1
|
Wu L, Tan Y, Zhang H, Guo P, Yang D. A laser free self-luminous nanosystem for photodynamic therapy of cervical cancer cells. Photodiagnosis Photodyn Ther 2023; 44:103756. [PMID: 37604218 DOI: 10.1016/j.pdpdt.2023.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Photodynamic therapy is a tumor treatment strategy. However, most of the photodynamic therapies rely on laser irradiation triggering, which limits their application in deep tissues. This study designed a self-luminescent nano system, hybrid protein oxygen nanocarrier coated graphene quantum dots (GQDs@HPOC) and mesoporous silica nanoparticles coated Luminol (L@MSNs), which self-assembled into GQDs@HPOC/L@MSNs without laser irradiation. The system utilized the weak acidic environment of tumors to trigger the release of Luminol and the chemiluminescence was catalyzed by HPOC. Next CRET occurred between Luminol and GQDs, producing 1O2, which could generate photodynamic damage to cervical cancer cells without the need for external laser irradiation. The system achieved the peak uptake in primary cervical cancer cells in 3 h, and had good biosafety before self-assembly. The system could significantly kill cells at a concentration of 16 μg/ml. The system will be further applied in in vivo experiments to investigate its therapeutic ability, providing a new strategy for the clinical treatment of cervical cancer.
Collapse
Affiliation(s)
- Lin Wu
- Jiangyin Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu 214400, PR China
| | - Yiping Tan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Huaiyin Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Pengyue Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
2
|
Wang J, Lu T, Li Y, Wang J, Spruijt E. Aqueous coordination polymer complexes: From colloidal assemblies to bulk materials. Adv Colloid Interface Sci 2023; 318:102964. [PMID: 37515864 DOI: 10.1016/j.cis.2023.102964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
1-dimensional (1D) coordination polymers refer to the macromolecules that have metal ions incorporated in their pendent groups or main chain through metal-binding ligand groups. They have intrinsic advantages over traditional polymers to regulate the polymer structures and functions owing to the nature of the metal-ligand bond. Consequently, they have great potential for the development of smart and functional structures and materials and therapeutic agents. Water-soluble 1D coordination polymers and assemblies are an important subtype of coordination polymers with distinctive interests for demanding applications in aqueous systems, such as biological and medical applications. This review highlights the recent progress and research achievements in the design and use of water-soluble 1D coordination polymers and assemblies. The overview covers the design and structure control of 1D coordination polymers, their colloidal assemblies, including nanoparticles, nanofibers, micelles and vesicles, and fabricated bulk materials such as membraneless liquid condensates, security ink, hydrogel actuators, and smart fabrics. Finally, we discuss the potential applications of several of these coordination polymeric structures and materials and give an outlook on the field of aqueous coordination polymers.
Collapse
Affiliation(s)
- Jiahua Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Tiemei Lu
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Evan Spruijt
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Hu J, Yu B, Sun W, Lu L. Calcination-controlled performance optimization of iron-vanadium bimetallic oxide nanoparticles for synergistic tumor therapy. J Mater Chem B 2023; 11:2886-2894. [PMID: 36942660 DOI: 10.1039/d3tb00113j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Calcination has been widely demonstrated as a favorable protocol for producing various inorganic nanomaterials for tumor therapy. However, little attention has been paid to its effect on the biotherapeutic efficacy of inorganic nanomaterials. Herein, we compare the effects of different calcination atmospheres on the therapeutic efficacy of Fe-V-O (FVO) nanomaterials. We find that compared with FVO nanomaterials synthesized by calcination in air, those prepared by argon calcination have a lower metallic valence state and a higher near-infrared light absorption capacity, hence resulting in significantly better biosafety and higher chemodynamic therapy (CDT)/photothermal therapy (PTT) efficacy. This study demonstrates that the therapeutic efficacy of inorganic nanomaterials can be optimized by employing different thermal treatment atmospheres, which provides new insights into the development of efficient anti-tumor agents.
