1
|
Aguilar MI, Yarovsky I. Quest for New Generation Biocompatible Materials: Tailoring β-Peptide Structure and Interactions via Synergy of Experiments and Modelling. J Mol Biol 2024:168646. [PMID: 38848868 DOI: 10.1016/j.jmb.2024.168646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Peptide-based self-assembly has been used to produce a wide range of nanostructures. While most of these systems involve self-assembly of α-peptides, more recently β-peptides have also been shown to undergo supramolecular self-assembly, and have been used to produce materials for applications in tissue engineering, cell culture and drug delivery. In order to engineer new materials with specific structure and function, theoretical molecular modelling can provide significant insights into the collective balance of non-covalent interactions that drive the self-assembly and determine the structure of the resultant supramolecular materials under different conditions. However, this approach has only recently become feasible for peptide-based self-assembled nanomaterials, particularly those that incorporate non α-amino acids. This perspective provides an overview of the challenges associated with computational modelling of the self-assembly of β-peptides and the recent success using a combination of experimental and computational techniques to provide insights into the self-assembly mechanisms and fully atomistic models of these new biocompatible materials.
Collapse
Affiliation(s)
- Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
2
|
Li G, Yang Y, Chen W, Song Z, Shi J, Wang B, Pan X, Lin Z. Phenanthroline-functionalized donor-acceptor covalent organic frameworks as photo-responsive nanozymes for visual colorimetric detection of isoniazid. J Mater Chem B 2024; 12:4502-4508. [PMID: 38646996 DOI: 10.1039/d3tb02939e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Development of metal-free nanozymes has raised concern for their extensive applications in photocatalysis and sensing fields. As novel metal-free nanomaterials, covalent organic frameworks (COFs) have engendered intense interest in the construction of nanozymes due to their structural controllability and molecular functionality. The formation of the molecular arrangement by embedding orderly donor-acceptors (D-A) linked in the framework topology to modulate material properties for highly efficient enzyme mimicking activity is of importance but challenging. Here, a strong D-A type of COF was designed and synthesized by integrating electron donor units (pyrene) and electron acceptor units (phenanthroline), named Py-PD COF. Using experiments and theoretical calculations, the introduction of a phenanthroline ring endowed the Py-PD COF with a narrowed band gap, and efficient charge transfer and separation. Further, the Py-PD COF exhibited a superior light-responsive oxidase-mimicking characteristic under visible light irradiation, which could catalyze the oxidation of 3,3',5,5-tetramethylbenzidine (TMB) and give the corresponding evolution of color. The nanoenzymatic activity of the Py-PD COF was light-regulated, which offers a fascinating advantage because of its high efficiency and spatial controllability. Based on previously mentioned characteristics, an "on-off" sensing platform for the colorimetric analysis of isoniazid (INH) could be constructed with a good linear relationship (2-100 μM) and a low limit of detection (1.26 μM). This research shows that not only is Py-PD COF an environmentally friendly compound for the colorimetric detection of INH, but it is also capable of providing the interesting D-A type COF-based material for designing an excellent nanozyme.
Collapse
Affiliation(s)
- Guorong Li
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, Fujian, 362000, China.
| | - Yixin Yang
- Hebi Polytechnic, Hebi, Henan 458000, China
| | - Wenjie Chen
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, Fujian, 362000, China.
| | - Zhiping Song
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Jiale Shi
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, Fujian, 362000, China.
| | - Bingqing Wang
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, Fujian, 362000, China.
| | - Xiaoyang Pan
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, Fujian, 362000, China.
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
3
|
Wang Y, Rencus-Lazar S, Zhou H, Yin Y, Jiang X, Cai K, Gazit E, Ji W. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications. ACS NANO 2024; 18:1257-1288. [PMID: 38157317 DOI: 10.1021/acsnano.3c08183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Inspired by natural hierarchical self-assembly of proteins and peptides, amino acids, as the basic building units, have been shown to self-assemble to form highly ordered structures through supramolecular interactions. The fabrication of functional biomaterials comprised of extremely simple biomolecules has gained increasing interest due to the advantages of biocompatibility, easy functionalization, and structural modularity. In particular, amino acid based assemblies have shown attractive physical characteristics for various bionanotechnology applications. Herein, we propose a review paper to summarize the design strategies as well as research advances of amino acid based supramolecular assemblies as smart functional materials. We first briefly introduce bioinspired reductionist design strategies and assembly mechanism for amino acid based molecular assembly materials through noncovalent interactions in condensed states, including self-assembly, metal ion mediated coordination assembly, and coassembly. In the following part, we provide an overview of the properties and functions of amino acid based materials toward applications in nanotechnology and biomedicine. Finally, we give an overview of the remaining challenges and future perspectives on the fabrication of amino acid based supramolecular biomaterials with desired properties. We believe that this review will promote the prosperous development of innovative bioinspired functional materials formed by minimalistic building blocks.
