1
|
Guo M, Wu X, Wu H, Sun X. Ligand effect on Ru-centered species toward methane activation. Phys Chem Chem Phys 2024; 26:14329-14335. [PMID: 38695750 DOI: 10.1039/d4cp01420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ligands have been known to profoundly affect the chemical transformations of methane, yet significant challenges remain in shedding light on the underlying mechanisms. Here, we demonstrate that the conversion of methane can be regulated by Ru centered cations with a series of ligands (C, CH, CNH, CHCNH). Gas-phase experiments complemented by theoretical dynamic analysis were performed to explore the essences and principles governing the ligand effect. In contrast to the inert Ru+, [RuC]+, and [RuCNH]+ toward CH4, the dehydrogenation dominates the reaction of ligand-regulated systems [RuCH]+/CH4 and [RuCHCNH]+/CH4. In active cases, CH acts as active sites, and regulates the activation of CH4 assisted by the "seemingly inert" CNH ligand.
Collapse
Affiliation(s)
- Mengdi Guo
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Xiaonan Wu
- East China Normal University, Shanghai 200241, P. R. China.
| | - Hechen Wu
- Fudan University, Shanghai 200240, P. R. China
| | - Xiaoyan Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
- Shandong Energy Institute, Qingdao 266101, P. R. China
| |
Collapse
|
2
|
Cosio MN, Powers DC. Prospects and challenges for nitrogen-atom transfer catalysis. NATURE REVIEWS. CHEMISTRY 2023:10.1038/s41570-023-00482-1. [PMID: 37117815 DOI: 10.1038/s41570-023-00482-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/30/2023]
Abstract
Conversion of C-H bonds to C-N bonds via C-H amination promises to streamline the synthesis of nitrogen-containing compounds. Nitrogen-group transfer (NGT) from metal nitrenes ([M]-NR complexes) has been the focus of intense research and development. By contrast, potentially complementary nitrogen-atom transfer (NAT) chemistry, in which a terminal metal nitride (an [M]-N complex) engages with a C-H bond, is underdeveloped. Although the earliest examples of stoichiometric NAT chemistry were reported 25 years ago, catalytic protocols are only now beginning to emerge. Here, we summarize the current state of the art in NAT chemistry and discuss opportunities and challenges for its development. We highlight the synthetic complementarity of NGT and NAT and discuss critical aspects of nitride electronic structure that dictate the philicity of the metal-supported nitrogen atom. We also examine the characteristic reactivity of metal nitrides and present emerging strategies and remaining obstacles to harnessing NAT for selective, catalytic nitrogenation of unfunctionalized organic small molecules.
Collapse
Affiliation(s)
- Mario N Cosio
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Guo M, Zhou S, Sun X. Room-Temperature Conversion of Methane to Methanediol by [FeO 2] . J Phys Chem Lett 2023; 14:1633-1640. [PMID: 36752636 DOI: 10.1021/acs.jpclett.2c03786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inspired by the activities of P-450 enzyme and Rieske oxygenases in nature, in which the high-valent Fe-oxo complexes play a key role for oxidation of alkanes, the oxidation process of methane by the high-valent iron oxide cation [FeO2]+ has been explored by using Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry complemented by high-level quantum chemical calculations. In contrast to the previously reported [FeO]+/CH4 and [Fe(O)OH]+/CH4 systems, which afford [FeOH]+ as the main product, the generation of Fe+ dominates the reaction of [FeO2]+ with CH4. Theoretical calculations suggest a novel "oxygen rebound" pathway for the liberation of methanediol. In particular, the inevitable valence increase of Fe prior to C-H activation is similar to the cytochrome P-450 mediated processes. To our best knowledge, this study provides the first example of methane activation by the high-valent Fe(V)-oxo species in the gas phase, which may thus bridge the gas-phase model and the condensed-phase biosystems.
Collapse
Affiliation(s)
- Mengdi Guo
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University─Quzhou, Zheda Road No. 99, Quzhou 324000, China
| | - Xiaoyan Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| |
Collapse
|
4
|
Reetz MT. Dyotropic Rearrangements in Organic Solvents, in the Gas Phase, and in Enzyme Catalysis. Isr J Chem 2023. [DOI: 10.1002/ijch.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 China
| |
Collapse
|
5
|
Du S, Liu X, Ju B, Zhang J, Zou J, Li G, Fan H, Xie H, Jiang L. Spectroscopic Identification of the Dinitrogen Fixation and Activation by Metal Carbide Cluster Anions PtC n- ( n = 4-6). Inorg Chem 2023; 62:170-177. [PMID: 36573891 DOI: 10.1021/acs.inorgchem.2c03150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nitrogen fixation is confronted with great challenges in the field of chemistry. Herein, we report that single metal carbides PtCn- and PtCnN2- (n = 4-6) are indispensable intermediates in the process of nitrogen fixation by mass spectrometry coupled with anionic photoelectron spectroscopy, quantum chemical calculations, and simulated density-of-state spectra. The most stable isomers of these cluster anions are characterized to have linear chain structures. The fixation and activation of dinitrogen are facilitated by the charge transfer from Pt and Cn to N2. The significance of π back-donation of the 5d orbital of the Pt atom to the antibonding π orbits of N2 for dinitrogen fixation and activation is discussed in detail. This study not only provides a theoretical basis at the molecular level for the activation of dinitrogen by mononuclear metal carbide clusters but also provides a new paradigm for dinitrogen fixation.