Collapse
Affiliation(s)
- Jiaxin Hu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Wenbo Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
4
|
Yao Y, Ding P, Yan C, Tao Y, Peng B, Liu W, Wang J, Cohen Stuart MA, Guo Z. Fluorescent Probes Based on AIEgen-Mediated Polyelectrolyte Assemblies for Manipulating Intramolecular Motion and Magnetic Relaxivity. Angew Chem Int Ed Engl 2023; 62:e202218983. [PMID: 36700414 DOI: 10.1002/anie.202218983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Uniting photothermal therapy (PTT) with magnetic resonance imaging (MRI) holds great potential in nanotheranostics. However, the extensively utilized hydrophobicity-driven assembling strategy not only restricts the intramolecular motion-induced PTT, but also blocks the interactions between MR agents and water. Herein, we report an aggregation-induced emission luminogen (AIEgen)-mediated polyelectrolyte nanoassemblies (APN) strategy, which bestows a unique "soft" inner microenvironment with good water permeability. Femtosecond transient spectra verify that APN well activates intramolecular motion from the twisted intramolecular charge transfer process. This de novo APN strategy uniting synergistically three factors (rotational motion, local motion, and hydration number) brings out high MR relaxivity. For the first time, APN strategy has successfully modulated both intramolecular motion and magnetic relaxivity, achieving fluorescence lifetime imaging of tumor spheroids and spatio-temporal MRI-guided high-efficient PTT.
Collapse
Affiliation(s)
- Yongkang Yao
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Ding
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenxu Yan
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yining Tao
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bo Peng
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 200237, China
| | - Weimin Liu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 200237, China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Martien A Cohen Stuart
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiqian Guo
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
5
|
Tian Z, Wang W, Dong C, Deng X, Wang GH. A General and Scalable Approach to Sulfur-Doped Mono-/Bi-/Trimetallic Nanoparticles Confined in Mesoporous Carbon. ACS NANO 2023; 17:3889-3900. [PMID: 36790029 DOI: 10.1021/acsnano.2c12168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal nanoparticles confined in porous carbon materials have been widely used in various heterogeneous catalytic processes due to their enhanced activity and stability. However, fabrication of such catalysts in a facile and scalable way remains challenging. Herein, we report a general and scalable thiol-assisted strategy to synthesize sulfur-doped mono-/bi-/trimetallic nanoparticles confined in mesoporous carbon (S-M@MC, M = Pt, Pd, Rh, Co, Zn, etc.), involving only two synthetic steps, i.e., a hydrothermal process and pyrolysis. The strategy is based on coordination chemistry and hydro-phobic interaction that the metal precursors coordinated with the hydrophobic thiol ligands are located at the hydrophobic core of micelles, in situ confined in the hydrothermally prepared mesostructured polymer, and then converted into sulfur-doped metal nanoparticles confined in MC after pyrolysis. It is demonstrated that the S-PtCo@MC exhibits enhanced catalytic activity and improved durability toward acidic hydrogen evolution reaction due to the confinement effect and S-doping.
Collapse
Affiliation(s)
- Zhengbin Tian
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Wenquan Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Dong
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaohui Deng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Guang-Hui Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Liu S, Dun C, Chen J, Rao S, Shah M, Wei J, Chen K, Xuan Z, Kyriakidou EA, Urban JJ, Swihart MT. A General Route to Flame Aerosol Synthesis and In Situ Functionalization of Mesoporous Silica. Angew Chem Int Ed Engl 2022; 61:e202206870. [DOI: 10.1002/anie.202206870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shuo Liu
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Chaochao Dun
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Junjie Chen
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Satyarit Rao
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Mihir Shah
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Jilun Wei
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Zhengxi Xuan
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
- RENEW Institute University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Eleni A. Kyriakidou
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Jeffrey J. Urban
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Mark T. Swihart
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
- RENEW Institute University at Buffalo (SUNY) Buffalo NY 14260 USA
| |
Collapse
|
7
|
Liu S, Dun C, Chen J, Rao S, Shah M, Wei J, Chen K, Xuan Z, Kyriakidou EA, Urban JJ, Swihart MT. A General Route to Flame Aerosol Synthesis and in situ Functionalization of Mesoporous Silica. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuo Liu
- University at Buffalo Chemical and Biological Engineering UNITED STATES
| | - Chaochao Dun
- Lawrence Berkeley National Laboratory: E O Lawrence Berkeley National Laboratory Molecular Foundry UNITED STATES
| | - Junjie Chen
- University at Buffalo Chemical and Biological Engineering UNITED STATES
| | - Satyarit Rao
- University at Buffalo Chemical and Biological Engineering UNITED STATES
| | - Mihir Shah
- University at Buffalo Chemical and Biological Engineering UNITED STATES
| | - Jilun Wei