Collapse
Affiliation(s)
- Yuehui Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Haoran Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
4
|
Singh RK, Yadav RK, Pande PP, Singh S, Singh P, Gupta SK, Gupta S, Khare P, Tripathi SK, Tiwary D. Sun Light Responsive 2D Covalent-Organic Frameworks Platform as a Catalysts Boost C-H Bond Arylation and Dopamine Regeneration. Photochem Photobiol 2023; 99:1384-1392. [PMID: 36794330 DOI: 10.1111/php.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/22/2023] [Indexed: 02/17/2023]
Abstract
Photocatalysis is one of the most promising methods for producing organic compounds with a renewable source of energy. Two-dimensional covalent organic frameworks (2D COFs) are a type of polymer that has developed as a potential light-harvesting catalyst for artificial photosynthesis with a design-controllable platform that might be developed into a new type of cost-effective and metal-free photocatalyst. Here, we present a two-dimensional covalent organic framework synthesis technique as a low-cost and highly efficient visible light active flexible photocatalyst for C-H bond activation and dopamine regeneration. 2D COF were synthesized from tetramino-benzoquinone (TABQ) and terapthaloyl chloride monomer through condensation polymerization reaction and the resultant photocatalyst have remarkable performance due to its visible light-harvesting capacity, appropriate band gap, and highly organized π-electron channels. The synthesized photocatalyst is capable to convert dopamine into leucodopaminechrome with a higher yield (77.08%) and also capable to activate the C-H bond between 4-nitrobenzenediazonium tetrafluoroborate and pyrrole.
Collapse
Affiliation(s)
- Rajnish K Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Rajesh K Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Poran P Pande
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Pooja Singh
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Sarvesh K Gupta
- Nanoionics and Energy Storage Laboratory (NanoESL), Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Shivani Gupta
- Nanoionics and Energy Storage Laboratory (NanoESL), Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Prateek Khare
- Department of Chemical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Santosh K Tripathi
- Defence Materials Stores and Research & Development Establishment (DMSRDE), Kanpur, India
| | - Dhanesh Tiwary
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
5
|
Li D, Cai S, Wang P, Cheng H, Cheng B, Zhang Y, Liu G. Innovative Design Strategies Advance Biomedical Applications of Phthalocyanines. Adv Healthc Mater 2023; 12:e2300263. [PMID: 37039069 DOI: 10.1002/adhm.202300263] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/30/2023] [Indexed: 04/12/2023]
Abstract
Owing to their long absorption wavelengths, high molar absorptivity, and tunable photosensitivity, phthalocyanines have been widely used in photodynamic therapy (PDT). However, phthalocyanines still face the drawbacks of poor targeting, "always-on" photosensitizing properties, and unsatisfactory therapeutic efficiency, which limit their wide applications in biomedical fields. Thus, new design strategies such as modification of targeting molecules, formation of nanoparticles, and activating photosensitizers are developed to improve the above defects. Notably, recent studies have shown that novel phthalocyanines are not only used in fluorescence imaging and PDT, but also in photoacoustic imaging, photothermal imaging, sonodynamic therapy, and photothermal therapy. This review focuses on recent design strategies, applications in biomedicine, and clinical development of phthalocyanines, providing ideas and references for the design and application of phthalocyanine, so as to promote their future transformation into clinical applications.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shundong Cai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Peiyu Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Bingwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Shen Zhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
6
|
Pilkington CP, Contini C, Barritt JD, Simpson PA, Seddon JM, Elani Y. A microfluidic platform for the controlled synthesis of architecturally complex liquid crystalline nanoparticles. Sci Rep 2023; 13:12684. [PMID: 37542147 PMCID: PMC10403506 DOI: 10.1038/s41598-023-39205-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023] Open
Abstract
Soft-matter nanoparticles are of great interest for their applications in biotechnology, therapeutic delivery, and in vivo imaging. Underpinning this is their biocompatibility, potential for selective targeting, attractive pharmacokinetic properties, and amenability to downstream functionalisation. Morphological diversity inherent to soft-matter particles can give rise to enhanced functionality. However, this diversity remains untapped in clinical and industrial settings, and only the simplest of particle architectures [spherical lipid vesicles and lipid/polymer nanoparticles (LNPs)] have been routinely exploited. This is partially due to a lack of appropriate methods for their synthesis. To address this, we have designed a scalable microfluidic hydrodynamic focusing (MHF) technology for the controllable, rapid, and continuous production of lyotropic liquid crystalline (LLC) nanoparticles (both cubosomes and hexosomes), colloidal dispersions of higher-order lipid assemblies with intricate internal structures of 3-D and 2-D symmetry. These particles have been proposed as the next generation of soft-matter nano-carriers, with unique fusogenic and physical properties. Crucially, unlike alternative approaches, our microfluidic method gives control over LLC size, a feature we go on to exploit in a fusogenic study with model cell membranes, where a dependency of fusion on particle diameter is evident. We believe our platform has the potential to serve as a tool for future studies involving non-lamellar soft nanoparticles, and anticipate it allowing for the rapid prototyping of LLC particles of diverse functionality, paving the way toward their eventual wide uptake at an industrial level.
