1
|
Yao Y, Lu Y, Xu J, Yu J, Guo L, Ding H, Li J, Liao J, Ang EH, Shen Z, Shen J. Rational regulation of post-electrodialysis electrochromic anion exchange membranes via TiO 2@Ag synergistically strengthens visible-light photocatalytic anti-contamination activity. WATER RESEARCH 2024; 263:122178. [PMID: 39096806 DOI: 10.1016/j.watres.2024.122178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Membrane-contamination during electrodialysis (ED) process is still a non-negligible challenge, while irreversible consumption and unsustainability have become the main bottlenecks limiting the improvement of anion exchange membranes (AEMs) anti-contamination activity. Here, we introduce a novel approach to design AEMs by chemically assembling 4-pyndinepropanol with bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) in an electrochromic-inspired process. Subsequently, the co-mingled TiO2@Ag nanosheet with the casting-solution were sprayed onto the surface of the substrate membrane to create a micrometer-thick interfacial layer. The addition of Ag nanoparticles (NPs) enhances the active sites of TiO2, resulting in stronger local surface plasmon resonance (LSPR) effects and reducing its energy band gap limitation (From 3.11 to 2.63 eV). Post-electrodialysis electrochromic AEMs incorporating TiO2@Ag exhibit synergistic enhancement of sunlight absorption, effectively suppressing photogenerated carrier binding and promoting migration. These resultant-membranes demonstrate significantly improved bacterial inhibition properties (42.0-fold increase for E. coli) and degradation activity (7.59-fold increase for rhodamine B) compared to pure TiO2 membranes. Importantly, they maintain photocatalytic activity without compromising salt-separation performance or stability, as the spraying process utilizes the same substrate materials. This approach to rational design and regulation of anti-contamination AEMs offers new insights into the collaborative synergy of color-changing and photocatalytic materials.
Collapse
Affiliation(s)
- Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Yueyue Lu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingwen Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiacheng Yu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
| | - Liang Guo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Heda Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Sun S, Zhao M, Liu H, Li D, Lei Y. Photothermal oxidative dehydrogenation of propane to propylene over Cu/BN catalysts. Front Chem 2024; 12:1439185. [PMID: 39091277 PMCID: PMC11291193 DOI: 10.3389/fchem.2024.1439185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Oxidative dehydrogenation of propane (ODHP) is a reaction with significant practical significance. As for the industrial application of ODHP, it is challenging to achieve high activity and high propylene selectivity simultaneously. In this study, to overcome this obstacle, we designed a series of Cu/BN catalysts with unique morphologies for establishing a photothermal ODHP system with high efficiency and selectivity. Characterization and evaluation results revealed that Cu/BN-NS and Cu/BN-NF with enlarged specific surface areas exhibited higher catalytic activities. The localized surface plasmon resonance (LSPR) effect of Cu nanoparticles further enhanced the photothermal catalytic performances of Cu/BN catalysts under visible light irradiation. To the best of our knowledge, it is the first time to establish a BN-based photothermal ODHP catalytic system. This study is expected to pave pathways to realize high activity and propylene selectivity for the practical application of ODHP.
Collapse
Affiliation(s)
- Shaoyuan Sun
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, China
| | - Manqi Zhao
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, China
| | - Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, China
| | - Dezheng Li
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, China
| | - Yiming Lei
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, China
- Department of Chemistry (Inorganic Chemistry), Faculty of Sciences, Autonomous University of Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
3
|
Li Y, Liu X, Wu T, Zhang X, Han H, Liu X, Chen Y, Tang Z, Liu Z, Zhang Y, Liu H, Zhao L, Ma D, Zhou W. Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane. Nat Commun 2024; 15:5495. [PMID: 38944644 PMCID: PMC11214624 DOI: 10.1038/s41467-024-49771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/12/2024] [Indexed: 07/01/2024] Open
Abstract
Dry reforming of methane (DRM) is a highly endothermic process, with its development hindered by the harsh thermocatalytic conditions required. We propose an innovative DRM approach utilizing a 16 W pulsed laser in combination with a cost-effective Mo2C catalyst, enabling DRM under milder conditions. The pulsed laser serves a dual function by inducing localized high temperatures and generating *CH plasma on the Mo2C surface. This activates CH4 and CO2, significantly accelerating the DRM reaction. Notably, the laser directly generates *CH plasma from CH4 through thermionic emission and cascade ionization, bypassing the traditional step-by-step dehydrogenation process and eliminating the rate-limiting step of methane cracking. This method maintains a carbon-oxygen balanced environment, thus preventing the deactivation of the Mo2C catalyst due to CO2 oxidation. The laser-catalytic DRM achieves high yields of H2 (14300.8 mmol h-1 g-1) and CO (14949.9 mmol h-1 g-1) with satisfactory energy efficiency (0.98 mmol kJ-1), providing a promising alternative for high-energy-consuming catalytic systems.