- University at Buffalo Chemical and Biological Engineering UNITED STATES
| | - Kaiwen Chen
- University at Buffalo Chemical and Biological Engineering UNITED STATES
| | - Zhengxi Xuan
- University at Buffalo Chemical and Biological Engineering UNITED STATES
| | | | - Jeffrey J. Urban
- Lawrence Berkeley National Laboratory: E O Lawrence Berkeley National Laboratory Molecular Foundry UNITED STATES
| | - Mark T. Swihart
- University at Buffalo Chemical and Biological Engineering 308 Furnas Hall 14260-4200 Buffalo UNITED STATES
| |
Collapse
|
8
|
Saini B, Singh S, Mukherjee TK. Nanocatalysis under Nanoconfinement: A Metal-Free Hybrid Coacervate Nanodroplet as a Catalytic Nanoreactor for Efficient Redox and Photocatalytic Reactions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51117-51131. [PMID: 34669368 DOI: 10.1021/acsami.1c17106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nature utilizes cellular and subcellular compartmentalization to efficiently drive various complex enzymatic transformations via spatiotemporal control. In this context, designing of artificial nanoreactors for efficient catalytic transformations finds tremendous importance in recent times. One key challenge remains the design of multiple catalytic centers within the confined space of a nanoreactor without unwanted agglomeration and accessibility barrier for reactants. Herein, we report a unique blend of nanoscience and chemical catalysis using a metal-free hybrid synthetic protocell as a catalytic nanoreactor for redox and photocatalytic transformations, which are otherwise incompatible in bulk aqueous medium. Hybrid coacervate nanodroplets (NDs) fabricated from 2.5 nm-sized carbon dots (CDs) and poly(diallyldimethyl)ammonium chloride have been utilized toward reductive hydrogenation of nitroarenes in the presence of sodium borohydride (NaBH4). It has been found that the reduction mechanism follows the classical Langmuir-Hinshelwood (LH) model at the surface of embedded CDs inside the NDs via the generation of reactive surface hydroxyl groups. These NDs show excellent recyclability without any compromise on reaction kinetics and conversion yield. Importantly, spatiotemporal control over the hydrogenation reaction has been achieved using two mixed populations of coacervates. Moreover, efficient visible light-induced photoredox conversion of ferricyanide to ferrocyanide and artificial peroxidase-like activity have also been demonstrated inside these catalytic NDs. Our findings indicate that the individual polymer-bound CD inside the NDs acts as the catalytic center for both the redox and photocatalytic reactions. The present study highlights the unprecedented catalytic activity of the metal-free CD-based coacervate NDs and paves the way for next-generation catalytic nanoreactors for a wide range of chemical and enzymatic transformations.
Collapse
Affiliation(s)
- Bhawna Saini
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Shivendra Singh
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Tushar Kanti Mukherjee
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
9
|
Jobdeedamrong A, Theerasilp M, Nasongkla N, Crespy D. Nanocapsules with excellent biocompatibility and stability in protein solutions. Biomater Sci 2021; 9:5781-5784. [PMID: 34152342 DOI: 10.1039/d1bm00510c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Silica nanocapsules (SiO2NCs) are usually prepared with cationic surfactants that are not cytocompatible. Dialysis can be used to remove surfactants but leads to instability of the SiO2NCs when they are in the presence of proteins or biological media. Herein, SiO2NCs stabilized with a reactive surfactant are synthesized to prevent leaching upon dialysis. The SiO2NCs show superior stability and biocompatibility compared with SiO2NCs prepared with conventional surfactants. The SiO2NCs can be used in self-healing materials, smart agriculture and biomedical applications.
Collapse
Affiliation(s)
- Arjaree Jobdeedamrong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand.
| | | | | | | |
Collapse
|
10
|
Wang C, Wu H, Jie X, Zhang X, Zhao Y, Yao B, Xiao T. Yolk-Shell Nanocapsule Catalysts as Nanoreactors with Various Shell Structures and Their Diffusion Effect on the CO 2 Reforming of Methane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31699-31709. [PMID: 34191495 DOI: 10.1021/acsami.1c06847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Well-geometric-confined yolk-shell catalysts can act as nanoreactors that are of benefit for the antisintering of metals and resistance to coke formation in high-temperature reactions such as the CO2 reforming of methane. Notwithstanding the credible advances of core/yolk-shell catalysts, the enlarged shell diffusion effects that occur under high space velocity can deactivate the catalysts and hence pose a hurdle for the potential application of these types of catalysts. Here, we demonstrated the importance of the shell thickness and porosity of small-sized Ni@SiO2 nanoreactor catalysts, which can vary the diffusional paths/rates of the diffusants that directly affect the catalytic activity. The nanoreactor with an ∼4.5 nm shell thickness and rich pores performed the best in tolerating the shell diffusion effects, and importantly, no catalytic deactivation was observed. We further proposed a shell diffusion effect scheme by modifying the Weisz-Prater and blocker model and found that the "gas wall/hard blocker" formed on the openings of the shell pores can cause reversible/irreversible interruption of the shell mass transfer and thus temporarily/permanently deactivate the nanoreactor catalysts. This work highlights the shell diffusion effects, apart from the metal sintering and coke formation, as an important factor that are ascribed to the deactivation of a nanoreactor catalyst.
