1
|
Mu BS, Zhang Y, Peng M, Tu Z, Guo Z, Shen S, Xu Y, Liang W, Wang X, Wang M, Ma D, Liu Z. Radiocatalytic Synthesis of Acetic Acid from CH 4 and CO 2. Angew Chem Int Ed Engl 2024; 63:e202407443. [PMID: 39058370 DOI: 10.1002/anie.202407443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
The C-C coupling of methane (CH4) and carbon dioxide (CO2) to generate acetic acid (CH3COOH) represents a highly atom-efficient chemical conversion, fostering the comprehensive utilization of greenhouse gases. However, the inherent thermodynamic stability and kinetic inertness of CH4 and CO2 present obstacles to achieving efficient and selective conversion at room temperature. Our study reveals that hydroxyl radicals (⋅OH) and hydrated electrons (eaq -) produced by water radiolysis can effectively activate CH4 and CO2, yielding methyl radicals (⋅CH3) and carbon dioxide radical anions(⋅CO2 -) that facilitate the production of CH3COOH at ambient temperature. The introduction of radiation-synthesized CuO-anchored TiO2 bifunctional catalyst could further enhance reaction efficiency and selectivity remarkably by boosting radiation absorption and radical stability, resulting in a concentration of 7.1 mmol ⋅ L-1 of CH3COOH with near-unity selectivity (>95 %). These findings offer valuable insights for catalyst design and implementation in radiation-induced chemical conversion.
Collapse
Affiliation(s)
- Bo-Shuai Mu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yugang Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhiyu Tu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhenbo Guo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Weiqiu Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xianglin Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking University-Tsinghua University Center for Life Sciences, Peking University, 100871, Beijing, China
- Changping Laboratory, 102206, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| |
Collapse
|
2
|
Zhao XG, Zhao YX, Liu QY, He SG. Dry Reforming of Methane to Syngas Mediated by Rhodium-Cobalt Oxide Cluster Anions Rh 2CoO . J Phys Chem Lett 2024; 15:9167-9174. [PMID: 39213481 DOI: 10.1021/acs.jpclett.4c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Dry reforming of methane (DRM) to syngas is an important route to co-convert CH4 and CO2. However, the highly endothermic nature of DRM induces the thermocatalysis to commonly operate at high temperatures that inevitably causes coke deposition through pyrolysis of methane. Herein, benefiting from the mass spectrometric experiments complemented with quantum chemical calculations, we have discovered that the bimetallic oxide cluster Rh2CoO- can mediate the co-conversion of CH4 and CO2 at room temperature giving rise to two free H2 molecules and two adsorbed CO molecules (COads). The only elementary step requiring the input of external energy (e.g., high temperature) is desorption of COads from the reaction intermediate Rh2CoOC2O2-. The doping effect of Co has also been clarified that the Co could tune the charge distribution and orbital energy of the active metal Rh, enabling the enhancement of cluster reactivity toward C-H activation, which is essential to facilitating the DRM to syngas. This work not only underlines the importance of temperature control over elementary steps in practical thermocatalysis but also identifies a promising active species containing the late 3d transition metal to drive DRM to syngas. The findings could provide novel insights into design of bimetallic catalysts for co-conversion of CH4 and CO2 at low temperatures.