Collapse
Affiliation(s)
- Yue Li
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Xingwu Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Tong Wu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Xiangzhou Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Hecheng Han
- Shandong Technology Center of Nanodevices and Integration, School of Integrated Circuit, Shandong University, Jinan, China
| | - Xiaoyu Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
| | - Yuke Chen
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Zhenfei Tang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Zhen Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Yuhai Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
| | - Lili Zhao
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China.
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China.
| |
Collapse
|
4
|
Yuan Z, Zhu X, Jiang Z. Recent Advances of Constructing Metal/Semiconductor Catalysts Designing for Photocatalytic CO 2 Hydrogenation. Molecules 2023; 28:5693. [PMID: 37570663 PMCID: PMC10419965 DOI: 10.3390/molecules28155693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
With the development of the world economy and the rapid advancement of global industrialization, the demand for energy continues to grow. The significant consumption of fossil fuels, such as oil, coal, and natural gas, has led to excessive carbon dioxide emissions, causing global ecological problems. CO2 hydrogenation technology can convert CO2 into high-value chemicals and is considered one of the potential ways to solve the problem of CO2 emissions. Metal/semiconductor catalysts have shown good activity in carbon dioxide hydrogenation reactions and have attracted widespread attention. Therefore, we summarize the recent research on metal/semiconductor catalysts for photocatalytic CO2 hydrogenation from the design of catalysts to the structure of active sites and mechanistic investigations, and the internal mechanism of the enhanced activity is elaborated to give guidance for the design of highly active catalysts. Finally, based on a good understanding of the above issues, this review looks forward to the development of future CO2 hydrogenation catalysts.
Collapse
Affiliation(s)
- Zhimin Yuan
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xianglin Zhu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zaiyong Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
5
|
Li Y, Guo J, Liu H, Liu A, Li D. In situ generated oxygen vacancy on Nb2O5 for boosted catalytic activities of M/Nb2O5 in photothermal CO2 reforming of CH4. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Li Y, Yan K, Cao Y, Ge X, Zhou X, Yuan W, Chen D, Duan X. Mechanistic and Atomic-Level Insights into Semihydrogenation Catalysis to Light Olefins. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yurou Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kelin Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohu Ge
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Song H, Ye J. Direct photocatalytic conversion of methane to value-added chemicals. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Liu H, Li Y, Djitcheu X, Liu L. Recent advances in single-atom catalysts for thermally driven reactions. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Recent advances in photo-enhanced dry reforming of methane: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2021.100468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Du Z, Pan F, Yang X, Fang L, Gang Y, Fang S, Li T, Hu YH, Li Y. Efficient photothermochemical dry reforming of methane over Ni supported on ZrO2 with CeO2 incorporation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Fang S, Hu YH. Thermo-photo catalysis: a whole greater than the sum of its parts. Chem Soc Rev 2022; 51:3609-3647. [PMID: 35419581 DOI: 10.1039/d1cs00782c] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thermo-photo catalysis, which is the catalysis with the participation of both thermal and photo energies, not only reduces the large energy consumption of thermal catalysis but also addresses the low efficiency of photocatalysis. As a whole greater than the sum of its parts, thermo-photo catalysis has been proven as an effective and promising technology to drive chemical reactions. In this review, we first clarify the definition (beyond photo-thermal catalysis and plasmonic catalysis), classification, and principles of thermo-photo catalysis and then reveal its superiority over individual thermal catalysis and photocatalysis. After elucidating the design principles and strategies toward highly efficient thermo-photo catalytic systems, an ample discussion on the synergetic effects of thermal and photo energies is provided from two perspectives, namely, the promotion of photocatalysis by thermal energy and the promotion of thermal catalysis by photo energy. Subsequently, state-of-the-art techniques applied to explore thermo-photo catalytic mechanisms are reviewed, followed by a summary on the broad applications of thermo-photo catalysis and its energy management toward industrialization. In the end, current challenges and potential research directions related to thermo-photo catalysis are outlined.
