1
|
Zhu L, Zhu PW, Hu LY, Lin SY, Wu L, Zhu J. Electrochemically Enabled Hydroxyphosphorylation of 1,3-Enynes to Access Phosphinyl-Substituted Propargyl Alcohols. J Org Chem 2024; 89:10796-10804. [PMID: 39030172 DOI: 10.1021/acs.joc.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Catalytic difunctionalization with the direct activation of (O)P-H bonds has been recently established as a potentially robust platform to generate valuable organophosphorus compounds. In terms of 1,3-enynes, despite of the various catalytic methods developed for hydrophosphorylation, the radical-mediated hetero-functionalization of two different atoms has been less explored. In this study, we disclosed an electrochemically induced hydroxyphosphorylation of 1,3-enynes for the construction of phosphinyl-substituted propargyl alcohols. The system involves the direct activation of both arylphosphine oxides and oxygen in ambient air with no external metal or additive needed. The use of electrochemistry ensures the regioselective, atom-economic and eco-friendly for the difunctionalization process. This strategy highlights the advantages of mild reaction conditions, readily available starting materials and broad substrate scope, showing its practical synthetic value in organic synthesis.
Collapse
Affiliation(s)
- Li Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Peng-Wei Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
- SINOPEC Jinling Company, NanJing 210033, P. R. China
| | - Li-Yan Hu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shao-Yan Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
2
|
Zhang Z, Lv Y, Ji L, Chen P, Han S, Zhu Y, Li L, Jia Z, Loh TP. Triaryl Carbenium Ion Pair Mediated Electrocatalytic Benzylic C-H Oxygenation in Air. Angew Chem Int Ed Engl 2024; 63:e202406588. [PMID: 38664822 DOI: 10.1002/anie.202406588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 06/05/2024]
Abstract
The selective oxidation of benzylic C-H bonds is a pivotal transformation in organic synthesis. Undoubtedly, achieving efficient and highly selective aerobic oxidation of methylarenes to benzaldehydes has been highly challenging due to the propensity of benzaldehyde to undergo overoxidation under typical aerobic conditions. Herein, we propose an innovative approach to address this issue by leveraging electrocatalytic processes, facilitated by ion-pair mediators [Ph3C]+[B(C6F5)4]-. By harnessing the power of electrochemistry, we successfully demonstrated the effectiveness of our strategy, which enables the selective oxidation of benzylic C-H bonds in benzylic molecules and toluene derivatives. Notably, our approach exhibited high efficiency, excellent selectivity, and compatibility with various functional groups, underscoring the broad applicability of our methodology.
Collapse
Affiliation(s)
- Zhenguo Zhang
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Yongheng Lv
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Liang Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Peng Chen
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Shuyan Han
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Yufei Zhu
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Lanyang Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhenhua Jia
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Teck-Peng Loh
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
3
|
Zhang Z, Li J, Cai Z, Kang S, Wang J, Cui Y, Han S, Sheng L, Yin Q, Dai A, Zhao W, Zhao F. Electrochemical aerobic Wacker-type oxygenation of triaryl substituted alkenes to 1,2,2-triarylethanones. Chem Commun (Camb) 2024; 60:3035-3038. [PMID: 38348672 DOI: 10.1039/d3cc05770d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
An effective synthetic approach for various 1,2,2-triarylethanones from triaryl substituted alkenes has been developed via an electrochemical Wacker-type oxygenation with O2 as the sole oxygen source. It presents the first instance of the Wacker-type oxidation expanding its substrate scope to trisubstituted alkenes. The approach is transition-metal-free, compatible with various functional groups, and can be carried out under mild conditions resulting in satisfactory yields. Mechanistic experiments suggest the CO bond formation occurs through reactions between cationic carbon species and the superoxide radical, which involves the 1,2-shift of the electron-rich substituent.
Collapse
Affiliation(s)
- Zhou Zhang
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P. R. China.
| | - Jin Li
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China.
| | - Zhiwei Cai
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, P. R. China.
| | - Songyao Kang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, P. R. China.
| | - Jian Wang
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China.
| | - Yue Cui
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China.
| | - Siyuan Han
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, P. R. China.
| | - Lei Sheng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, P. R. China.
| | - Qing Yin
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, P. R. China.
| | - Ang Dai
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, P. R. China.
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, P. R. China.
| | - Fangyuan Zhao
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P. R. China.
| |
Collapse
|
4
|
Rani S, Aslam S, Lal K, Noreen S, Alsader KAM, Hussain R, Shirinfar B, Ahmed N. Electrochemical C-H/C-C Bond Oxygenation: A Potential Technology for Plastic Depolymerization. CHEM REC 2024; 24:e202300331. [PMID: 38063812 DOI: 10.1002/tcr.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Indexed: 03/10/2024]
Abstract
Herein, we provide eco-friendly and safely operated electrocatalytic methods for the selective oxidation directly or with water, air, light, metal catalyst or other mediators serving as the only oxygen supply. Heavy metals, stoichiometric chemical oxidants, or harsh conditions were drawbacks of earlier oxidative cleavage techniques. It has recently come to light that a crucial stage in the deconstruction of plastic waste and the utilization of biomass is the selective activation of inert C(sp3 )-C/H(sp3 ) bonds, which continues to be a significant obstacle in the chemical upcycling of resistant polyolefin waste. An appealing alternative to chemical oxidations using oxygen and catalysts is direct or indirect electrochemical conversion. An essential transition in the chemical and pharmaceutical industries is the electrochemical oxidation of C-H/C-C bonds. In this review, we discuss cutting-edge approaches to chemically recycle commercial plastics and feasible C-C/C-H bonds oxygenation routes for industrial scale-up.