Collapse
Affiliation(s)
- Changzhen Wang
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
| | - Hao Wu
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
| | - Xiangyu Jie
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
- Merton College, University of Oxford, Oxford OX1 4JD, United Kingdom
| | - Xiaoming Zhang
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
| | - Yongxiang Zhao
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
| | - Benzhen Yao
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Tiancun Xiao
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
11
|
Trzeciak K, Chotera-Ouda A, Bak-Sypien II, Potrzebowski MJ. Mesoporous Silica Particles as Drug Delivery Systems-The State of the Art in Loading Methods and the Recent Progress in Analytical Techniques for Monitoring These Processes. Pharmaceutics 2021; 13:pharmaceutics13070950. [PMID: 34202794 PMCID: PMC8309060 DOI: 10.3390/pharmaceutics13070950] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Conventional administration of drugs is limited by poor water solubility, low permeability, and mediocre targeting. Safe and effective delivery of drugs and therapeutic agents remains a challenge, especially for complex therapies, such as cancer treatment, pain management, heart failure medication, among several others. Thus, delivery systems designed to improve the pharmacokinetics of loaded molecules, and allowing controlled release and target specific delivery, have received considerable attention in recent years. The last two decades have seen a growing interest among scientists and the pharmaceutical industry in mesoporous silica nanoparticles (MSNs) as drug delivery systems (DDS). This interest is due to the unique physicochemical properties, including high loading capacity, excellent biocompatibility, and easy functionalization. In this review, we discuss the current state of the art related to the preparation of drug-loaded MSNs and their analysis, focusing on the newest advancements, and highlighting the advantages and disadvantages of different methods. Finally, we provide a concise outlook for the remaining challenges in the field.
Collapse
|
12
|
Baeckmann C, Eisen C, Kählig H, Guggenberger P, Kleitz F. Facile Synthesis of Spatially‐Functionalized Core‐Shell Nanocatalysts with 3‐D Mesopore Structure. ChemCatChem 2021. [DOI: 10.1002/cctc.202001737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Cornelia Baeckmann
- Department of Inorganic Chemistry – Functional Materials Faculty of Chemistry University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Constantin Eisen
- Department of Inorganic Chemistry – Functional Materials Faculty of Chemistry University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Hanspeter Kählig
- Department of Organic Chemistry Faculty of Chemistry University of Vienna Währinger Straße 38 1090 Vienna Austria
| | - Patrick Guggenberger
- Department of Inorganic Chemistry – Functional Materials Faculty of Chemistry University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Freddy Kleitz
- Department of Inorganic Chemistry – Functional Materials Faculty of Chemistry University of Vienna Währinger Straße 42 1090 Vienna Austria
| |
Collapse
|
13
|
Zhang R, Fu Q, Zhu D, Shen Z, Zhou K, Yao Y, Zhu X. CO2-Responsive Spherical Polyelectrolyte Brush with Multi-Stimulation for Reversible Protein Immobilization and Release. Aust J Chem 2021. [DOI: 10.1071/ch20099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Multi-responsive materials have received extensive interest in many areas due to their smart characteristics. This paper presents rationally designed multi-responsive spherical polyelectolyte brushes composed of a solid polystyrene (PS) core and a poly (2-(dimethylamino) ethyl methacrylate) (PDMAEMA) shell synthesized by photoemulsion polymerization. Based on dynamic light scattering, Zeta potential, turbidity measurements, isothermal titration calorimetry, and UV-vis spectroscopy, PS-PDMAEMA works as a good potential adsorbent for bovine serum albumin (BSA) for which the maximum adsorption capability could reach up to 5190mg g−1. Moreover, the immobilization and release of protein on the polymer brush could be adjusted with different triggers, including the pH, ionic strength, and temperature. Furthermore, the green gas triggers, CO2 and N2, could be employed in the BSA@ PS-PDMAEMA system by easily bubbling over many cycles without any salt accumulation. The main reason for the observed actions is the brushes could be switched alternately between extended and collapsed states with different stimulations. Upon comparing the circular dichroism spectra of original and released BSA after many cycles of adsorption and release, it’s clear that the protein can retain its initial biological activity after release from the PS-PDMAEMA. This work provides an effective and green way to immobilize and release proteins in biotechnology.