Collapse
Affiliation(s)
- Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| |
Collapse
|
12
|
Hong J, Xu C, Deng B, Gao Y, Zhu X, Zhang X, Zhang Y. Photothermal Chemistry Based on Solar Energy: From Synergistic Effects to Practical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103926. [PMID: 34825527 PMCID: PMC8787404 DOI: 10.1002/advs.202103926] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/23/2021] [Indexed: 05/07/2023]
Abstract
With the development of society, energy shortage and environmental problems have become more and more outstanding. Solar energy is a clean and sustainable energy resource, potentially driving energy conversion and environmental remediation reactions. Thus, solar-driven chemistry is an attractive way to solve the two problems. Photothermal chemistry (PTC) is developed to achieve full-spectral utilization of the solar radiation and drive chemical reactions more efficiently under relatively mild conditions. In this review, the mechanisms of PTC are summarized from the aspects of thermal and non-thermal effects, and then the interaction and synergy between these two effects are sorted out. In this paper, distinguishing and quantifying these two effects is discussed to understand PTC processes better and to design PTC catalysts more methodically. However, PTC is still a little far away from practical. Herein, several key points, which must be considered when pushing ahead with the engineering application of PTC, are proposed, along with some workable suggestions on the practical application. This review provides a unique perspective on PTC, focusing on the synergistic effects and pointing out a possible direction for practical application.
Collapse
Affiliation(s)
- Jianan Hong
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Chenyu Xu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Bowen Deng
- Graduate School of Chemical Sciences and EngineeringHokkaido UniversitySapporo060‐0814Japan
| | - Yuan Gao
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Xuan Zhu
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Xuhan Zhang
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Yanwei Zhang
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| |
Collapse
|
13
|
Nanostructured Photothermal Materials for Environmental and Catalytic Applications. Molecules 2021; 26:molecules26247552. [PMID: 34946627 PMCID: PMC8705453 DOI: 10.3390/molecules26247552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Solar energy is a green and sustainable clean energy source. Its rational use can alleviate the energy crisis and environmental pollution. Directly converting solar energy into heat energy is the most efficient method among all solar conversion strategies. Recently, various environmental and energy applications based on nanostructured photothermal materials stimulated the re-examination of the interfacial solar energy conversion process. The design of photothermal nanomaterials is demonstrated to be critical to promote the solar-to-heat energy conversion and the following physical and chemical processes. This review introduces the latest photothermal nanomaterials and their nanostructure modulation strategies for environmental (seawater evaporation) and catalytic (C1 conversion) applications. We present the research progress of photothermal seawater evaporation based on two-dimensional and three-dimensional porous materials. Then, we describe the progress of photothermal catalysis based on layered double hydroxide derived nanostructures, hydroxylated indium oxide nanostructures, and metal plasmonic nanostructures. Finally, we present our insights concerning the future development of this field.