Collapse
Affiliation(s)
- Shihu Du
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China.,School of Mathematics and Physics, Hebei University of Engineering, Handan056038, China
| | - Xuegang Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Bangmin Ju
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Jumei Zhang
- School of Life Science, Ludong University, Yantai, Shandong264025, China
| | - Jinghan Zou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| |
Collapse
|
6
|
Yang Y, Zhao Y, He S. Conversion of CH
4
Catalyzed by Gas Phase Ions Containing Metals. Chemistry 2022; 28:e202200062. [DOI: 10.1002/chem.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yuan Yang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
7
|
Schmidt‐Räntsch T, Verplancke H, Lienert JN, Demeshko S, Otte M, Van Trieste GP, Reid KA, Reibenspies JH, Powers DC, Holthausen MC, Schneider S. Nitrogen Atom Transfer Catalysis by Metallonitrene C-H Insertion: Photocatalytic Amidation of Aldehydes. Angew Chem Int Ed Engl 2022; 61:e202115626. [PMID: 34905281 PMCID: PMC9305406 DOI: 10.1002/anie.202115626] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/18/2022]
Abstract
C-H amination and amidation by catalytic nitrene transfer are well-established and typically proceed via electrophilic attack of nitrenoid intermediates. In contrast, the insertion of (formal) terminal nitride ligands into C-H bonds is much less developed and catalytic nitrogen atom transfer remains unknown. We here report the synthesis of a formal terminal nitride complex of palladium. Photocrystallographic, magnetic, and computational characterization support the assignment as an authentic metallonitrene (Pd-N) with a diradical nitrogen ligand that is singly bonded to PdII . Despite the subvalent nitrene character, selective C-H insertion with aldehydes follows nucleophilic selectivity. Transamidation of the benzamide product is enabled by reaction with N3 SiMe3 . Based on these results, a photocatalytic protocol for aldehyde C-H trimethylsilylamidation was developed that exhibits inverted, nucleophilic selectivity as compared to typical nitrene transfer catalysis. This first example of catalytic C-H nitrogen atom transfer offers facile access to primary amides after deprotection.
Collapse
Affiliation(s)
- Till Schmidt‐Räntsch
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Hendrik Verplancke
- Institut für Anorganische und Analytische ChemieGoethe-UniversitätMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Jonas N. Lienert
- Institut für Anorganische und Analytische ChemieGoethe-UniversitätMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Serhiy Demeshko
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Matthias Otte
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | | | - Kaleb A. Reid
- Department of ChemistryTexas A&M University3255 TAMUCollege StationTX 77843USA
| | | | - David C. Powers
- Department of ChemistryTexas A&M University3255 TAMUCollege StationTX 77843USA
| | - Max C. Holthausen
- Institut für Anorganische und Analytische ChemieGoethe-UniversitätMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Sven Schneider
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| |
Collapse
|
8
|
Schmidt‐Räntsch T, Verplancke H, Lienert JN, Demeshko S, Otte M, Van Trieste GP, Reid KA, Reibenspies JH, Powers DC, Holthausen MC, Schneider S. Nitrogen Atom Transfer Catalysis by Metallonitrene C−H Insertion: Photocatalytic Amidation of Aldehydes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Till Schmidt‐Räntsch
- Institut für Anorganische Chemie Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| | - Hendrik Verplancke
- Institut für Anorganische und Analytische Chemie Goethe-Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Jonas N. Lienert
- Institut für Anorganische und Analytische Chemie Goethe-Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| | - Matthias Otte
- Institut für Anorganische Chemie Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| | | | - Kaleb A. Reid
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | | | - David C. Powers
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Max C. Holthausen
- Institut für Anorganische und Analytische Chemie Goethe-Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Sven Schneider
- Institut für Anorganische Chemie Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| |
Collapse
|
9
|
Yan L, Li S, Zhou S. On the origin of reactivity variation upon sequential ligation: the [Re(Cl) x] +/CH 4 ( x = 1-3) couples. Phys Chem Chem Phys 2021; 23:24319-24327. [PMID: 34673861 DOI: 10.1039/d1cp03468e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential of [ReClx]+ (x = 1-3) in activating methane has been explored by using a combination of gas-phase experiments and high-level quantum calculations. When the number of Cl ligands increases, the reactivity towards methane activation varies accordingly. While [ReClx]+ (x = 1-2) are able to dehydrogenate methane by a three-state reactivity scenario, [ReCl3]+ shows inertness towards methane at ambient conditions. Furthermore, the product ion [ClRe(H)CH]+ of the [ReCl]+/CH4 couple could continue to activate methane and liberate molecular dihydrogen but another product ion [Cl2ReCH2]+ is unreactive with methane. Obviously, the nature and the number of ligands make a difference to the reactivity towards methane activation. The associated reaction mechanism and the electron origins for the rather different reactivities are discussed in detail. Finally and more importantly, instructive information concerning the rational design of Re-catalysts for methane conversion is obtained.