Collapse
Affiliation(s)
- Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
3
|
Zhang FX, Wang M, Ma JB. Conversion of Carbon Dioxide into a Series of CB xO y- Compounds Mediated by LaB 3,4O 2- Anions: Synergy of the Electron Transfer and Lewis Pair Mechanisms to Construct B-C Bonds. Inorg Chem 2024; 63:14206-14215. [PMID: 39012836 DOI: 10.1021/acs.inorgchem.4c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Converting CO2 into value-added products containing B-C bonds is a great challenge, especially for multiple B-C bonds, which are versatile building blocks for organoborane chemistry. In the condensed phase, the B-C bond is typically formed through transition metal-catalyzed direct borylation of hydrocarbons via C-H bond activation or transition metal-catalyzed insertion of carbenes into B-H bonds. However, excessive amounts of powerful boryl reagents are required, and products containing B-C bonds are complex. Herein, a novel method to construct multiple B-C bonds at room temperature is proposed by the gas-phase reactions of CO2 with LaBmOn- (m = 1-4, n = 1 or 2). Mass spectrometry and density functional theory calculations are applied to investigate these reactions, and a series of new compounds, CB2O2-, CB3O3-, and CB3O2-, which possess B-C bonds, are generated in the reactions of LaB3,4O2- with CO2. When the number of B atoms in the clusters is reduced to 2 or 1, there is only CO-releasing channel, and no CBxOy- compounds are released. Two major factors are responsible for this quite intriguing reactivity: (1) Synergy of electron transfer and boron-boron Lewis acid-base pair mechanisms facilitates the rupture of C═O double bond in CO2. (2) The boron sites in the clusters can efficiently capture the newly formed CO units in the course of reactions, favoring the formation of B-C bonds. This finding may provide fundamental insights into the CO2 transformation driven by clusters containing lanthanide atoms and how to efficiently build B-C bonds under room temperature.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
4
|
Wang M, Zhang FX, Chen ZY, Ma JB. Activation and Transformation of Methane on Boron-Doped Cobalt Oxide Cluster Cations CoBO 2. Inorg Chem 2024; 63:1537-1542. [PMID: 38181068 DOI: 10.1021/acs.inorgchem.3c03112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The cleavage of inert C-H bonds in methane at room temperature and the subsequent conversion into value-added products are quite challenging. Herein, the reactivity of boron-doped cobalt oxide cluster cations CoBO2+ toward methane under thermal collision conditions was studied by mass spectrometry experiments and quantum-chemical calculations. In this reaction, one H atom and the CH3 unit of methane were transformed separately to generate the product metaboric acid (HBO2) and one CoCH3+ ion, respectively. Theoretical calculations strongly suggest that a catalytic cycle can be completed by the recovery of CoBO2+ through the reaction of CoCH3+ with sodium perborate (NaBO3), and this reaction generates sodium methoxide (CH3ONa) as the other value-added product. This study shows that boron-doped cobalt oxide species are highly reactive to facilitate thermal methane transformation and may open a way to develop more effective approaches for methane (CH4) activation and conversion under mild conditions.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Feng-Xiang Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Zhi-Ying Chen
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
5
|
Lengyel J, Levin N, Ončák M, Jakob K, Tschurl M, Heiz U. Direct Coupling of Methane and Carbon Dioxide on Tantalum Cluster Cations. Chemistry 2023; 29:e202203259. [PMID: 36404276 PMCID: PMC10107500 DOI: 10.1002/chem.202203259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Understanding molecular-scale reaction mechanisms is crucial for the design of modern catalysts with industrial prospect. Through joint experimental and computational studies, we investigate the direct coupling reaction of CH4 and CO2 , two abundant greenhouse gases, mediated by Ta1,4 + ions to form larger oxygenated hydrocarbons. Coherent with proposed elementary steps, we expose products of CH4 dehydrogenation [Ta1,4 CH2 ]+ to CO2 in a ring electrode ion trap. Product analysis and reaction kinetics indicate a predisposition of the tetramers for C-O coupling with a conversion to products of CH2 O, whereas atomic cations enable C-C coupling yielding CH2 CO. Selected experimental findings are supported by thermodynamic computations, connecting structure, electronic properties, and catalyst function. Moreover, the study of bare Ta1,4 + compounds indicates that methane dehydrogenation is a significant initial step in the direct coupling reaction, enabling new, yet unknown reaction pathways.