Collapse
Affiliation(s)
- Sadia Rani
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Kiran Lal
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Riaz Hussain
- Department of Chemistry, University of Education Lahore, D.G. Khan Campus, 32200, Pakistan
| | - Bahareh Shirinfar
- West Herts College - University of Hertfordshire, Watford, WD17 3EZ, London, United Kingdom
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
5
|
Yan ZH, Yan Y, Wei ZL, Liao WW. Electrochemical Trifluoromethylation/Bicyclization of N-Cyanamide Alkenes: Synthesis of Bicyclic Amidine Derivatives. J Org Chem 2024; 89:2718-2725. [PMID: 38306613 DOI: 10.1021/acs.joc.3c02777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
An anodically oxidizing trifluoromethylation cascade of N-cyanamide alkene bearing two electronically differentiated olefin moieties was reported, in which various N-unsaturated acyl cyanamide alkenes and CF3SO2Na acting as readily available starting materials furnished nonaromatic fused azaheterobicyclic compounds in a highly efficient and sustainable manner. The broad substrate scope, facile scalability, and sustainability enabled this electrochemical process to be an appealing complement for trifluoromethylated cyclic amidines.
Collapse
Affiliation(s)
- Zhi-Hua Yan
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
| | - Yan Yan
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhong-Lin Wei
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
| |
Collapse
|
6
|
Liang YF, Bilal M, Tang LY, Wang TZ, Guan YQ, Cheng Z, Zhu M, Wei J, Jiao N. Carbon-Carbon Bond Cleavage for Late-Stage Functionalization. Chem Rev 2023; 123:12313-12370. [PMID: 37942891 DOI: 10.1021/acs.chemrev.3c00219] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.
Collapse
Affiliation(s)
- Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Le-Yu Tang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
7
|
Ali R, Patra T, Wirth T. Alkene reactions with superoxide radical anions in flow electrochemistry. Faraday Discuss 2023; 247:297-301. [PMID: 37475579 DOI: 10.1039/d3fd00050h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Alkenes were cleaved to ketones by using dioxygen in an electrochemical flow set-up. The pressurised system allowed efficient gas-liquid mixing with a stabilised flow. This mild and straightforward approach avoids the use of transition metals and harsh oxidants.
Collapse
Affiliation(s)
- Rojan Ali
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK.
| | - Tuhin Patra
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK.
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK.
| |
Collapse
|
8
|
Nikl J, Hofman K, Mossazghi S, Möller IC, Mondeshki D, Weinelt F, Baumann FE, Waldvogel SR. Electrochemical oxo-functionalization of cyclic alkanes and alkenes using nitrate and oxygen. Nat Commun 2023; 14:4565. [PMID: 37507379 PMCID: PMC10382549 DOI: 10.1038/s41467-023-40259-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Direct functionalization of C(sp3)-H bonds allows rapid access to valuable products, starting from simple petrochemicals. However, the chemical transformation of non-activated methylene groups remains challenging for organic synthesis. Here, we report a general electrochemical method for the oxidation of C(sp3)-H and C(sp2)-H bonds, in which cyclic alkanes and (cyclic) olefins are converted into cycloaliphatic ketones as well as aliphatic (di)carboxylic acids. This resource-friendly method is based on nitrate salts in a dual role as anodic mediator and supporting electrolyte, which can be recovered and recycled. Reducing molecular oxygen as a cathodic counter reaction leads to efficient convergent use of both electrode reactions. By avoiding transition metals and chemical oxidizers, this protocol represents a sustainable oxo-functionalization method, leading to a valuable contribution for the sustainable conversion of petrochemical feedstocks into synthetically usable fine chemicals and commodities.
Collapse
Affiliation(s)
- Joachim Nikl
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Kamil Hofman
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Samuel Mossazghi
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Isabel C Möller
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Daniel Mondeshki
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Frank Weinelt
- Evonik Operations GmbH, Paul-Baumann-Strasse 1, 45772, Marl, Germany
| | | | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
9
|
Liu T, Xue F, Wang B, Wang R, Cao W, Zhao X, Xia Y, Jin W, Zhang Y, Lin H, Liu C. Rapid microwave synthesis of Bi2WO6 for C=C bonds oxidative cleavage to ketones with visible light irradiation in aerobic micellar medium. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Liu T, Xue F, Chen Z, Cheng Z, Cao W, Wang B, Jin W, Xia Y, Zhang Y, Liu C. Bi4O5Br2 catalyzed selective oxidative of C=C double bonds to ketones with molecular oxygen under visible-light irradiation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Luo MJ, Xiao Q, Li JH. Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications. Chem Soc Rev 2022; 51:7206-7237. [PMID: 35880555 DOI: 10.1039/d2cs00013j] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the CC bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling.