Collapse
|
14
|
Watanabe T, Yamamoto E, Uchida S, Cheng L, Wada H, Shimojima A, Kuroda K. Preparation of Sub-50 nm Colloidal Monodispersed Hollow Siloxane-Based Nanoparticles with Controlled Shell Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13833-13842. [PMID: 33190504 DOI: 10.1021/acs.langmuir.0c02190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hollow siloxane-based nanoparticles (HSNs) have attracted significant attention because of their promising unique properties for various applications. For advanced applications, especially in catalysis, drug delivery systems, and smart coatings, high dispersibility and monodispersity of HSNs with precisely controlled shell structures are important. In this study, we established a simple method for preparing colloidal HSNs with a uniform particle size below 50 nm by the reaction of colloidal silica nanoparticles with bridged organoalkoxysilane [1,2-bis(triethoxysilyl)ethylene: (EtO)3Si-C2H2-Si(OEt)3, BTEE] in the presence of a cationic surfactant. Upon the formation of organosiloxane shells by hydrolysis and polycondensation of BTEE, the core silica nanoparticles were spontaneously dissolved, and a part of the silicate species was incorporated into the organosiloxane shells. The size of the colloidal silica nanoparticles, the amount of BTEE added, and the pH of the reaction mixture greatly affected the formation of HSNs. Importantly, colloidal HSNs having micropores and mesopores in the shells were successfully prepared using silica nanoparticles (20, 30, and 40 nm in diameter) at pH values of 9 and 11, respectively. These HSNs are potentially important for applications in drug delivery systems and catalysis.
Collapse
Affiliation(s)
- Tenkai Watanabe
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Eisuke Yamamoto
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Saki Uchida
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Lulu Cheng
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiroaki Wada
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Atsushi Shimojima
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Nishiwaseda 2-8-26, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Kazuyuki Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Nishiwaseda 2-8-26, Shinjuku-ku, Tokyo 169-0051, Japan
| |
Collapse
|
15
|
Dong C, Yu Q, Ye R, Su P, Liu J, Wang G. Hollow Carbon Sphere Nanoreactors Loaded with PdCu Nanoparticles: Void-Confinement Effects in Liquid-Phase Hydrogenations. Angew Chem Int Ed Engl 2020; 59:18374-18379. [PMID: 32588534 PMCID: PMC7590117 DOI: 10.1002/anie.202007297] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Indexed: 01/14/2023]
Abstract
Nanoreactors with hollow structures have attracted great interest in catalysis research due to their void-confinement effects. However, the challenge in unambiguously unraveling these confinement effects is to decouple them from other factors affecting catalysis. Here, we synthesize a pair of hollow carbon sphere (HCS) nanoreactors with presynthesized PdCu nanoparticles encapsulated inside of HCS (PdCu@HCS) and supported outside of HCS (PdCu/HCS), respectively, while keeping other structural features the same. Based on the two comparative nanoreactors, void-confinement effects in liquid-phase hydrogenation are investigated in a two-chamber reactor. It is found that hydrogenations over PdCu@HCS are shape-selective catalysis, can be accelerated (accumulation of reactants), decelerated (mass transfer limitation), and even inhibited (molecular-sieving effect); conversion of the intermediate in the void space can be further promoted. Using this principle, a specific imine is selectively produced. This work provides a proof of concept for fundamental catalytic action of the hollow nanoreactors.