Collapse
Affiliation(s)
- Jozef Lengyel
- Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Nikita Levin
- Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria
| | - Konstantin Jakob
- Lehrstuhl für Theoretische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Martin Tschurl
- Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Ueli Heiz
- Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
6
|
Chen Z, Wang M, Ma J. Plasma‐Assisted Coupling Reactions of Dinitrogen and Carbon Dioxide Mediated by Monometallic YB
1–4
−
⋅Anions: Carbon−Nitrogen Bond Formation. Chemistry 2022; 28:e202201170. [DOI: 10.1002/chem.202201170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zhi‐Ying Chen
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology 102488 Beijing P. R. China
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology 102488 Beijing P. R. China
| | - Jia‐Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology 102488 Beijing P. R. China
| |
Collapse
|
7
|
Merriles DM, Morse MD. Ionization Energies and Cationic Bond Dissociation Energies of RuB, RhB, OsB, IrB, and PtB. J Chem Phys 2022; 157:074303. [DOI: 10.1063/5.0107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-photon ionization thresholds of RuB, RhB, OsB, IrB, and PtB have been measured using resonant two-photon ionization spectroscopy in a jet-cooled molecular beam and have been used to derive the adiabatic ionization energies of these molecules. From the measured two-photon ionization thresholds, IE(RuB) = 7.879(9) eV, IE(RhB) = 8.234(10) eV, IE(OsB) = 7.955(9) eV, IE(IrB) = 8.301(15) eV, and IE(PtB) = 8.524(10) eV have been assigned. By employing a thermochemical cycle, cationic bond dissociation energies of these molecules have also been derived, giving D0(Ru+-B) = 4.297(9) eV, D0(Rh+-B) = 4.477(10) eV, D0(Os-B+) = 4.721(9) eV, D0(Ir-B+) = 4.925(18) eV, and D0(Pt-B+) = 5.009(10) eV. The electronic structure of the resulting cationic transition metal monoborides (MB+) have been elucidated using quantum chemical calculations. Periodic trends of the MB+ molecules and comparisons to their neutral counterparts are discussed. The possibility of quadruple chemical bonds in all of these cationic transition metal monoborides is also discussed.
Collapse
Affiliation(s)
| | - Michael D. Morse
- Department of Chemistry, University of Utah, United States of America
| |
Collapse
|
8
|
Liu YZ, Chen JJ, Mou LH, Liu QY, Li ZY, Li XN, He SG. Reverse water-gas shift reaction catalyzed by diatomic rhodium anions. Phys Chem Chem Phys 2022; 24:14616-14622. [PMID: 35670100 DOI: 10.1039/d2cp00472k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reverse water-gas shift (RWGS, CO2 + H2 → CO + H2O, ΔH298 = +0.44 eV) reaction mediated by the diatomic anion Rh2- was successfully constructed. The generation of a gas-phase H2O molecule and ion product [Rh2(CO)ads]- was identified unambiguously at room temperature and the only elementary step that requires extra energy to complete the catalysis is the desorption of CO from [Rh2(CO)ads]-. This experimentally identified Rh2- anion represents the first gas-phase species that can drive the RWGS reaction because it is challenging to design effective routes to yield H2O from CO2 and H2. The reactions were performed by using our newly developed double ion trap reactors and characterized by mass spectrometry, photoelectron spectroscopy, and high-level quantum-chemical calculations. We found that the order that the reactants (CO2 or D2) were fed into the reactor did not have a pronounced impact on the reactivity and the final product distribution (D2O and Rh2CO-). The atomically precise insights into the key steps to guide the reaction toward the RWGS direction were provided.