Collapse
Affiliation(s)
- Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
12
|
Okamoto K, Shida N, Morizumi H, Kitano Y, Chiba K. Oxidation Potential Gap (ΔE ox ): The Hidden Parameter in Redox Chemistry. Angew Chem Int Ed Engl 2022; 61:e202206064. [PMID: 35610179 DOI: 10.1002/anie.202206064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/27/2022]
Abstract
Oxidative biaryl coupling of aryls with different electronic features generally fails. However, this has not been systematically studied via theoretical analysis, and thus, the crucial factor governing coupling efficiency remains unclear. Herein, we propose that the "oxidation potential gap (ΔEox )" is a key parameter in predicting the efficiency of an intramolecular oxidative coupling reaction, with ΔEox defined as a difference in the oxidation potentials of the relevant aromatic rings. Our experimental and computational analyses revealed that the efficiency of an aromatic intramolecular coupling reaction correlates with the activation energy (ΔE≠ ) of C-C bond formation of the radical cation intermediates. Furthermore, ΔE≠ correlates with ΔEox . Therefore, we demonstrate the tuning of ΔEox by attaching cleavable extra electron-donating/-withdrawing groups, enabling the rational synthesis of a phenanthridone skeleton using aromatic rings with an electronic gap.
Collapse
Affiliation(s)
- Kazuhiro Okamoto
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.,Department of Science and Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Naoki Shida
- Department of Science and Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Haruka Morizumi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Yoshikazu Kitano
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
13
|
A highly regio- and stereoselective Pd-catalyzed electrocarboxylation of Baylis-Hillman acetates: An interesting switchable regioselectivity based on electrode material. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Wu J, Peng Z, Shen T, Liu ZQ. Electrosynthesis of ortho‐Amino Aryl Ketones by Aerobic Electrooxidative Cleavage of the C(2)=C(3)/C(2)‐N Bonds of N‐Boc Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jintao Wu
- Nanjing University of Chinese Medicine CHINA
| | - Zehui Peng
- Nanjing University of Chinese Medicine CHINA
| | - Tong Shen
- Nanjing University of Chinese Medicine CHINA
| | - Zhong-Quan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University CHINA
| |
Collapse
|
15
|
Okamoto K, Shida N, Morizumi H, Kitano Y, Chiba K. Oxidation Potential Gap (ΔEox): The Hidden Parameter in Redox Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuhiro Okamoto
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Department of Applied Biological Science JAPAN
| | - Naoki Shida
- Yokohama National University: Yokohama Kokuritsu Daigaku Department of Science and Engineering JAPAN
| | - Haruka Morizumi
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Department of Applied Biological Science JAPAN
| | - Yoshikazu Kitano
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Department of Applied Biological Science JAPAN
| | - Kazuhiro Chiba
- Tokyo University of Agriculture and Technology: Tokyo Noko Daigaku Applied Biological Science 3-5-8 Saiwai-cho, Fuchu 183-8509 Tokyo JAPAN
| |
Collapse
|
16
|
Ruan M, Chen L, Wen Z, Yang F, Ma C, Lu C, Yang G, Gao M. Electrochemical two-electron oxygen reduction reaction (ORR) induced aerobic oxidation of α-diazoesters. Chem Commun (Camb) 2022; 58:2168-2171. [PMID: 35060985 DOI: 10.1039/d1cc06945d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemical oxygen reduction reaction (ORR) is a powerful tool for introducing oxygen functional groups in synthetic chemistry. However, compared with the well-developed one-electron oxygen reduction process, the applications of two-electron oxygen reduction in electrochemical synthesis have been seldom studied. We present herein our recent progress in the oxidation of α-diazoesters to α-ketoesters by in situ generated hydrogen peroxide via a two-electron oxygen reduction approach. A diverse collection of valuable α-ketoester products was obtained with moderate to high yields under an exogenous-oxidant-free and metal catalyst-free electrochemical conditions.