Collapse
Affiliation(s)
- Chao Dong
- Key Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
| | - Qun Yu
- Key Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Run‐Ping Ye
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Panpan Su
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Jian Liu
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
- Dalian National Laboratory for Clean EnergyDalian116023China
- DICP-Surrey Joint Centre for Future MaterialsDepartment of Chemical and Process Engineering, andAdvanced Technology InstituteUniversity of SurreyGuilfordGU2 7XHUK
| | - Guang‐Hui Wang
- Key Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- University of Chinese Academy of SciencesBeijing100049China
- Dalian National Laboratory for Clean EnergyDalian116023China
| |
Collapse
|
16
|
Dong C, Yu Q, Ye R, Su P, Liu J, Wang G. Hollow Carbon Sphere Nanoreactors Loaded with PdCu Nanoparticles: Void‐Confinement Effects in Liquid‐Phase Hydrogenations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chao Dong
- Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 China
| | - Qun Yu
- Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Run‐Ping Ye
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Panpan Su
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jian Liu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Dalian National Laboratory for Clean Energy Dalian 116023 China
- DICP-Surrey Joint Centre for Future Materials Department of Chemical and Process Engineering, and Advanced Technology Institute University of Surrey Guilford GU2 7XH UK
| | - Guang‐Hui Wang
- Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Dalian National Laboratory for Clean Energy Dalian 116023 China
| |
Collapse
|
17
|
Du Z, Liu C, Song H, Scott P, Liu Z, Ren J, Qu X. Neutrophil-Membrane-Directed Bioorthogonal Synthesis of Inflammation-Targeting Chiral Drugs. Chem 2020. [DOI: 10.1016/j.chempr.2020.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Wang J, Pan M, Yuan J, Lin Q, Zhang X, Liu G, Zhu L. Hollow mesoporous silica with a hierarchical shell from in situ synergistic soft-hard double templates. NANOSCALE 2020; 12:10863-10871. [PMID: 32396932 DOI: 10.1039/d0nr01709d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Traditional methods for the construction of hollow particles with a hierarchical shell mainly rely on complicated chemical routes and removal of the templates. Herein, hollow mesoporous silica particles with a sphere-on-sphere (SOS) structure were successfully synthesized via a one-pot method using a novel "in situ synergistic soft-hard double template" strategy, that is, styrene (St) droplets as a soft template and in situ polymerized PS nano-domains as a hard template. The pre-hydrolysate derived from the silica precursor methyltriethoxysilane could anchor on the surface of the St droplets due to its amphiphilicity and then continue hydrolysis-condensation to form the mesoporous silica shell (MSS). Subsequently, MSS was used as a nanoreactor, and some of the in situ polymerized PS chains in the nanoreactor migrated to the outer surface of MSS due to the action of strong capillary force in the mesoporous channels, while some of the siloxane oligomers migrated to the surface due to their apparent interfacial activity, resulting in the hierarchical appearance of SOS. Furthermore, other intriguing hollow silica particles with a hollow sphere-on-sphere (HOS) structure were obtained by calcining the obtained SOS particles. The application of the as-prepared SOS and HOS particles showed their potential in the superhydrophobicity and detoxification fields, respectively.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Yang Q, Li L, Zhao F, Wang Y, Ye Z, Hua C, Liu Z, Bohinc K, Guo X. Spherical Polyelectrolyte Brushes as Templates to Prepare Hollow Silica Spheres Encapsulating Metal Nanoparticles. NANOMATERIALS 2020; 10:nano10040799. [PMID: 32326263 PMCID: PMC7221898 DOI: 10.3390/nano10040799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 01/30/2023]
Abstract
Integrating hollow silica spheres with metal nanoparticles to fabricate multifunctional hybrid materials has attracted increasing attention in catalysis, detection, and drug delivery. Here, we report a simple and general method to prepare hollow silica spheres encapsulating silver nanoparticles (Ag@SiO2) based on spherical polyelectrolyte brushes (SPB), which consist of a polystyrene core and densely grafted poly (acrylic acid) (PAA) chains. SPB were firstly used as nanoreactors to generate silver nanoparticles in situ and then used as sacrificial templates to prepare hybrid hollow silica spheres. The resulted Ag@SiO2 composites exhibit high catalytic activity and good reusability for the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. More importantly, this developed approach can be extended to the encapsulation of other metal nanoparticles such as gold nanoparticles into the hollow silica spheres. This work demonstrates that SPB are promising candidates for the preparation of hollow spheres with encapsulated metal nanoparticles and the resulted hybrid spheres show great potential applications in catalysis.
Collapse
Affiliation(s)
- Qingsong Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.); (F.Z.); (Y.W.); (Z.Y.); (C.H.)
| | - Li Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.); (F.Z.); (Y.W.); (Z.Y.); (C.H.)
- Correspondence: (L.L.); (X.G.); Tel.: +86-21-6425-3789 (L.L.); +86-21-6425-3491 (X.G.)
| | - Fang Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.); (F.Z.); (Y.W.); (Z.Y.); (C.H.)
| | - Yunwei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.); (F.Z.); (Y.W.); (Z.Y.); (C.H.)
| | - Zhishuang Ye
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.); (F.Z.); (Y.W.); (Z.Y.); (C.H.)
| | - Chen Hua
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.); (F.Z.); (Y.W.); (Z.Y.); (C.H.)
| | - Zhiyong Liu
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832000, Xinjiang, China;
| | - Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.); (F.Z.); (Y.W.); (Z.Y.); (C.H.)