Collapse
Affiliation(s)
- Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Yang Y, Zhao Y, He S. Conversion of CH
4
Catalyzed by Gas Phase Ions Containing Metals. Chemistry 2022; 28:e202200062. [DOI: 10.1002/chem.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yuan Yang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
10
|
Computational Studies of Coinage Metal Anion M - + CH 3X (X = F, Cl, Br, I) Reactions in Gas Phase. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010307. [PMID: 35011542 PMCID: PMC8746851 DOI: 10.3390/molecules27010307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/03/2022]
Abstract
We characterized the stationary points along the nucleophilic substitution (SN2), oxidative insertion (OI), halogen abstraction (XA), and proton transfer (PT) product channels of M− + CH3X (M = Cu, Ag, Au; X = F, Cl, Br, I) reactions using the CCSD(T)/aug-cc-pVTZ level of theory. In general, the reaction energies follow the order of PT > XA > SN2 > OI. The OI channel that results in oxidative insertion complex [CH3–M–X]− is most exothermic, and can be formed through a front-side attack of M on the C-X bond via a high transition state OxTS or through a SN2-mediated halogen rearrangement path via a much lower transition state invTS. The order of OxTS > invTS is inverted when changing M− to Pd, a d10 metal, because the symmetry of their HOMO orbital is different. The back-side attack SN2 pathway proceeds via typical Walden-inversion transition state that connects to pre- and post-reaction complexes. For X = Cl/Br/I, the invSN2-TS’s are, in general, submerged. The shape of this M− + CH3X SN2 PES is flatter as compared to that of a main-group base like F− + CH3X, whose PES has a double-well shape. When X = Br/I, a linear halogen-bonded complex [CH3−X∙··M]− can be formed as an intermediate upon the front-side attachment of M on the halogen atom X, and it either dissociates to CH3 + MX− through halogen abstraction or bends the C-X-M angle to continue the back-side SN2 path. Natural bond orbital analysis shows a polar covalent M−X bond is formed within oxidative insertion complex [CH3–M–X]−, whereas a noncovalent M–X halogen-bond interaction exists for the [CH3–X∙··M]− complex. This work explores competing channels of the M− + CH3X reaction in the gas phase and the potential energy surface is useful in understanding the dynamic behavior of the title and analogous reactions.
Collapse
|
11
|
Chu LY, Wang M, Ma JB. Conversion of carbon dioxide to a novel molecule NCNBO - mediated by NbBN 2- anions at room temperature. Phys Chem Chem Phys 2021; 23:22613-22619. [PMID: 34596195 DOI: 10.1039/d1cp03613k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activation of carbon dioxide (CO2) mediated by NbBN2- cluster anions under the conditions of thermal collision has been investigated by time-of-flight mass spectrometry combined with density functional theory calculations. Two CO double bonds in the CO2 molecule are completely broken and two C-N bonds are further generated to form the novel molecule NCNBO-. To the best of our knowledge, this new molecule is synthesized and reported for the first time. In addition, one oxygen atom transfer channel produces another product, NbBN2O-. Both of the Nb and B atoms in NbBN2- donate electrons to reduce CO2, and the carbon atom originating from CO2 serves as an electron reservoir. The reaction of NbB- with N2 was also investigated theoretically, and the formation of NbBN2- from this reaction is thermodynamically and kinetically quite favorable, indicating that NCNBO- might be produced from the coupling of N2 and CO2 mediated by NbB- anions.
Collapse
Affiliation(s)
- Lan-Ye Chu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| |
Collapse
|
12
|
Zhao YX, Zhao XG, Yang Y, Ruan M, He SG. Rhodium chemistry: A gas phase cluster study. J Chem Phys 2021; 154:180901. [PMID: 34241019 DOI: 10.1063/5.0046529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the extraordinary catalytic activity in redox reactions, the noble metal, rhodium, has substantial industrial and laboratory applications in the production of value-added chemicals, synthesis of biomedicine, removal of automotive exhaust gas, and so on. The main drawback of rhodium catalysts is its high-cost, so it is of great importance to maximize the atomic efficiency of the precious metal by recognizing the structure-activity relationship of catalytically active sites and clarifying the root cause of the exceptional performance. This Perspective concerns the significant progress on the fundamental understanding of rhodium chemistry at a strictly molecular level by the joint experimental and computational study of the reactivity of isolated Rh-based gas phase clusters that can serve as ideal models for the active sites of condensed-phase catalysts. The substrates cover the important organic and inorganic molecules including CH4, CO, NO, N2, and H2. The electronic origin for the reactivity evolution of bare Rhx q clusters as a function of size is revealed. The doping effect and support effect as well as the synergistic effect among heteroatoms on the reactivity and product selectivity of Rh-containing species are discussed. The ingenious employment of diverse experimental techniques to assist the Rh1- and Rh2-doped clusters in catalyzing the challenging endothermic reactions is also emphasized. It turns out that the chemical behavior of Rh identified from the gas phase cluster study parallels the performance of condensed-phase rhodium catalysts. The mechanistic aspects derived from Rh-based cluster systems may provide new clues for the design of better performing rhodium catalysts including the single Rh atom catalysts.