Collapse
Affiliation(s)
- Mengyao Ruan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Liang Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Ziyang Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Fan Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Chao Ma
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Cuifen Lu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Guichun Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Meng Gao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| |
Collapse
|
17
|
Zhou W, Xiao X, Liu Y, Zhang X. Magnetic Se/Fe/PCN-Catalyzed Oxidative Cracking Alkenes in O 2. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Liu Y, Shi B, Liu Z, Gao R, Huang C, Alhumade H, Wang S, Qi X, Lei A. Time-Resolved EPR Revealed the Formation, Structure, and Reactivity of N -Centered Radicals in an Electrochemical C(sp 3)-H Arylation Reaction. J Am Chem Soc 2021; 143:20863-20872. [PMID: 34851107 DOI: 10.1021/jacs.1c09341] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electrochemical synthesis has been rapidly developed over the past few years, while a vast majority of the reactions proceed through a radical pathway. Understanding the properties of radical intermediates is crucial in the mechanistic study of electrochemical transformations and will be beneficial for developing new reactions. Nevertheless, it is rather difficult to determine the "live" radical intermediates due to their high reactivity. In this work, the formation and structure of sulfonamide N-centered radicals have been researched directly by using the time-resolved electron paramagnetic resonance (EPR) technique under electrochemical conditions. Supported by the EPR results, the reactivity of N-centered radicals as a mediator in the hydrogen atom transfer (HAT) approach has been discussed. Subsequently, these mechanistic study results have been successfully utilized in the discovery of an unactivated C(sp3)-H arylation reaction. The kinetic experiments have revealed the rate-determined step is the anodic oxidation of sulfonamides.
Collapse
Affiliation(s)
- Yichang Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Biyin Shi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Zhao Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Renfei Gao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Cunlong Huang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Center of Research Excellence in Renewable Energy and Power Ststems, King Abdulzaziz University, Jeddah 21589, Saudi Arabia
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Xiaotian Qi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China.,Department of Chemical and Materials Engineering, Abdulzaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
19
|
Ning S, Zheng L, Bai Y, Wang S, Wang S, Shi L, Gao Q, Che X, Zhang Z, Xiang J. Highly selective electroreductive linear dimerization of electron-deficient vinylarenes. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Ye Z, Zhu R, Wang F, Jiang H, Zhang F. Electrochemical Difunctionalization of Styrenes via Chemoselective Oxo-Azidation or Oxo-Hydroxyphthalimidation. Org Lett 2021; 23:8240-8245. [PMID: 34697944 DOI: 10.1021/acs.orglett.1c02991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atom- and step-economic oxo-azidation and oxo-hydroxyphthalimidation of styrenes have been developed under mild electrolytic conditions, respectively. Various valuable alpha-azido or hydroxyphthalimide aromatic ketones were synthesized efficiently from readily available styrenes, azides, and N-hydroxyphthalimides. Mechanism studies show that two different pathways involved in these two transformations.
Collapse
Affiliation(s)
- Zenghui Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Rongjin Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Feng Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Haobin Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
21
|
Ou J, Tan H, He S, Wang W, Hu B, Yu G, Liu K. 1,2-Dibutoxyethane-Promoted Oxidative Cleavage of Olefins into Carboxylic Acids Using O 2 Under Clean Conditions. J Org Chem 2021; 86:14974-14982. [PMID: 34634904 DOI: 10.1021/acs.joc.1c01701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report the first example of an effective and green approach for the oxidative cleavage of olefins to carboxylic acids using a 1,2-dibutoxyethane/O2 system under clean conditions. This novel oxidation system also has excellent functional-group tolerance and is applicable for large-scale synthesis. The target products were prepared in good to excellent yields by a one-pot sequential transformation without an external initiator, catalyst, and additive.
Collapse
Affiliation(s)
- Jinhua Ou
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China.,College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hong Tan
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Saiyu He
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Wei Wang
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Bonian Hu
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Gang Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Kaijian Liu
- Department of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
22
|
Tomboc GM, Park Y, Lee K, Jin K. Directing transition metal-based oxygen-functionalization catalysis. Chem Sci 2021; 12:8967-8995. [PMID: 34276926 PMCID: PMC8261717 DOI: 10.1039/d1sc01272j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
This review presents the recent progress of oxygen functionalization reactions based on non-electrochemical (conventional organic synthesis) and electrochemical methods. Although both methods have their advantages and limitations, the former approach has been used to synthesize a broader range of organic substances as the latter is limited by several factors, such as poor selectivity and high energy cost. However, because electrochemical methods can replace harmful terminal oxidizers with external voltage, organic electrosynthesis has emerged as greener and more eco-friendly compared to conventional organic synthesis. The progress of electrochemical methods toward oxygen functionalization is presented by an in-depth discussion of different types of electrically driven-chemical organic synthesis, with particular attention to recently developed electrochemical systems and catalyst designs. We hope to direct the attention of readers to the latest breakthroughs of traditional oxygen functionalization reactions and to the potential of electrochemistry for the transformation of organic substrates to useful end products.