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832000, Xinjiang, China;
- Correspondence: (L.L.); (X.G.); Tel.: +86-21-6425-3789 (L.L.); +86-21-6425-3491 (X.G.)
| |
Collapse
|
20
|
Wang J, Guan W, Tan T, Saggiomo V, Cohen Stuart MA, Velders AH. Response of metal-coordination-based polyelectrolyte complex micelles to added ligands and metals. SOFT MATTER 2020; 16:2953-2960. [PMID: 32167103 DOI: 10.1039/c9sm02386k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyelectrolyte complex based micelles have attracted significant attention due to their potential regarding bio-applications. Although the morphology and functions have been studied extensively, dynamic properties, particularly component exchange with other surrounding molecules, have remained elusive to date. Here, we show how micelles based on metal-ligand coordination complex coacervate-core micelles (M-C3Ms) respond to addition of extra ligand and metal ions. The micelles are prepared from a polycationic-neutral diblock copolymer and an anionic coordination polyelectrolyte, which is obtained by coordination between metal ions (lanthanides Ln3+ and Zn2+) and a bis-ligand (LEO) containing two dipicolinic acid (DPA) groups connected by a tetra-ethylene oxide spacer (4EO). Our findings show that the bis-ligand LEO is essential for the growth of coordination polymers and consequently the formation of micelles, leading to equilibrium structures with the same micellar composition and structure independent of the order of mixing. In other words, adding single DPA has no effect on the formed M-C3Ms. As for metal exchange, we find that added Zn2+ can replace some of the Ln3+ from Ln-C3Ms, leading to a hybrid coordination structure with both Ln3+ and Zn2+. We find that component exchange occurs in these coordination polyelectrolyte micelles, but it is more favorable in the direction of replacing the weak binding components with strong ones. Hence, the designed M-C3Ms based on the strong binding components, such as Ln-C3Ms, shall be relatively stable in biological surroundings, paving the way for the application of such particles as bio-imaging probes.
Collapse
Affiliation(s)
- Junyou Wang
- State Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
21
|
You Y, Huang K, Liu X, Pan X, Zhi J, He Q, Shi H, An Z, Ma X, Huang W. Hydrophilic Ultralong Organic Nanophosphors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906733. [PMID: 32003926 DOI: 10.1002/smll.201906733] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Ultralong organic phosphorescence (UOP), enabling of persistent luminescence after removal of external excitation light, shows great promise in biological applications such as bioimaging in virtue of antibackground fluorescence interference. Despite of good biocompatibility and outstanding phosphorescent properties, most current organic phosphors are hydrophobic with poor water solubility in the form of bulk crystal with large size, limiting their potential in the biological field. Here, a facile and versatile approach is provided to obtain nanoscale hydrophilic phosphorescent phosphors (HPPs) by physically loading ultralong organic phosphors into hollow mesoporous silica nanoparticles. The as-prepared HPPs can be well suspended in aqueous solution and effectively internalized by HeLa cells with very low cytotoxicity. Such HPPs are successfully applied for afterglow bioimaging in living nude mice with a very high signal-to-noise ratio up to 31. The current study not only provides a universal strategy to realize UOP in aqueous media but also demonstrates their great potential for biomedical purposes as an advanced imaging indicator with long-lived emission lifetime.
Collapse
Affiliation(s)
- Yongqiang You
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Xili University Town, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Kaiwei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiaojia Liu
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Xili University Town, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Xi Pan
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Xili University Town, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Jiahuan Zhi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Xili University Town, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
22
|
Lan X, Ali B, Wang Y, Wang T. Hollow and Yolk-Shell Co-N-C@SiO 2 Nanoreactors: Controllable Synthesis with High Selectivity and Activity for Nitroarene Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3624-3630. [PMID: 31865695 DOI: 10.1021/acsami.9b19364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The use of hollow and yolk-shell nanocomposites is an effective route to enhance catalytic performance. A strategy that allows precise control of the nanocomposites was developed to synthesize novel hollow and yolk-shell SiO2 nanoreactors of Co-N-C@SiO2, which used ZIF-67 as the hard template and also as the source for active sites. A size dependence of the nanoreactor structure was observed. Large size of ZIF-67 gave yolk-shell Y-Co-N-C@SiO2 while small size of crystals gave hollow H-Co-N-C@SiO2. The hydrogenation reaction results showed that the Co-N-C@SiO2 catalyst exhibited a high selectivity (>99%) to aniline and gave an activity (35.3 h-1) ∼3.3 times higher than that of Co/SiO2 (11.8 h-1). The excellent performance was attributed to that Co nanoparticles were doped in the N-C framework where they formed Co-Nx species and that the HSN had a void structure that had a reduced diffusion limitation.