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Man Ruan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
13
|
Wang M, Chu LY, Li ZY, Messinis AM, Ding YQ, Hu L, Ma JB. Dinitrogen and Carbon Dioxide Activation to Form C-N Bonds at Room Temperature: A New Mechanism Revealed by Experimental and Theoretical Studies. J Phys Chem Lett 2021; 12:3490-3496. [PMID: 33792315 DOI: 10.1021/acs.jpclett.1c00183] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In light of the current energy requirements, the conversion of CO2 and N2 into useful C-N bond-containing products under mild conditions has become an area of intense research. However, the inert nature of N2 and CO2 renders their coupling extremely challenging. Herein, nitrogen and carbon atoms originating from N2 and CO2, respectively, are fixed sequentially by NbH2- anions in the gas phase at room temperature. Isocyanate and NbO2CN- anions were formed under thermal collision conditions, thus achieving the formation of new C-N bonds directly from simple N2 and CO2. The anion structures and reaction details were studied by mass spectrometry, photoelectron spectroscopy, and quantum chemical calculations. A novel N2 activation mode (metal-ligand activation, MLA) and a related mechanism for constructing C-N bonds mediated by a single non-noble metal atom are proposed. In this MLA mode, the C atom originating from CO2 serves as an electron reservoir to accept and donate electrons.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Lan-Ye Chu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Göttingen 37077, Germany
| | - Yong-Qi Ding
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Lianrui Hu
- School of Science and Research Center for Advanced Computation, Xihua University, Chengdu 610039, China
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
14
|
Wang M, Zhao CY, Zhou HY, Zhao Y, Li YK, Ma JB. The sequential activation of H 2 and N 2 mediated by the gas-phase Sc 3N + clusters: Formation of amido unit. J Chem Phys 2021; 154:054307. [PMID: 33557555 DOI: 10.1063/5.0029180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The activation and hydrogenation of nitrogen are central in industry and in nature. Through a combination of mass spectrometry and quantum chemical calculations, this work reports an interesting result that scandium nitride cations Sc3N+ can activate sequentially H2 and N2, and an amido unit (NH2) is formed based on density functional theory calculations, which is one of the inevitable intermediates in the N2 reduction reactions. If the activation step is reversed, i.e., sequential activation of first N2 and then H2, the reactivity decreases dramatically. An association mechanism, prevalent in some homogeneous catalysis and enzymatic mechanisms, is adopted in these gas-phase H2 and N2 activation reactions mediated by Sc3N+ cations. The mechanistic insights are important to understand the mechanism of the conversion of H2 and N2 to NH3 synthesis under ambient conditions.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Chong-Yang Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Hai-Yan Zhou
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Yue Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Ya-Ke Li
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie Universität Leipzig Linnéstr. 2, 04103 Leipzig, Germany
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| |
Collapse
|
15
|
Li Y, Wang M, Ding YQ, Zhao CY, Ma JB. Consecutive methane activation mediated by single metal boride cluster anions NbB 4. Phys Chem Chem Phys 2021; 23:12592-12599. [PMID: 34047332 DOI: 10.1039/d1cp01418h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cleavage of all C-H bonds in two methane molecules by gas-phase cluster ions at room temperature is a challenging task. Herein, mass spectrometry and quantum chemical calculations have been used to identify one single metal boride cluster anions NbB4- that can activate eight C-H bonds in two methane molecules and release one H2 molecule each time under thermal collision conditions. In these consecutive reactions, the loaded Nb atoms and the support B4 units play different roles but act synergistically to activate CH4, which is responsible for the interesting reactivity of NbB4-. Moreover, there are some mechanistic differences in these two reactions, including the mechanisms for the first C-H bond activation steps, dihydrogen desorption sites, and major electron donors. This study shows that non-noble metal boride species are reactive enough to facilitate thermal C-H bond cleavages, and boron-based materials may be one kind of potential support material facilitating surface hydrogen transport.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Yong-Qi Ding