Collapse
Affiliation(s)
- Colin P Pilkington
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK.
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | - Claudia Contini
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Joseph D Barritt
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Paul A Simpson
- Department of Life Sciences, Centre for Structural Biology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - John M Seddon
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Li X, Tang C, Zhang L, Song M, Zhang Y, Wang S. Porphyrin-Based Covalent Organic Frameworks: Design, Synthesis, Photoelectric Conversion Mechanism, and Applications. Biomimetics (Basel) 2023; 8:biomimetics8020171. [PMID: 37092423 PMCID: PMC10123739 DOI: 10.3390/biomimetics8020171] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023] Open
Abstract
Photosynthesis occurs in high plants, and certain organisms show brilliant technology in converting solar light to chemical energy and producing carbohydrates from carbon dioxide (CO2). Mimicking the mechanism of natural photosynthesis is receiving wide-ranging attention for the development of novel materials capable of photo-to-electric, photo-to-chemical, and photocatalytic transformations. Porphyrin, possessing a similar highly conjugated core ring structure to chlorophyll and flexible physical and chemical properties, has become one of the most investigated photosensitizers. Chemical modification and self-assembly of molecules as well as constructing porphyrin-based metal (covalent) organic frameworks are often used to improve its solar light utilization and electron transfer rate. Especially porphyrin-based covalent organic frameworks (COFs) in which porphyrin molecules are connected by covalent bonds combine the structural advantages of organic frameworks with light-capturing properties of porphyrins and exhibit great potential in light-responsive materials. Porphyrin-based COFs are expected to have high solar light utilization, fast charge separation/transfer performance, excellent structural stability, and novel steric selectivity by special molecular design. In this paper, we reviewed the research progress of porphyrin-based COFs in the design, synthesis, properties, and applications. We focused on the intrinsic relationship between the structure and properties, especially the photoelectric conversion properties and charge transfer mechanism of porphyrin-based COFs, and tried to provide more valuable information for the design of advanced photosensitizers. The applications of porphyrin-based COFs in photocatalysis and phototherapy were emphasized based on their special structure design and light-to-electric (or light-to-heat) conversion control.
Collapse
Affiliation(s)
- Xiaoyu Li
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Chuanyin Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Li Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Mingyang Song
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yujie Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Shengjie Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
8
|
Liu Y, Li J. Self-assembling nanoarchitectonics of size-controllable celastrol nanoparticles for efficient cancer chemotherapy with reduced systemic toxicity. J Colloid Interface Sci 2023; 636:216-222. [PMID: 36634391 DOI: 10.1016/j.jcis.2022.12.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
Celastrol, extracted from Tripterygium wilfordii Hook F, is one of the most promising natural extract for cancer treatment. Nevertheless, insufficient tumor retention and severe systemic toxicity still hinder its application. Herein, we report for the first time that Celastrol can directly self-assemble into size-controllable nanoparticles through the anti-solvent method by using different good solvent or by the variation of Celastrol concentrations. In vitro anti-cancer experiment revealed that the as-prepared nanoparticles can kill MCF-7 cells more effectively. Moreover, the nanoparticles can efficiently accumulate in tumors of the tumor bearing mice after tail vein injection. Under the administration of lethal dosage of Celastrol, the tumors are greatly suppressed and the mice maintain the activity. These results demonstrate that anti-solvent method may be a promising strategy to fabricate Celastrol nano-drugs with controllable size and less systemic toxicity for further clinical cancer treatment.