Collapse
Affiliation(s)
- Linghui Yan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027 Hangzhou, P. R. China. .,Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, 324000 Quzhou, P. R. China
| | - Shihan Li
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027 Hangzhou, P. R. China. .,Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, 324000 Quzhou, P. R. China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027 Hangzhou, P. R. China. .,Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, 324000 Quzhou, P. R. China
| |
Collapse
|
10
|
New insights into colloidal GO, Cr(VI) and Fe(II) interaction by a combined batch, spectroscopic and DFT calculation investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Mou LH, Li ZY, Liu QY, He SG. Size-Dependent Association of Cobalt Deuteride Cluster Anions Co 3D n- (n = 0-4) with Dinitrogen. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1956-1963. [PMID: 31236780 DOI: 10.1007/s13361-019-02226-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Dinitrogen (N2) activation by metal hydride species is of fundamental interest and practical importance while the role of hydrogen in N2 activation is not well studied. Herein, the structures of Co3Dn- (n = 0-4) clusters and their reactions with N2 have been studied by using a combined experimental and computational approach. The mass spectrometry experiments identified that the Co3Dn- (n = 2-4) clusters could adsorb N2 while the Co3Dn- (n = 0 and 1) clusters were inert. The photoelectron imaging spectroscopy indicated that the electron detachment energies of Co3D2-4- are smaller than those of Co3D0,1-, which characterized that it is easier to transfer electrons from Co3D2-4- than from Co3D0,1- to activate N2. The density functional theory calculations generally supported the experimental observations. Further analysis revealed that the H atoms in the Co3Hn- (n = 2-4) clusters generally result in higher energies of the Co 3d orbitals in comparison with the Co3Hn- (n = 0 and 1) systems. By forming chemical bonds with H atoms, the Co atoms of Co3H2-4- are less negatively charged with respect to the naked Co3- system, which leads to higher N2 binding energies of Co3H2-4N2- than that of Co3N2-.
Collapse
Affiliation(s)
- Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- CAS Research/Education Center of Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, People's Republic of China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- CAS Research/Education Center of Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, People's Republic of China.
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- CAS Research/Education Center of Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, People's Republic of China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- CAS Research/Education Center of Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, People's Republic of China.
| |
Collapse
|
12
|
Sato A, Ogo S, Kamata K, Takeno Y, Yabe T, Yamamoto T, Matsumura S, Hara M, Sekine Y. Ambient-temperature oxidative coupling of methane in an electric field by a cerium phosphate nanorod catalyst. Chem Commun (Camb) 2019; 55:4019-4022. [DOI: 10.1039/c9cc00174c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The application of an electric field to a CePO4 nanorod catalyst enabled ambient-temperature oxidative coupling of methane to C2 hydrocarbons.
Collapse
Affiliation(s)
- Ayaka Sato
- Department of Applied Chemistry
- Waseda University
- Tokyo
- Japan
| | - Shuhei Ogo
- Department of Applied Chemistry
- Waseda University
- Tokyo
- Japan
- PRESTO
| | - Keigo Kamata
- PRESTO
- Japan Science and Technology Agency (JST)
- Saitama
- Japan
- Laboratory for Materials and Structures
| | - Yuna Takeno
- Department of Applied Chemistry
- Waseda University
- Tokyo
- Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry
- Waseda University
- Tokyo
- Japan
| | - Tomokazu Yamamoto
- Department of Applied Quantum Physics and Nuclear Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Syo Matsumura
- Department of Applied Quantum Physics and Nuclear Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Yasushi Sekine
- Department of Applied Chemistry
- Waseda University
- Tokyo
- Japan
| |
Collapse
|