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Chong-Yang Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| |
Collapse
|
16
|
Liu G, Ariyarathna IR, Ciborowski SM, Zhu Z, Miliordos E, Bowen KH. Simultaneous Functionalization of Methane and Carbon Dioxide Mediated by Single Platinum Atomic Anions. J Am Chem Soc 2020; 142:21556-21561. [PMID: 33307694 DOI: 10.1021/jacs.0c11112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mass spectrometric analysis of the anionic products of interaction among Pt-, methane, and carbon dioxide shows that the methane activation complex, H3C-Pt-H-, reacts with CO2 to form [H3C-Pt-H(CO2)]-. Two hydrogenation and one C-C bond coupling products are identified as isomers of [H3C-Pt-H(CO2)]- by a synergy between anion photoelectron spectroscopy and quantum chemical calculations. Mechanistic study reveals that both CH4 and CO2 are activated by the anionic Pt atom and that the successive depletion of the negative charge on Pt drives the CO2 insertion into the Pt-H and Pt-C bonds of H3C-Pt-H-. This study represents the first example of the simultaneous functionalization of CH4 and CO2 mediated by single atomic anions.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218,United States
| | - Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Sandra M Ciborowski
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218,United States
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218,United States
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218,United States
| |
Collapse
|
17
|
Li W, Wu X, Liu Z, Wu H, Zhang D, Ding X. C/C Exchange in Activation/Coupling Reaction of Acetylene and Methane Mediated by Os +: A Comparison with Ir +, Pt +, and Au . J Phys Chem Lett 2020; 11:8346-8351. [PMID: 32885973 DOI: 10.1021/acs.jpclett.0c02068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The activation and coupling reactions of methane and acetylene mediated by M+ (M = Os, Ir, Pt, and Au) have been comparatively studied at room temperature by the techniques of mass spectrometry in conjunction with theoretical calculations. Studies have shown that Os+ and Ir+ can mediate the activation/coupling reaction of CH4 and C2H2, while Pt+ and Au+ cannot, which could be explained by the number of empty valence orbitals in the metal atom. In addition, there are different competition channels for the reaction mediated by Os+ and Ir+: an expected dehydrogenation and an unexpected C/C exchange. We find that if the rare C/C exchange reaction takes place, there are symmetric carbon atoms in the reaction intermediate and the C/C exchange reaction is favored kinetically. The C/C exchange reaction must be considered, which will affect the yield of the products in the primary reaction. This study shows the molecular-level mechanisms which include the C/C exchange reaction in the activation and coupling reaction of organic compounds mediated by different metals.
Collapse
Affiliation(s)
- Wei Li
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, China
- Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beijing 102206, China
| | - Xiaonan Wu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zizhuang Liu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hechen Wu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Di Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xunlei Ding
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, China
- Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
18
|
Zhao YX, Yang B, Li HF, Zhang Y, Yang Y, Liu QY, Xu HG, Zheng WJ, He SG. Photoassisted Selective Steam and Dry Reforming of Methane to Syngas Catalyzed by Rhodium-Vanadium Bimetallic Oxide Cluster Anions at Room Temperature. Angew Chem Int Ed Engl 2020; 59:21216-21223. [PMID: 32767516 DOI: 10.1002/anie.202010026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 01/12/2023]
Abstract
Photoassisted steam reforming and dry (CO2 ) reforming of methane (SRM and DRM) at room temperature with high syngas selectivity have been achieved in the gas-phase catalysis for the first time. The catalysts used are bimetallic rhodium-vanadium oxide cluster anions of Rh2 VO1-3 - . Both the oxidation of methane and reduction of H2 O/CO2 can take place efficiently in the dark while the pivotal step to govern syngas selectivity is photo-excitation of the reaction intermediates Rh2 VO2,3 CH2 - to specific electronically excited states that can selectively produce CO and H2 . Electronic excitation over Rh2 VO2,3 CH2 - to control the syngas selectivity is further confirmed from the comparison with the thermal excitation of Rh2 VO2,3 CH2 - , which leads to diversity of products. The atomic-level mechanism obtained from the well-controlled cluster reactions provides insight into the process of selective syngas production from the photocatalytic SRM and DRM reactions over supported metal oxide catalysts.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Hai-Fang Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yan Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Hong-Guang Xu