Collapse
|
14
|
Ivanez J, Garcia-Munoz P, Ruppert AM, Keller N. UV-A light-assisted gas-phase formic acid decomposition on photo-thermo Ru/TiO2 catalyst. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Xu M, Li D, Sun K, Jiao L, Xie C, Ding C, Jiang H. Interfacial Microenvironment Modulation Boosting Electron Transfer between Metal Nanoparticles and MOFs for Enhanced Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mingliang Xu
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Dandan Li
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Kang Sun
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Long Jiao
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chenfan Xie
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chunmei Ding
- Dalian National Laboratory for Clean Energy State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Hai‐Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
16
|
Xu M, Li D, Sun K, Jiao L, Xie C, Ding C, Jiang HL. Interfacial Microenvironment Modulation Boosting Electron Transfer between Metal Nanoparticles and MOFs for Enhanced Photocatalysis. Angew Chem Int Ed Engl 2021; 60:16372-16376. [PMID: 33988897 DOI: 10.1002/anie.202104219] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Indexed: 01/04/2023]
Abstract
Interfacial electron transfer between cocatalyst and photosensitizer is key in heterogeneous photocatalysis, yet the underlying mechanism remains subtle and unclear. Surfactant coated on the metal cocatalysts, greatly modulating the microenvironment of catalytic sites, is largely ignored. Herein, a series of Pt co-catalysts with modulated microenvironments, including polyvinylpyrrolidone (PVP) capped Pt nanoparticles (denoted as PtPVP ), Pt with partially removed PVP (PtrPVP ), and clean Pt without PVP (Pt), were encapsulated into a metal-organic framework (MOF), UiO-66-NH2 , to afford PtPVP @UiO-66-NH2 , PtrPVP @UiO-66-NH2 , and Pt@UiO-66-NH2 , respectively, for photocatalytic hydrogen production. The PVP appears to have a negative influence on the interfacial electron transfer between Pt and the MOF. Compared with PtPVP @UiO-66-NH2 , the removal of interfacial PVP improves the sluggish kinetics of electron transfer, boosting photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Mingliang Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dandan Li
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Kang Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Long Jiao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chenfan Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chunmei Ding
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
17
|
Li S, Miao P, Zhang Y, Wu J, Zhang B, Du Y, Han X, Sun J, Xu P. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000086. [PMID: 32201994 DOI: 10.1002/adma.202000086] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 05/21/2023]
Abstract
Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon-driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon-enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon-related chemistry in the field of energy conversion and storage is given in conclusion.
Collapse
Affiliation(s)
- Siwei Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Peng Miao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yuanyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jie Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Bin Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jianmin Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
18
|
Liu H, Shi L, Zhang Q, Qi P, Zhao Y, Meng Q, Feng X, Wang H, Ye J. Photothermal catalysts for hydrogenation reactions. Chem Commun (Camb) 2021; 57:1279-1294. [PMID: 33521801 DOI: 10.1039/d0cc07144g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogenation reactions are an important process in today's chemical industry. Typically, hydrogenation reactions involve the removal of an unsaturated bond in olefins or other polyenes via thermal catalysis using hydrogen. As hydrogenation reactions are often carried out at temperatures up to several hundred degrees, they require significant energy input which typically comes from burning fossil fuels. In order to conserve fossil fuels and reduce CO2 emissions, researchers are now developing photothermal catalysts for hydrogenation reactions, which harness concentrated sunlight to achieve the required reaction temperatures or introduce sunlight into thermal-driven reaction systems to reduce the reaction temperatures. Photothermal catalysts thus need to be able to efficiently absorb sunlight, whilst also being able to drive the desired hydrogenation reaction with high activity and selectivity. In this review, we summarize recent research aimed at the development of photothermal catalysts for CO2/CO hydrogenation and alkene/alkyne/aromatic hydrogenation. Particular emphasis is placed on uncovering the reaction mechanisms at the molecular level, which in turn guides the rational design of photothermal catalysts with better performance.
Collapse
Affiliation(s)
- Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mateo D, Cerrillo JL, Durini S, Gascon J. Fundamentals and applications of photo-thermal catalysis. Chem Soc Rev 2021; 50:2173-2210. [DOI: 10.1039/d0cs00357c] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Photo-thermal catalysis has recently emerged as an alternative route to drive chemical reactions using light as an energy source.