Collapse
Affiliation(s)
- Yilin Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Xu Y, Zhou Z, Deng N, Fu K, Zhu C, Hong Q, Shen Y, Liu S, Zhang Y. Molecular insights of nanozymes from design to catalytic mechanism. Sci China Chem 2023; 66:1318-1335. [PMID: 36817323 PMCID: PMC9923663 DOI: 10.1007/s11426-022-1529-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Emerging as cost-effective potential alternatives to natural enzymes, nanozymes have attracted increasing interest in broad fields. To exploit the in-depth potential of nanozymes, rational structural engineering and explicit catalytic mechanisms at the molecular scale are required. Recently, impressive progress has been made in mimicking the characteristics of natural enzymes by constructing metal active sites, binding pockets, scaffolds, and delicate allosteric regulation. Ingenious in-depth studies have been conducted with advances in structural characterization and theoretical calculations, unveiling the "black box" of nanozyme-catalytic mechanisms. This review introduces the state-of-art synthesis strategies by learning from the natural enzyme counterparts and summarizes the general overview of the nanozyme mechanism with a particular emphasis on the adsorbed intermediates and descriptors that predict the nanozyme activity The emerging activity assessment methodology that illustrates the relationship between electrochemical oxygen reduction and enzymatic oxygen reduction is discussed with up-to-date advances Future opportunities and challenges are presented in the end to spark more profound work and attract more researchers from various backgrounds to the flourishing field of nanozymes.
Collapse
Affiliation(s)
- Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Nankai Deng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Kangchun Fu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Caixia Zhu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Qing Hong
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| |
Collapse
|
10
|
Shen J, Liu Y, Qiao L. Photodriven Chemical Synthesis by Whole-Cell-Based Biohybrid Systems: From System Construction to Mechanism Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6235-6259. [PMID: 36702806 DOI: 10.1021/acsami.2c19528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
By simulating natural photosynthesis, the desirable high-value chemical products and clean fuels can be sustainably generated with solar energy. Whole-cell-based photosensitized biohybrid system, which innovatively couples the excellent light-harvesting capacity of semiconductor materials with the efficient catalytic ability of intracellular biocatalysts, is an appealing interdisciplinary creature to realize photodriven chemical synthesis. In this review, we summarize the constructed whole-cell-based biohybrid systems in different application fields, including carbon dioxide fixation, nitrogen fixation, hydrogen production, and other chemical synthesis. Moreover, we elaborate the charge transfer mechanism studies of representative biohybrids, which can help to deepen the current understanding of the synergistic process between photosensitizers and microorganisms, and provide schemes for building novel biohybrids with less electron transfer resistance, advanced productive efficiency, and functional diversity. Further exploration in this field has the prospect of making a breakthrough on the biotic-abiotic interface that will provide opportunities for multidisciplinary research.
Collapse
Affiliation(s)
- Jiayuan Shen
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Yun Liu
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|
11
|
Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Teng Q, Wu H, Sun H, Liu Y, Wang H, Wang ZG. Switchable Enzyme-mimicking catalysts Self-Assembled from de novo designed peptides and DNA G-quadruplex/hemin complex. J Colloid Interface Sci 2022; 628:1004-1011. [PMID: 35970126 DOI: 10.1016/j.jcis.2022.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/02/2023]
Abstract
Reconstruction of enzymatic active site in an artificial system is key to achieving high catalytic efficiency. Herein, we report the self-assembly of the lysine-containing peptides with guanine-rich DNA and hemin to form peroxidase-mimicking active sites and catalytic nanoparticles. The DNA strand self-folds into a G-quadruplex structure that provides a supramolecular scaffold and a potential axial ligand for hemin. The β-sheet forming capability of the lysine-containing peptides is found to affect the catalytic synergy between the G-quadruplex DNA and the peptide. It is hypothesized that the β-sheet formation of the peptides results in the enrichment of the lysine residues, which distribute on the distal side of hemin to promote the formation of Compound I, like distal arginine residue in natural heme pocket. Incorporation of the histidine residues into the lysine-containing peptides further enhanced the hemin activities, indicating the cooperation between the lysine and histidine. Furthermore, the peptide/DNA/hemin complexes can be switched between active and inactive state by reversible formation and deformation of the DNA G-quadruplex, which was attributed to the peptides-promoted conformational changes of the DNA components. This work opens an avenue to mimic the catalytic residues and their spatial distribution in the natural enzymes, and shed light on the design of the smart biocatalysts that can respond to the environmental stimuli.