Collapse
Affiliation(s)
- Gracita M Tomboc
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Yeji Park
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Kyoungsuk Jin
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
23
|
Liu C, Li R, Zhou W, Liang Y, Shi Y, Li RL, Ling Y, Yu Y, Li J, Zhang B. Selectivity Origin of Organic Electrosynthesis Controlled by Electrode Materials: A Case Study on Pinacols. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01382] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Cuibo Liu
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Rui Li
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Wei Zhou
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Yu Liang
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanmei Shi
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Run-Lai Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yangfang Ling
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Yifu Yu
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Bin Zhang
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
24
|
Hou H, Ma X, Lin Y, Lin J, Sun W, Wang L, Xu X, Ke F. Electrochemical synthesis of quinazolinone via I 2-catalyzed tandem oxidation in aqueous solution. RSC Adv 2021; 11:17721-17726. [PMID: 35480173 PMCID: PMC9033184 DOI: 10.1039/d1ra02706a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023] Open
Abstract
The development of protocols for synthesizing quinazolinones using biocompatible catalysts in aqueous medium will help to resolve the difficulties of using green and sustainable chemistry for their synthesis. Herein, using I2 in coordination with electrochemical synthesis induced a C-H oxidation reaction which is reported when using water as the environmentally friendly solvent to access a broad range of quinazolinones at room temperature. The reaction mechanism strongly showed that I2 cooperates electrochemically promoted the oxidation of alcohols, then effectively cyclizing amides to various quinazolinones.
Collapse
Affiliation(s)
- Huiqing Hou
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Xinhua Ma
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Yingying Lin
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Jin Lin
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Weiming Sun
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Lei Wang
- School of Science, Xuchang University Xuchang 461000 China
| | - Xiuzhi Xu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Fang Ke
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016.,Faculty of Material and Chemical Engineering, Yibin University Yibin 644000 China
| |
Collapse
|
25
|
Yu T, Guo M, Wen S, Zhao R, Wang J, Sun Y, Liu Q, Zhou H. Poly(ethylene glycol) dimethyl ether mediated oxidative scission of aromatic olefins to carbonyl compounds by molecular oxygen. RSC Adv 2021; 11:13848-13852. [PMID: 35423908 PMCID: PMC8697527 DOI: 10.1039/d1ra02007b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022] Open
Abstract
A simple, and practical oxidative scission of aromatic olefins to carbonyl compounds using O2 as the sole oxidant with poly(ethylene glycol) dimethyl ether as a benign solvent has been developed. A wide range of monosubstituted, gem-disubstituted, 1,2-disubstituted, trisubstituted and tetrasubstituted aromatic olefins was successfully converted into the corresponding aldehydes and ketones in excellent yields even with gram–scale reaction. Some control experiments were also conducted to support a possible reaction pathway. A simple and practical O2 oxidized scission of monosubstituted, gem- and 1,2-disubstituted, trisubstituted and tetrasubstituted aromatic olefins to aldehydes and ketones in PEGDME has been developed.![]()
Collapse
Affiliation(s)
- Tao Yu
- Research Center of Green Pharmaceutical Technology and Process, Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University Yichang 443002 China
| | - Mingqing Guo
- Research Center of Green Pharmaceutical Technology and Process, Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University Yichang 443002 China
| | - Simiaomiao Wen
- Research Center of Green Pharmaceutical Technology and Process, Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University Yichang 443002 China
| | - Rongrong Zhao
- Research Center of Green Pharmaceutical Technology and Process, Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University Yichang 443002 China
| | - Jinlong Wang
- Research Center of Green Pharmaceutical Technology and Process, Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University Yichang 443002 China
| | - Yanli Sun
- Research Center of Green Pharmaceutical Technology and Process, Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University Yichang 443002 China
| | - Qixing Liu
- Research Center of Green Pharmaceutical Technology and Process, Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University Yichang 443002 China
| | - Haifeng Zhou
- Research Center of Green Pharmaceutical Technology and Process, Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University Yichang 443002 China
| |
Collapse
|
26
|
Hong CM, Whittaker AM, Schultz DM. Nucleophilic Fluorination of Heteroaryl Chlorides and Aryl Triflates Enabled by Cooperative Catalysis. J Org Chem 2021; 86:3999-4006. [DOI: 10.1021/acs.joc.0c02845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Cynthia M. Hong
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065 United States
| | - Aaron M. Whittaker
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065 United States
| | - Danielle M. Schultz
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065 United States
| |
Collapse
|
27
|
Jud W, Kappe CO, Cantillo D. One‐pot multistep electrochemical strategy for the modular synthesis of epoxides, glycols, and aldehydes from alkenes. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Wolfgang Jud
- Institute of Chemistry University of Graz NAWI Graz Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Graz Austria
| | - C. Oliver Kappe
- Institute of Chemistry University of Graz NAWI Graz Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Graz Austria
| | - David Cantillo
- Institute of Chemistry University of Graz NAWI Graz Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Graz Austria
| |
Collapse
|
28
|
Guan Z, Zhu S, Wang S, Wang H, Wang S, Zhong X, Bu F, Cong H, Lei A. Electrochemical Oxidative Carbon‐Atom Difunctionalization: Towards Multisubstituted Imino Sulfide Ethers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhipeng Guan
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Shuxiang Zhu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Siyuan Wang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Huamin Wang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Siyuan Wang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xingxing Zhong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Faxiang Bu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| |
Collapse
|
29
|
Guan Z, Zhu S, Wang S, Wang H, Wang S, Zhong X, Bu F, Cong H, Lei A. Electrochemical Oxidative Carbon-Atom Difunctionalization: Towards Multisubstituted Imino Sulfide Ethers. Angew Chem Int Ed Engl 2021; 60:1573-1577. [PMID: 33006414 DOI: 10.1002/anie.202011329] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Indexed: 11/07/2022]
Abstract
Ethers (C-O/S) are ubiquitously found in a wide array of functional molecules and natural products. Nonetheless, the synthesis of imino sulfide ethers, containing an N(sp2 )=C(sp2 )-O/S fragment, still remains a challenge because of its sensitivity to acid. Developed here in is an unprecedented electrochemical oxidative carbon-atom difunctionalization of isocyanides, providing a series of novel multisubstituted imino sulfide ethers. Under metal-free and external oxidant-free conditions, isocyanides react smoothly with simple and readily available mercaptans and alcohols. Importantly, the procedure exhibited high stereoselectivities, excellent functional-group tolerance, and good efficiency on large-scale synthesis, as well as further derivatization of the products.