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Wei-Jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
19
|
Zhao Y, Yang B, Li H, Zhang Y, Yang Y, Liu Q, Xu H, Zheng W, He S. Photoassisted Selective Steam and Dry Reforming of Methane to Syngas Catalyzed by Rhodium–Vanadium Bimetallic Oxide Cluster Anions at Room Temperature. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Hai‐Fang Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Qing‐Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Hong‐Guang Xu
- State Key Laboratory of Molecular Reaction Dynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Wei‐Jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
20
|
Qi M, Tang C, Zhou Z, Ma F, Mo Y. Electride‐Sponsored Radical‐Controlled CO
2
Reduction to Organic Acids: A Computational Design. Chemistry 2020; 26:6234-6239. [DOI: 10.1002/chem.202000092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/16/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Mengyu Qi
- School of Chemistry and Materials Science Huaibei Normal University Huaibei 235000 P.R. China
| | - Chuankai Tang
- School of Chemistry and Materials Science Huaibei Normal University Huaibei 235000 P.R. China
| | - Zhongjun Zhou
- Institute of Theoretical Chemistry Jilin University Changchun 130023 P.R. China
| | - Fang Ma
- School of Chemistry and Materials Science Huaibei Normal University Huaibei 235000 P.R. China
| | - Yirong Mo
- Department of Chemistry Western Michigan University Kalamazoo MI 49008 USA
| |
Collapse
|
21
|
Mahyuddin MH, Tanaka S, Shiota Y, Yoshizawa K. Room-Temperature Activation of Methane and Direct Formations of Acetic Acid and Methanol on Zn-ZSM-5 Zeolite: A Mechanistic DFT Study. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190282] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Muhammad Haris Mahyuddin
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Fukuoka 819-0395, Japan
- Research Group of Advanced Functional Materials, Faculty of Industrial Technology, Institute of Technology Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
| | - Seiya Tanaka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
22
|
Zhou HY, Wang M, Ding YQ, Ma JB. Nb2BN2− cluster anions reduce four carbon dioxide molecules: reactivity enhancement by ligands. Dalton Trans 2020; 49:14081-14087. [DOI: 10.1039/d0dt02680h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermal gas-phase reactions of Nb2BN2− cluster anions with carbon dioxide have been explored by using the art of time-of-flight mass spectrometry and density functional theory calculations.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Yong-Qi Ding
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| |
Collapse
|
23
|
Yang Y, Yang B, Zhao Y, Jiang L, Li Z, Ren Y, Xu H, Zheng W, He S. Direct Conversion of Methane with Carbon Dioxide Mediated by RhVO
3
−
Cluster Anions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction DynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Li‐Xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Zi‐Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Yi Ren
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Hong‐Guang Xu
- State Key Laboratory of Molecular Reaction DynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Wei‐Jun Zheng
- State Key Laboratory of Molecular Reaction DynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
24
|
Yang Y, Yang B, Zhao YX, Jiang LX, Li ZY, Ren Y, Xu HG, Zheng WJ, He SG. Direct Conversion of Methane with Carbon Dioxide Mediated by RhVO 3 - Cluster Anions. Angew Chem Int Ed Engl 2019; 58:17287-17292. [PMID: 31553114 DOI: 10.1002/anie.201911195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 11/09/2022]
Abstract
Direct conversion of methane with carbon dioxide to value-added chemicals is attractive but extremely challenging because of the thermodynamic stability and kinetic inertness of both molecules. Herein, the first dinuclear cluster species, RhVO3 - , has been designed to mediate the co-conversion of CH4 and CO2 to oxygenated products, CH3 OH and CH2 O, in the temperature range of 393-600 K. The resulting cluster ions RhVO3 CO- after CH3 OH formation can further desorb the [CO] unit to regenerate the RhVO3 - cluster, leading to the successful establishment of a catalytic cycle for methanol production from CH4 and CO2 (CH4 +CO2 →CH3 OH+CO). The exceptional activity of Rh-V dinuclear oxide cluster (RhVO3 - ) identified herein provides a new mechanism for co-conversion of two very stable molecules CH4 and CO2 .