Collapse
Affiliation(s)
- Diego Mateo
- King Abdullah University of Science and Technology
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- Thuwal 23955-6900
- Saudi Arabia
| | - Jose Luis Cerrillo
- King Abdullah University of Science and Technology
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- Thuwal 23955-6900
- Saudi Arabia
| | - Sara Durini
- King Abdullah University of Science and Technology
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- Thuwal 23955-6900
- Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- Thuwal 23955-6900
- Saudi Arabia
| |
Collapse
|
20
|
Chen X, Li Q, Zhang M, Li J, Cai S, Chen J, Jia H. MOF-Templated Preparation of Highly Dispersed Co/Al 2O 3 Composite as the Photothermal Catalyst with High Solar-to-Fuel Efficiency for CO 2 Methanation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39304-39317. [PMID: 32805882 DOI: 10.1021/acsami.0c11576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CH4 production from CO2 hydrogenation provides a clean approach to convert greenhouse gas CO2 into chemical energy, but high energy consumption in this reaction still restrains its further application. Herein, we use a light-driven CO2 methanation process instead of traditional thermocatalysis by an electrical heating mode, with the aim of greatly decreasing the energy consumption. Under UV-vis-IR light irradiation, the photothermal CO2 methanation over highly dispersed Co nanoparticles supported on Al2O3 (Co/Al2O3) achieves impressive CH4 production rates (as high as 6036 μmol g-1 h-1), good CH4 selectivity (97.7%), and catalytic durability. The high light-harvesting property of the catalyst across the entire solar spectrum coupled with its strong adsorption capacity toward H2, CO2, CO, and abundant active sites are proposed to be responsible for the better photothermocatalytic performance of Co/Al2O3. Furthermore, a novel light-promotion effect is also revealed in CO2 methanation, where UV-vis light irradiation induces oxygen vacancies and improves the proclivity toward adsorption of H2, CO2, and CO, finally resulting in a significant enhancement of the photothermocatalytic activity for CH4 production. By concentrating the low-intensity light (120 mW/cm2) via a Fresnel lens, a photothermal CO2 conversion efficiency of more than 50% with a good CH4 selectivity (76%) is achieved on the optimal catalyst under a dynamic reaction system, which indicates the bright prospect of photothermal CO2 methanation.
Collapse
Affiliation(s)
- Xi Chen
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Li
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Meng Zhang
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juanjuan Li
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Songcai Cai
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Chen
- Xiamen Institute of Rare-Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongpeng Jia
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
21
|
Qi W, Meng X, Adimi S, Guo H, Thomas T, Li F, Jiang H, Liu S, Yang M. A size tunable bimetallic nickel-zinc nitride as a multi-functional co-catalyst on nitrogen doped titania boosts solar energy conversion. Dalton Trans 2020; 49:4887-4895. [PMID: 32227002 DOI: 10.1039/d0dt00657b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To enable high-efficiency solar energy conversion, rational design and preparation of low cost and stable semiconductor photocatalysts with associated co-catalysts are desirable. However preparation of efficient catalytic systems remains a challenge. Here, N-doped TiO2/ternary nickel-zinc nitride (N-TiO2-Ni3ZnN) nanocomposites have been shown to be a multi-functional catalyst for photocatalytic reactions. The particle size of Ni3ZnN can be readily tuned using N-TiO2 nanospheres as the active support. Due to its high conductivity and Pt-like properties, Ni3ZnN promotes charge separation and transfer, as well as reaction kinetics. The material shows co-catalytic performance relevant for multiple reactions, demonstrating its multifunctionality. Density functional theory (DFT) based calculations confirm the intrinsic metallic properties of Ni3ZnN. N-TiO2-Ni3ZnN exhibits evidently improved photocatalytic performances as compared to N-TiO2 under visible light irradiation.
Collapse
Affiliation(s)
- Weiliang Qi
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiangjian Meng
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Samira Adimi
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haichuan Guo
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tiju Thomas
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Adyar, Chennai 600036, Tamil Nadu, India
| | - Fei Li
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun 113001, China
| | - Heng Jiang
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun 113001, China
| | - Siqi Liu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Minghui Yang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
22
|
Wang ZJ, Song H, Liu H, Ye J. Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects. Angew Chem Int Ed Engl 2020; 59:8016-8035. [PMID: 31309678 DOI: 10.1002/anie.201907443] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 11/06/2022]
Abstract
Enormous efforts have been devoted to the reduction of carbon dioxide (CO2 ) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo-mediated activity/selectivity, and mechanism studies in photo-thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2 .