Collapse
Affiliation(s)
- Zhipeng Guan
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Shuxiang Zhu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Siyuan Wang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Huamin Wang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Siyuan Wang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Xingxing Zhong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Faxiang Bu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| |
Collapse
|
30
|
Liang Y, Shi SH, Jin R, Qiu X, Wei J, Tan H, Jiang X, Shi X, Song S, Jiao N. Electrochemically induced nickel catalysis for oxygenation reactions with water. Nat Catal 2021. [DOI: 10.1038/s41929-020-00559-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Ošeka M, Laudadio G, van Leest NP, Dyga M, Bartolomeu ADA, Gooßen LJ, de Bruin B, de Oliveira KT, Noël T. Electrochemical Aziridination of Internal Alkenes with Primary Amines. Chem 2021. [DOI: 10.1016/j.chempr.2020.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Ou J, He S, Wang W, Tan H, Liu K. Highly efficient oxidative cleavage of olefins with O2 under catalyst-, initiator- and additive-free conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo00175b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Without employing any external catalyst, initiator and additives, an efficient and eco-friendly protocol has been developed for the synthesis of carbonyl compound via 1,4-dioxane- promoted oxidation of olefins with atmospheric O2 as the sole oxidant.
Collapse
Affiliation(s)
- Jinhua Ou
- Department of Material and Chemical Engineering
- Hunan Institute of Technology
- Hengyang
- China
- Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Saiyu He
- Department of Material and Chemical Engineering
- Hunan Institute of Technology
- Hengyang
- China
| | - Wei Wang
- Department of Material and Chemical Engineering
- Hunan Institute of Technology
- Hengyang
- China
| | - Hong Tan
- Department of Material and Chemical Engineering
- Hunan Institute of Technology
- Hengyang
- China
| | - Kaijian Liu
- Hunan Provincial Engineering Research Center for Ginkgo biloba
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| |
Collapse
|
33
|
Liu J, Pan J, Luo X, Qiu X, Zhang C, Jiao N. Selective Dealkenylative Functionalization of Styrenes via C-C Bond Cleavage. RESEARCH 2020; 2020:7947029. [PMID: 33274339 PMCID: PMC7676249 DOI: 10.34133/2020/7947029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/08/2020] [Indexed: 02/01/2023]
Abstract
As a readily available feedstock, styrene with about 25 million tons of global annual production serves as an important building block and organic synthon for the synthesis of fine chemicals, polystyrene plastics, and elastomers. Thus, in the past decades, many direct transformations of this costless styrene feedstock were disclosed for the preparation of high-value chemicals, which to date, generally performed on the functionalization of styrenes through the allylic C-H bond, C(sp2)-H bond, or the C=C double bond cleavage. However, the dealkenylative functionalization of styrenes via the direct C-C single bond cleavage is so far challenging and still unknown. Herein, we report the novel and efficient C-C amination and hydroxylation reactions of styrenes for the synthesis of valuable aryl amines and phenols via the site-selective C(Ar)-C(alkenyl) single bond cleavage. This chemistry unlocks the new transformation and application of the styrene feedstock and provides an efficient protocol for the late-stage modification of substituted styrenes with the site-directed dealkenylative amination and hydroxylation.
Collapse
Affiliation(s)
- Jianzhong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191 Beijing, China
| | - Jun Pan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191 Beijing, China
| | - Xiao Luo
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191 Beijing, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191 Beijing, China
| | - Cheng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191 Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191 Beijing, China.,State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
34
|
Affiliation(s)
- Shi-Hui Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
35
|
|
36
|
Lai J, Pericàs MA. Manganese/Copper Co-catalyzed Electrochemical Wacker-Tsuji-Type Oxidation of Aryl-Substituted Alkenes. Org Lett 2020; 22:7338-7342. [PMID: 32866388 DOI: 10.1021/acs.orglett.0c02670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A manganese/copper co-catalyzed electrochemical Wacker-Tsuji-type oxidation of aryl-substituted alkenes has been developed. The process involves the use of 5 mol % MnBr2 and 7.5 mol % CuCl2, in 4:1 acetonitrile/water in an undivided cell at 60 °C, with 2.8 V constant applied potential. α-Aryl ketones are formed in moderate to excellent yields, with the advantages of avoidance of palladium as a catalyst and any external chemical oxidant in an easily operated, cost-effective procedure.