Collapse
Affiliation(s)
- Qiao Teng
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Sun
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
13
|
Nandy A, Mukherjee S. A Bioinspired Light Harvesting System in Aqueous Medium: Highly Efficient Energy Transfer through the Self Assembly of β-Sheet Nanostructures of Poly-d-Lysine. J Phys Chem Lett 2022; 13:6701-6710. [PMID: 35848986 DOI: 10.1021/acs.jpclett.2c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nature has beautifully assembled its light harvesting pigments within protein scaffolds, which ensures a very high energy transfer. Designing a highly efficient artificial bioinspired light harvesting system (LHS) thus requires the nanoscale spatial orientation and electronic control of the associated chromophores. Although DNA has been used as a scaffold to organize chromophores, proteins or polypeptides, however, are very rarely explored. Here, we have developed a highly efficient, artificial, bioinspired LHS using polypeptide (poly-d-lysine, PDL) nanostructures making use of their β-sheet structure in an aqueous alkaline medium. The chromophores used herein are compatible for an energy transfer process and are nonfluorescent in an aqueous medium but exhibit high fluorescence intensity when bound to the nanostructure of PDL. The close proximity of the chromophores results in an energy transfer efficiency of ∼92% besides generating white light emission at a particular molar ratio between the chromophores.
Collapse
Affiliation(s)
- Atanu Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
14
|
Wang T, Ménard-Moyon C, Bianco A. Self-assembly of amphiphilic amino acid derivatives for biomedical applications. Chem Soc Rev 2022; 51:3535-3560. [PMID: 35412536 DOI: 10.1039/d1cs01064f] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amino acids are one of the simplest biomolecules and they play an essential role in many biological processes. They have been extensively used as building blocks for the synthesis of functional nanomaterials, thanks to their self-assembly capacity. In particular, amphiphilic amino acid derivatives can be designed to enrich the diversity of amino acid-based building blocks, endowing them with specific properties and/or promoting self-assembly through hydrophobic interactions, hydrogen bonding, and/or π-stacking. In this review, we focus on the design of various amphiphilic amino acid derivatives able to self-assemble into different types of nanostructures that were exploited for biomedical applications, thanks to their excellent biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Tengfei Wang
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| |
Collapse
|
15
|
Li Z, Xu X, Yu F, Fei J, Li Q, Dong M, Li J. Oriented Nanoarchitectonics of Bacteriorhodopsin for Enhancing ATP Generation in a F o F 1 -ATPase-Based Assembly System. Angew Chem Int Ed Engl 2022; 61:e202116220. [PMID: 35129265 DOI: 10.1002/anie.202116220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Indexed: 12/23/2022]
Abstract
Energy conversion plays an important role in the metabolism of photosynthetic organisms. Improving energy transformation by promoting a proton gradient has been a great challenge for a long time. In the present study, we realize a directional proton migration through the construction of oriented bacteriorhodopsin (BR) microcapsules coated by Fo F1 -ATPase molecular motors through layer-by-layer (LBL) assembly. The changes in the conformation of BR under illumination lead to proton transfer in a radial direction, which generates a higher proton gradient to drive the synthesis of adenosine triphosphate (ATP) by Fo F1 -ATPase. Furthermore, to promote the photosynthetic activity, optically matched quantum dots were introduced into the artificial coassembly system of BR and Fo F1 -ATPase. Such a design creates a new path for the use of light energy.
