1
|
Gao RT, Li SY, Liu BH, Chen Z, Liu N, Zhou L, Wu ZQ. One-pot asymmetric living copolymerization-induced chiral self-assemblies and circularly polarized luminescence. Chem Sci 2024; 15:2946-2953. [PMID: 38404389 PMCID: PMC10882484 DOI: 10.1039/d3sc06242b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 02/27/2024] Open
Abstract
Controlled synthesis of conjugated block polymers enables the optimization of their self-assembly and may lead to distinct optical properties and functionalities. Herein, we report a direct chain extension of one-handed helical poly(acyl methane) with 1-ethynyl-4-iodo-2,5-bis(octyloxy)benzene, affording well-defined π-conjugated poly(acyl methane)-b-poly(phenylene ethynylene) copolymers. Although the distinct monomers are polymerized via different mechanisms, the one-pot copolymerization follows a living polymerization manner, giving the desired optically active block copolymers with controllable molar mass and low distribution. The block copolymerization induced chiral self-assembly simultaneously due to the one-handed helicity of the poly(acyl methane) block, giving spherical nanoparticles, one-handed helices, and chiral micelles with controlled dimensions regarding the composition of the generated copolymers. Interestingly, the chiral assemblies exhibit clear circularly polarized luminescence with tunable handedness and a high dissymmetric factor.
Collapse
Affiliation(s)
- Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Bing-Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun Jilin 130021 P.R. China
| | - Li Zhou
- Department of Polymer Science and Engineering, Hefei University of Technology Hefei 230009 China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
2
|
|
3
|
Xiang J, Tan WL, Zhang J, Wang Y, Duan C, McNeill CR, Yang X, Ge C, Gao X. Poly(2,6-azuleneethynylene)s: Design, Synthesis, and Property Studies. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junjun Xiang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jianwei Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China
| | - Yang Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chao Duan
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Christopher R. McNeill
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Xiaodi Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China
| | - Congwu Ge
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Akiyoshi R, Komatsumaru Y, Donoshita M, Dekura S, Yoshida Y, Kitagawa H, Kitagawa Y, Lindoy LF, Hayami S. Ferroelectric and Spin Crossover Behavior in a Cobalt(II) Compound Induced by Polar-Ligand-Substituent Motion. Angew Chem Int Ed Engl 2021; 60:12717-12722. [PMID: 33713041 DOI: 10.1002/anie.202015322] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/12/2021] [Indexed: 02/01/2023]
Abstract
Ferroelectric spin crossover (SCO) behavior is demonstrated to occur in the cobalt(II) complex, [Co(FPh-terpy)2 ](BPh4 )2 ⋅3ac (1⋅3 ac; FPh-terpy=4'-((3-fluorophenyl)ethynyl)-2,2':6',2''-terpyridine) and is dependent on the degree of 180° flip-flop motion of the ligand's polar fluorophenyl ring. Single crystal X-ray structures at several temperatures confirmed the flip-flop motion of fluorobenzene ring and also gave evidence for the SCO behavior with the latter behavior also confirmed by magnetic susceptibility measurements. The molecular motion of the fluorobenzene ring was also revealed using solid-state 19 F NMR spectroscopy. Thus the SCO behavior is accompanied by the flip-flop motion of the fluorobenzene ring, leading to destabilization of the low spin cobalt(II) state; with the magnitude of rotation able to be controlled by an electric field. This first example of spin-state conversion being dependent on the molecular motion of a ligand-appended fluorobenzene ring in a SCO cobalt(II) compound provides new insight for the design of a new category of molecule-based magnetoelectric materials.
Collapse
Affiliation(s)
- Ryohei Akiyoshi
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yuki Komatsumaru
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Masaki Donoshita
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shun Dekura
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yasutaka Kitagawa
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Leonard F Lindoy
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.,Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
5
|
Akiyoshi R, Komatsumaru Y, Donoshita M, Dekura S, Yoshida Y, Kitagawa H, Kitagawa Y, Lindoy LF, Hayami S. Ferroelectric and Spin Crossover Behavior in a Cobalt(II) Compound Induced by Polar‐Ligand‐Substituent Motion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryohei Akiyoshi
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Yuki Komatsumaru
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Masaki Donoshita
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Shun Dekura
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Yukihiro Yoshida
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Hiroshi Kitagawa
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Yasutaka Kitagawa
- Division of Chemical Engineering Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1–3, Machikaneyama, Toyonaka Osaka 560-8531 Japan
| | - Leonard F. Lindoy
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Shinya Hayami
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
- Institute of Industrial Nanomaterials (IINa) Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
6
|
Howe ME, Barbour NA, Garcia RV, Garcia-Garibay MA. Fluorescence Anisotropy Decay of Molecular Rotors with Acene Rotators in Viscous Solution. J Org Chem 2020; 85:6872-6877. [DOI: 10.1021/acs.joc.9b03398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Morgan E. Howe
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Nicole A. Barbour
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Ronnie V. Garcia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Miguel A. Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
7
|
Howe ME, Garcia-Garibay MA. The Roles of Intrinsic Barriers and Crystal Fluidity in Determining the Dynamics of Crystalline Molecular Rotors and Molecular Machines. J Org Chem 2019; 84:9835-9849. [DOI: 10.1021/acs.joc.9b00993] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Morgan E. Howe
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California 90095-1569, United States
| | - Miguel A. Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|