential applications in drug development. This review discusses recent advances in the chemical biology of N-glycans.
Collapse
Affiliation(s)
- Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| |
Collapse
|
9
|
Zhao MM, Zhang H, Iimura S, Bednarz MS, Song QL, Lim NK, Yan J, Wu W, Dai K, Gu X, Wang Y. Process Development of Sotagliflozin, a Dual Inhibitor of Sodium–Glucose Cotransporter-1/2 for the Treatment of Diabetes. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Matthew M. Zhao
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Haiming Zhang
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Shinya Iimura
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Mark S. Bednarz
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Qiu-Ling Song
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Ngiap-Kie Lim
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Jie Yan
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Wenxue Wu
- Chemical Development, Lexicon Pharmaceuticals Incorporation, 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Kuangchu Dai
- Process R&D, WuXi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaodong Gu
- Process R&D, WuXi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Youchu Wang
- Process R&D, WuXi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
10
|
Weiss M, Ott D, Karagiannis T, Weishaupt M, Niemietz M, Eller S, Lott M, Martínez-Orts M, Canales Á, Razi N, Paulson JC, Unverzagt C. Efficient Chemoenzymatic Synthesis of N-Glycans with a β1,4-Galactosylated Bisecting GlcNAc Motif. Chembiochem 2020; 21:3212-3215. [PMID: 32597008 PMCID: PMC7723014 DOI: 10.1002/cbic.202000268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Indexed: 12/29/2022]
Abstract
In human serum immunoglobulin G (IgG), a rare modification of biantennary complex N‐glycans lead to a β1,4‐galactosylated bisecting GlcNAc branch. We found that the bisecting GlcNAc on a biantennary core‐fucosylated N‐glycan was enzymatically galactosylated under stringent reaction conditions. Further optimizations led to an efficient enzymatic approach to this particular modification for biantennary substrates. Notably, tri‐ and tetra‐antennary complex N‐glycans were not converted by bovine galactosyltransferase. An N‐glycan with a galactosylated bisecting GlcNAc was linked to a lanthanide binding tag. The pseudo‐contact shifts (PCS) obtained from the corresponding Dy‐complex were used to calculate the conformational preferences of the rare N‐glycan. Besides two extended conformations only a single folded conformation was found.
Collapse
Affiliation(s)
- Michael Weiss
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Dimitri Ott
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Theodoros Karagiannis
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Markus Weishaupt
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Mathäus Niemietz
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Steffen Eller
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Marie Lott
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Mónica Martínez-Orts
- Dpto. Química Orgánica I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, 28040, Madrid, Spain
| | - Ángeles Canales
- Dpto. Química Orgánica I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, 28040, Madrid, Spain
| | - Nahid Razi
- Depts. of Molecular Medicine, and Immunology and Microbiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - James C Paulson
- Depts. of Molecular Medicine, and Immunology and Microbiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Carlo Unverzagt
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| |
Collapse
|
11
|
Abronina PI, Zinin AI, Chizhov AO, Kononov LO. Unusual Outcome of Glycosylation: Hydrogen‐Bond Mediated Control of Stereoselectivity by
N
‐Trifluoroacetyl Group? European J Org Chem 2020. [DOI: 10.1002/ejoc.202000520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Polina I. Abronina
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander I. Zinin
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander O. Chizhov
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Leonid O. Kononov
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
12
|
Tomida H, Matsuhashi T, Tanaka HN, Komura N, Ando H, Imamura A, Ishida H. Indirect synthetic route to α-l-fucosides via highly stereoselective construction of α-l-galactosides followed by C6-deoxygenation. Org Biomol Chem 2020; 18:5017-5033. [PMID: 32573638 DOI: 10.1039/d0ob01128b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed an indirect synthetic method for α-l-fucosides. Based on the fact that l-fucose is 6-deoxy-l-galactose, our strategy consists of the stereoselective construction of α-l-galactoside and its conversion to α-l-fucoside via C6-deoxygenation. The formation of α-l-galactoside is strongly directed using 4,6-O-di-tert-butylsilylene(DTBS)-protected l-galactosyl donors. The DTBS-directed α-l-galactosylation showed broad substrate applicability along with excellent coupling yield and α-selectivity. In the C6-deoxygenation of α-l-galactosides, the Barton-McCombie reaction facilitated the conversion to l-fucosides with good yield. To demonstrate the applicability of our method, we synthesized naturally occurring α-l-fucosides.