Collapse
Affiliation(s)
- Junshan Lai
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Miquel A Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
37
|
CN/iodine-doped CN homojunction powder catalysts with excellent visible-light photocatalytic properties. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.06.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Hadian-Dehkordi L, Rezaei A, Ramazani A, Jaymand M, Samadian H, Zheng L, Deng X, Zheng H. Amphiphilic Carbon Quantum Dots as a Bridge to a Pseudohomogeneous Catalyst for Selective Oxidative Cracking of Alkenes to Aldehydes: A Nonmetallic Oxidation System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31360-31371. [PMID: 32598137 DOI: 10.1021/acsami.0c05025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oxidative cleavage of alkenes to the corresponding aldehydes using new amphiphilic carbon quantum dots (A-CQDs) as a pseudohomogeneous carbocatalyst is achieved for the first time through green and sustainable chemical processes. In this work, we successfully design a recyclable pseudohomogeneous catalyst based on A-CQDs, which is decorated with 1-aminopropyl-3-methyl-imidazolium chloride and stearic acid. The functionalization is conducted to introduce a hydrophilic/hydrophobic functionality on the surface of the catalyst to achieve high catalyst availability in polar and nonpolar media with the green goal of eliminating organic (co)solvents and additives. This amphiphilic carbocatalyst provides high mass transferability to the biphasic system, which is beneficial to promoting the oxidative cracking of a variety of olefins into corresponding aldehydes with a substrate/A-CQD ratio of 150. Around 87% of the substrates are converted to the related aldehydes using the carbocatalyst in the presence of H2O2, in pure water, without using a phase-transfer catalyst or any additives and organic solvents, which is comparable with the current metal-based cleavage systems. Surprisingly, A-CQDs exhibit high catalytic activity for the scission of electron-deficient C═C bond of coumarin derivatives, accompanied by the cleavage of C-O bonds to produce the corresponding salicylaldehyde derivatives without overoxidation to acid. As a brief conclusion, A-CQDs exhibit high conversion efficiency without significant loss of activity even after six catalytic cycles. The conversion of alkenes into aldehydes is fast and high-throughput without overoxidation to acids and is accompanied by excellent solubility and stability in various solvents. Moreover, the product and the catalyst are recoverable from the reaction medium by simple extraction. So, this pseudohomogeneous carbocatalyst promises new horizons in imminent "catalytic age". All in all, this paper provides a significant and novel advancement in carbocatalyst chemistry.
Collapse
Affiliation(s)
- Leila Hadian-Dehkordi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Iran
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Iran
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan 45371-38791, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Iran
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Iran
| | - Lingxia Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310032, China
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaolei Deng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310032, China
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, China
| | - Huajun Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310032, China
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
39
|
Liu KJ, Deng JH, Zeng TY, Chen XJ, Huang Y, Cao Z, Lin YW, He WM. 1,2-Diethoxyethane catalyzed oxidative cleavage of gem-disubstituted aromatic alkenes to ketones under minimal solvent conditions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
He. Y, Tang Z, Hong G, Hu C, Zhou C, Wang L. Scandium(III) Trifluoromethanesulfonate Catalyzed Reactions of 9‐Aryl‐9‐fluorenols with 1,1‐Diarylethylenes. ChemistrySelect 2020. [DOI: 10.1002/slct.202000814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yuchen He.
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Zhicong Tang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Gang Hong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Chen Hu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Chen Zhou
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
41
|
Okamoto K, Chiba K. Electrochemical Total Synthesis of Pyrrolophenanthridone Alkaloids: Controlling the Anodically Initiated Electron Transfer Process. Org Lett 2020; 22:3613-3617. [PMID: 32286833 DOI: 10.1021/acs.orglett.0c01082] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrochemical intramolecular C(sp2)-H cross-coupling and dehydrogenative indole synthesis were developed. Both reactions were initiated by anodic oxidation of the same electron-rich indoline moiety, but the product selectivity was controlled by different electron-transfer processes. Intramolecular cross-coupling was achieved by the generation of a strong electrophilic radical cation intermediate in the MeNO2-HFIP-LiClO4 system. Indole formation was accomplished through benzylic oxidation and continuous deprotonation. We applied these reactions to the total synthesis of natural pyrrolophenanthridone alkaloids.
Collapse
Affiliation(s)
- Kazuhiro Okamoto
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
42
|
|
43
|
Cao H, Qian R, Yu L. Selenium-catalyzed oxidation of alkenes: insight into the mechanisms and developing trend. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00400f] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent progresses of the selenium-catalyzed oxidation of alkenes are summarized at the mechanism level. It may be beneficial for designing novel selenium-containing catalysts and alkene oxidation protocols for the next phase of studies.