Collapse
Affiliation(s)
- Xiaocheng Lan
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Babar Ali
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Yu Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Tiefeng Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
23
|
Wang J, Sun S, Wu B, Hou L, Ding P, Guo X, Cohen Stuart MA, Wang J. Processable and Luminescent Supramolecular Hydrogels from Complex Coacervation of Polycations with Lanthanide Coordination Polyanions. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01568] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jiahua Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shengtong Sun
- Center for Advanced Low-dimension Materials, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Bohang Wu
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Hou
- Center for Advanced Low-dimension Materials, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Peng Ding
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Martien A. Cohen Stuart
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
24
|
Ma M, Ahsan B, Wang J, Wang M, Guo X, Cohen Stuart MA, Wang J. Supramolecular crosslinks enable PIC micelles with tuneable salt stability and diverse properties. SOFT MATTER 2019; 15:8210-8218. [PMID: 31418000 DOI: 10.1039/c9sm01360a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The stability of polyion complex (PIC) nanoparticles, like PIC micelles or PICsomes, in water is typically affected by added salt because salt screens the electrostatic driving force. This lack of salt stability seriously hampers numerous potential applications and a remedy is needed. Extending an earlier idea, we develop here a general strategy for preparing PIC micelles, with not only tuneable salt stability but also built-in functions. Using two different dipicolinic (DPA)-based ligands (a linear bis-ligand and a branched tris-ligand), as well as various metal ions we obtain anionic coordination polymers that subsequently co-assemble with a polycationic-neutral diblock copolymer to form PIC micelles. By a judicious choice of the metal ions and/or an appropriate mixture of the ligands we can create micellar cores with two types of reversible cross-links. In this way, we construct PIC micelles with not only tuneable and enhanced salt stability, but also tuned metal-derived properties, such as luminescence or magnetic relaxation. This non-covalent cross-link strategy, exclusively based on building block composition, is generally applicable with different metal ions and ligand combinations, and is therefore a robust approach for preparing stable and functional PIC micelles. Extension to other types of assemblies such as 'PICsomes' is possible, and therefore a range of applications becomes feasible.
Collapse
Affiliation(s)
- Mingke Ma
- State Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Del Secco B, Ravotto L, Esipova TV, Vinogradov SA, Genovese D, Zaccheroni N, Rampazzo E, Prodi L. Optimized synthesis of luminescent silica nanoparticles by a direct micelle-assisted method. Photochem Photobiol Sci 2019; 18:2142-2149. [PMID: 31011734 DOI: 10.1039/c9pp00047j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Silica nanoparticles (NPs) are versatile nanomaterials, which are safe with respect to biomedical applications, and therefore are highly investigated. The advantages of NPs include their ease of preparation, inexpensive starting materials and the possibility of functionalization or loading with various doping agents. However, the solubility of the doping agent(s) imposes constraints on the choice of the reaction system and hence limits the range of molecules that can be included in the interior of NPs. To overcome this problem, herein, we improved the current state of the art synthetic strategy based on Pluronic F127 by enabling the synthesis in the presence of large amounts of organic solvents. The new method enables the preparation of nanoparticles doped with large amounts of water-insoluble doping agents. To illustrate the applicability of the technology, we successfully incorporated a range of phosphorescent metalloporphyrins into the interior of NPs. The resulting phosphorescent nanoparticles may exhibit potential for biological oxygen sensing.
Collapse
Affiliation(s)
- Benedetta Del Secco
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Luca Ravotto
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Tatiana V Esipova
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sergei A Vinogradov
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Damiano Genovese
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Nelsi Zaccheroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Enrico Rampazzo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Luca Prodi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
26
|
Xu P, Li K, Yu H, Cohen Stuart MA, Wang J, Zhou S. One-Pot Syntheses of Porous Hollow Silica Nanoreactors Encapsulating Rare Earth Oxide Nanoparticles for Methylene Blue Degradation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pengyao Xu
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Kaijie Li
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hongbo Yu
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Martien A. Cohen Stuart
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shenghu Zhou
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|