Collapse
Affiliation(s)
- Hirotaka Tomida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Takuya Matsuhashi
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Hide-Nori Tanaka
- Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan. and Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
13
|
Chen Q, Tan Z, Guan F, Ren Y. The Essential Functions and Detection of Bisecting GlcNAc in Cell Biology. Front Chem 2020; 8:511. [PMID: 32719771 PMCID: PMC7350706 DOI: 10.3389/fchem.2020.00511] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
The N-glycans of mammalian glycoproteins vary greatly in structure, and the biological importance of these variations is mostly unknown. It is widely acknowledged that the bisecting N-acetylglucosamine (GlcNAc) structure, a β1,4-linked GlcNAc attached to the core β-mannose residue, represents a special type of N-glycosylated modification, and it has been reported to be involved in various biological processes, such as cell adhesion, fertilization and fetal development, neuritogenesis, and tumor development. In particular, the occurrence of N-glycans with a bisecting GlcNAc modification on proteins has been proven, with many implications for immune biology. Due to the essential functions of bisecting GlcNAc structures, analytical approaches to this modification are highly required. The traditional approach that has been used for bisecting GlcNAc determinations is based on the lectin recognition of Phaseolus vulgaris erythroagglutinin (PHA-E); however, poor binding specificity hinders the application of this method. With the development of mass spectrometry (MS) with high resolution and improved sensitivity and accuracy, MS-based glycomic analysis has provided precise characterization and quantification for glycosylation modification. In this review, we first provide an overview of the bisecting GlcNAc structure and its biological importance in neurological systems, immune tolerance, immunoglobulin G (IgG), and tumor metastasis and development and then summarize approaches to its determination by MS for performing precise functional studies. This review is valuable for those readers who are interested in the importance of bisecting GlcNAc in cell biology.
Collapse
Affiliation(s)
- Qiushi Chen
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Zengqi Tan
- Joint International Research Laboratory of Glycobiology and Medical Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Guan
- Joint International Research Laboratory of Glycobiology and Medical Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Yan Ren
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Protein Chemistry Looking Ahead: 8 th Chemical Protein Synthesis Meeting 16-19 June 2019, Berlin, Germany. Cell Chem Biol 2019; 26:1349-1354. [PMID: 31626782 DOI: 10.1016/j.chembiol.2019.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/29/2019] [Accepted: 09/17/2019] [Indexed: 11/22/2022]
Abstract
The 8th Chemical Protein Synthesis meeting took place in Berlin in June 2019, covering broad topics in protein chemistry, ranging from synthetic methodology to applications in medicine and biomaterials. The meeting was also the culmination of the Priority Program SPP1623 on "Chemoselective Reactions for the Synthesis and Application of Functional Proteins" funded by the German Science Foundation (DFG) from 2012 to 2018. We present highlights from presentations at the forefront of the field, grouped into broad themes that illustrate how the field of protein chemistry is looking ahead to new discoveries and applications.
Collapse
|
15
|
Abstract
The translation of biological glycosylation in humans to the clinical applications involves systematic studies using homogeneous samples of oligosaccharides and glycoconjugates, which could be accessed by chemical, enzymatic or other biological methods. However, the structural complexity and wide-range variations of glycans and their conjugates represent a major challenge in the synthesis of this class of biomolecules. To help navigate within many methods of oligosaccharide synthesis, this Perspective offers a critical assessment of the most promising synthetic strategies with an eye on the therapeutically relevant targets.
Collapse
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States.,Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|