Collapse
Affiliation(s)
- Hongen Cao
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | | | - Lei Yu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| |
Collapse
|
44
|
Neuhaus WC, Jemison AL, Kozlowski MC. Vanadium-Catalyzed Selective Oxidative Homocoupling of Alkenyl Phenols to Synthesize Lignan Analogs. ACS Catal 2019; 9:11067-11073. [PMID: 32104612 DOI: 10.1021/acscatal.9b02608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidative homocoupling of para-alkenyl phenols and subsequent trapping of the resulting quinone methide with a variety of oxygen and nitrogen nucleophiles was achieved. Both β-β and β-O coupling isomers can be synthesized via either C-C coupling and two nucleophilic additions of one water molecule (β-β isomer) or C-O coupling followed by one nucleophilic addition of a water molecule (β-O isomer), respectively. Selectivity between these outcomes was achieved by leveraging understanding of the mechanism. Specifically, a qualitative predictive model for the selectivity of the coupling was formulated based on catalyst electronics, solvent polarity, and concentration.
Collapse
Affiliation(s)
- William C. Neuhaus
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Adriana L. Jemison
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
45
|
Tian S, Lv S, Jia X, Ma L, Li B, Zhang G, Gao W, Wei Y, Chen J. CV‐driven Optimization: Cobalt‐Catalyzed Electrochemical Expedient Oxychlorination of Alkenes via ORR. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Siyu Tian
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Shide Lv
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOECollege of Chemistry and Molecular Engineering. Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Baoying Li
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Guofeng Zhang
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Yingqin Wei
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| |
Collapse
|
46
|
Practical and stereoselective electrocatalytic 1,2-diamination of alkenes. Nat Commun 2019; 10:4953. [PMID: 31672991 PMCID: PMC6823458 DOI: 10.1038/s41467-019-13024-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022] Open
Abstract
The 1,2-diamine motif is widely present in natural products, pharmaceutical compounds, and catalysts used in asymmetric synthesis. The simultaneous introduction of two amino groups across an alkene feedstock is an appealing yet challenging approach for the synthesis of 1,2-diamines, primarily due to the inhibitory effect of the diamine products to transition metal catalysts and the difficulty in controlling reaction diastereoselectivity and regioselectivity. Herein we report a scalable electrocatalytic 1,2-diamination reaction that can be used to convert stable, easily available aryl alkenes and sulfamides to 1,2-diamines with excellent diastereoselectivity. Monosubstituted sulfamides react in a regioselective manner to afford 1,2-diamines bearing different substituents on the two amino groups. The combination of an organic redox catalyst and electricity not only obviates the use of any transition metal catalyst and oxidizing reagent, but also ensures broad reaction compatibility with a variety of electronically and sterically diverse substrates. Methods to prepare 1,2-diamines are desirable due the importance of these compounds as drug scaffolds and organic ligands for metals. Here, the authors report an electrochemical metal-free 1,2- diamination of aryl alkenes with sulfamides to 1,2-diamines with excellent diastereoselectivity.
Collapse
|
47
|
Imada Y, Shida N, Okada Y, Chiba K. A Novel Thermomorphic System for Electrocatalytic Diels‐Alder Reactions. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yasushi Imada
- Department of Applied Biological ScienceTokyo University of Agriculture and Technology, 3‐5‐8 Saiwai‐cho, Fuchu Tokyo 183‐8509 Japan
| | - Naoki Shida
- Department of Applied Biological ScienceTokyo University of Agriculture and Technology, 3‐5‐8 Saiwai‐cho, Fuchu Tokyo 183‐8509 Japan
| | - Yohei Okada
- Department of Chemical EngineeringTokyo University of Agriculture and Technology, 2‐24‐16 Naka‐cho, Koganei Tokyo 184‐8588 Japan
| | - Kazuhiro Chiba
- Department of Applied Biological ScienceTokyo University of Agriculture and Technology, 3‐5‐8 Saiwai‐cho, Fuchu Tokyo 183‐8509 Japan
| |
Collapse
|
48
|
Okada Y, Yamaguchi Y, Chiba K. Substitution Pattern‐Selective Olefin Cross‐Couplings. ChemElectroChem 2019. [DOI: 10.1002/celc.201900184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yohei Okada
- Department of Chemical EngineeringTokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Yusuke Yamaguchi
- Department of Applied Biological ScienceTokyo University of Agriculture and Technology 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| | - Kazuhiro Chiba
- Department of Applied Biological ScienceTokyo University of Agriculture and Technology 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| |
Collapse
|
49
|
Tian S, Jia X, Wang L, Li B, Liu S, Ma L, Gao W, Wei Y, Chen J. The Mn-catalyzed paired electrochemical facile oxychlorination of styrenes via the oxygen reduction reaction. Chem Commun (Camb) 2019; 55:12104-12107. [DOI: 10.1039/c9cc06746a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported herein is the electrochemical engendering of chlorine radicals by a manganese catalyst with a controllable pattern, and inexpensive MgCl2 as the chlorine source.
Collapse
Affiliation(s)
- Siyu Tian
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Ling Wang
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Baoying Li
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Yingqin Wei
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| |
Collapse
|