Collapse
Affiliation(s)
- Zhou-Jun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hui Song
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan
| | - Huimin Liu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,TJU-NIMS International Collaboration Laboratory, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.,School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan.,TJU-NIMS International Collaboration Laboratory, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| |
Collapse
|
23
|
Wang Z, Song H, Liu H, Ye J. Kopplung von Solarenergie und Wärmeenergie zur Kohlendioxidreduktion: Aktueller Stand und Perspektiven. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201907443] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhou‐jun Wang
- State Key Laboratory of Chemical Resource EngineeringBeijing Key Laboratory of Energy Environmental CatalysisBeijing University of Chemical Technology Beijing 100029 P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Hui Song
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Chemical Sciences and EngineeringHokkaido University Sapporo 060-0814 Japan
| | - Huimin Liu
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- TJU-NIMS International Collaboration LaboratorySchool of Material Science and EngineeringTianjin University Tianjin 300072 P. R. China
- School of Chemical and Biomolecular EngineeringThe University of Sydney Sydney NSW 2006 Australien
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Chemical Sciences and EngineeringHokkaido University Sapporo 060-0814 Japan
- TJU-NIMS International Collaboration LaboratorySchool of Material Science and EngineeringTianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| |
Collapse
|
24
|
Cao X, Han T, Peng Q, Chen C, Li Y. Modifications of heterogeneous photocatalysts for hydrocarbon C–H bond activation and selective conversion. Chem Commun (Camb) 2020; 56:13918-13932. [DOI: 10.1039/d0cc05785a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This feature article summarizes the recent progress in the modification of heterogeneous photocatalysts for photocatalytic hydrocarbons’ C–H bond activation.
Collapse
Affiliation(s)
- Xing Cao
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Tong Han
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Qing Peng
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Chen Chen
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yadong Li
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
25
|
Liu H, Wei L, Liu F, Pei Z, Shi J, Wang ZJ, He D, Chen Y. Homogeneous, Heterogeneous, and Biological Catalysts for Electrochemical N2 Reduction toward NH3 under Ambient Conditions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00994] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Huimin Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- TJU-NIMS
International
Collaboration Laboratory, School of Material Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fei Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- State Key Laboratory
of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory
of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, Guangdong 510070, People’s Republic of China
| | - Zengxia Pei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jeffrey Shi
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhou-jun Wang
- State Key Laboratory
of Chemical Resource Engineering, Beijing Key Laboratory of Energy
Environmental Catalysis, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing 100029, People’s Republic of China
| | - Dehua He
- Innovative Catalysis
Program, Key Laboratory of Organic Optoelectronics and Molecular Engineering
of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
26
|
Liang ZP, Hou DF, Jiao ZF, Guo XN, Tong XL, Guo XY. Aldehydes rather than alcohols in oxygenated products from light-driven Fischer–Tropsch synthesis over Ru/SiC catalysts. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00990f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxygenated products in light-driven Fischer–Tropsch synthesis over Ru/SiC catalysts are aldehydes rather than alcohols.
Collapse
Affiliation(s)
- Zai-Peng Liang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan 030001
- China
- Center of Materials Science and Optoelectronics Engineering
| | - Dong-Fang Hou
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan 030001
- China
- Center of Materials Science and Optoelectronics Engineering
| | - Zhi-Feng Jiao
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan 030001
- China
- Center of Materials Science and Optoelectronics Engineering
| | - Xiao-Ning Guo
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Xi-Li Tong
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Xiang-Yun Guo
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan 030001
- China
- Center of Materials Science and Optoelectronics Engineering
| |
Collapse
|
27
|
Li M, Song S, Su C, Li L, Yan Z, Cao X. MOF-templated in situ fabrication of surface-modified Ni/graphitic carbon nitride with enhanced photocatalytic hydrogen evolution. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01093a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Surface-modified Ni species derived from 2D Ni-MOFs were loaded on g-C3N4 with high dispersion by the in situ calcination method.
Collapse
Affiliation(s)
- Mengli Li
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Shuang Song
- College of Architecture & Environment
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Su
- Department of Chemical and Biomolecular Engineering
- University of Notre Dame
- USA
| | - Lei Li
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Zheng Yan
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Xuebo Cao
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| |
Collapse
|