Collapse
Affiliation(s)
- Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yi Ren
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Hong-Guang Xu
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Wei-Jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
25
|
Mou LH, Li ZY, Liu QY, He SG. Size-Dependent Association of Cobalt Deuteride Cluster Anions Co 3D n- (n = 0-4) with Dinitrogen. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1956-1963. [PMID: 31236780 DOI: 10.1007/s13361-019-02226-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Dinitrogen (N2) activation by metal hydride species is of fundamental interest and practical importance while the role of hydrogen in N2 activation is not well studied. Herein, the structures of Co3Dn- (n = 0-4) clusters and their reactions with N2 have been studied by using a combined experimental and computational approach. The mass spectrometry experiments identified that the Co3Dn- (n = 2-4) clusters could adsorb N2 while the Co3Dn- (n = 0 and 1) clusters were inert. The photoelectron imaging spectroscopy indicated that the electron detachment energies of Co3D2-4- are smaller than those of Co3D0,1-, which characterized that it is easier to transfer electrons from Co3D2-4- than from Co3D0,1- to activate N2. The density functional theory calculations generally supported the experimental observations. Further analysis revealed that the H atoms in the Co3Hn- (n = 2-4) clusters generally result in higher energies of the Co 3d orbitals in comparison with the Co3Hn- (n = 0 and 1) systems. By forming chemical bonds with H atoms, the Co atoms of Co3H2-4- are less negatively charged with respect to the naked Co3- system, which leads to higher N2 binding energies of Co3H2-4N2- than that of Co3N2-.
Collapse
Affiliation(s)
- Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- CAS Research/Education Center of Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, People's Republic of China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- CAS Research/Education Center of Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, People's Republic of China.
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- CAS Research/Education Center of Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, People's Republic of China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- CAS Research/Education Center of Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, People's Republic of China.
| |
Collapse
|
26
|
Wang M, Sun C, Cui J, Zhang Y, Ma J. Clean and Efficient Transformation of CO2 to Isocyanic Acid: The Important Role of Triatomic Cation ScNH+. J Phys Chem A 2019; 123:5762-5767. [DOI: 10.1021/acs.jpca.9b02133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100190, China
| | - Chuanxin Sun
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100190, China
| | - Jiatong Cui
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100190, China
| | - Yunhong Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100190, China
| | - Jiabi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100190, China
| |
Collapse
|
27
|
Selective Generation of Free Hydrogen Atoms in the Reaction of Methane with Diatomic Gold Boride Cations. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/zpch-2018-1334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
The thermal reaction of diatomic gold boride cation AuB+ with methane has been studied by using state-of-the-art mass spectrometry in conjunction with density functional theory calculations. The AuB+ ion can activate a methane molecule to produce exclusively the free hydrogen atom, an important intermediate in hydrocarbon transformation. This result is different from the reactivity of AuC+ and CuB+ counterparts with methane in previous studies. The AuC+ cation mainly transforms methane into ethylene. The CuB+ reaction system principally generates the free hydrogen atoms, but it also gives rise a portion of ethylene-like product H2B−CH2. The B atom of AuB+ is the active site to activate methane. The strong relativistic effect on gold plays an important role for the product selectivity. The mechanistic insights obtained from this study provide guidance for rational design of active sites with high product selectivity toward methane activation.
Collapse
|
28
|
Cheng GJ, Zhong XM, Wu YD, Zhang X. Mechanistic understanding of catalysis by combining mass spectrometry and computation. Chem Commun (Camb) 2019; 55:12749-12764. [PMID: 31560354 DOI: 10.1039/c9cc05458h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The combination of mass spectrometry and computational chemistry has been proven to be powerful for exploring reaction mechanisms. The former provides information of reaction intermediates, while the latter gives detailed reaction energy profiles.
Collapse
Affiliation(s)
- Gui-Juan Cheng
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Xiu-Mei Zhong
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| |
Collapse
|