Collapse
Affiliation(s)
- Zibo Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fanchen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
16
|
Zhang X, Chen X, Zhao Y. Nanozymes: Versatile Platforms for Cancer Diagnosis and Therapy. NANO-MICRO LETTERS 2022; 14:95. [PMID: 35384520 PMCID: PMC8986955 DOI: 10.1007/s40820-022-00828-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 05/08/2023]
Abstract
Natural enzymes usually suffer from high production cost, ease of denaturation and inactivation, and low yield, making them difficult to be broadly applicable. As an emerging type of artificial enzyme, nanozymes that combine the characteristics of nanomaterials and enzymes are promising alternatives. On the one hand, nanozymes have high enzyme-like catalytic activities to regulate biochemical reactions. On the other hand, nanozymes also inherit the properties of nanomaterials, which can ameliorate the shortcomings of natural enzymes and serve as versatile platforms for diverse applications. In this review, various nanozymes that mimic the catalytic activity of different enzymes are introduced. The achievements of nanozymes in different cancer diagnosis and treatment technologies are summarized by highlighting the advantages of nanozymes in these applications. Finally, future research directions in this rapidly developing field are outlooked.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaokai Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
17
|
Zou Q, Bao J, Yan X. Functional Nanomaterials Based on Self-Assembly of Endogenic NIR-Absorbing Pigments for Diagnostic and Therapeutic Applications. SMALL METHODS 2022; 6:e2101359. [PMID: 35142112 DOI: 10.1002/smtd.202101359] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Endogenic pigments derived from hemoglobin have been successfully applied in the clinic for both imaging and therapy based on their inherent photophysical and photochemical properties, including light absorption, fluorescence emission, and producing reactive oxygen species. However, the clinically approved endogenic pigments can be excited only by UV/vis light, restricting the penetration depth of in vivo applications. Recently, endogenic pigments with NIR-absorbing properties have been explored for constructing functional nanomaterials. Here, the overview of NIR-absorbing endogenic pigments, mainly bile pigments, and melanins, as emerging building blocks for supramolecular construction of diagnostic and therapeutic nanomaterials is provided. The endogenic origins, synthetic pathways, and structural characteristics of the NIR-absorbing endogenic pigments are described. The self-assembling approaches and noncovalent interactions in fabricating the nanomaterials are emphasized. Since bile pigments and melanins are inherently photothermal agents, the resulting nanomaterials are demonstrated as promising candidates for photoacoustic imaging and photothermal therapy. Integration of additional diagnostic and therapeutic agents by the nanomaterials through chemical conjugation or physical encapsulation toward synergetic effects is also included. Especially, the degradation behaviors of the nanomaterials in biological environments are summarized. Along with the challenges, future perspectives are discussed for accelerating the ration design and clinical translation of NIR-absorbing nanomaterials.
Collapse
Affiliation(s)
- Qianli Zou
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Jianwei Bao
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xuehai Yan
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
18
|
Chatterjee A, Reja A, Pal S, Das D. Systems chemistry of peptide-assemblies for biochemical transformations. Chem Soc Rev 2022; 51:3047-3070. [PMID: 35316323 DOI: 10.1039/d1cs01178b] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the billions of years of the evolutionary journey, primitive polymers, involved in proto metabolic pathways with low catalytic activity, played critical roles in the emergence of modern enzymes with remarkable substrate specificity. The precise positioning of amino acid residues and the complex orchestrated interplay in the binding pockets of evolved enzymes promote covalent and non-covalent interactions to foster a diverse set of complex catalytic transformations. Recent efforts to emulate the structural and functional information of extant enzymes by minimal peptide based assemblies have attempted to provide a holistic approach that could help in discerning the prebiotic origins of catalytically active binding pockets of advanced proteins. In addition to the impressive sets of advanced biochemical transformations, catalytic promiscuity and cascade catalysis by such small molecule based dynamic systems can foreshadow the ancestral catalytic processes required for the onset of protometabolism. Looking beyond minimal systems that work close to equilibrium, catalytic systems and compartments under non-equilibrium conditions utilizing simple prebiotically relevant precursors have attempted to shed light on how bioenergetics played an essential role in chemical emergence of complex behaviour. Herein, we map out these recent works and progress where diverse sets of complex enzymatic transformations were demonstrated by utilizing minimal peptide based self-assembled systems. Further, we have attempted to cover the examples of peptide assemblies that could feature promiscuous activity and promote complex multistep cascade reaction networks. The review also covers a few recent examples of minimal transient catalytic assemblies under non-equilibrium conditions. This review attempts to provide a broad perspective for potentially programming functionality via rational selection of amino acid sequences leading towards minimal catalytic systems that resemble the traits of contemporary enzymes.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Antara Reja
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Sumit Pal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| |
Collapse
|
19
|
Dowari P, Kumar Baroi M, Das T, Kanti Das B, Das S, Chowdhuri S, Garg A, Debnath A, Das D. Development of a hydrolase mimicking peptide amphiphile and its immobilization on silica surface for stereoselective and enhanced catalysis. J Colloid Interface Sci 2022; 618:98-110. [PMID: 35334366 DOI: 10.1016/j.jcis.2022.03.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 12/26/2022]
Abstract
Biocatalysis is an important area of modern research and is extensively explored by various industries to attain greener methods in various applications. Supramolecular interactions of short peptides have been under the scanner for developing artificial smart materials inspired from natural systems. Peptide-based artificial enzymes have been proved to show various enzyme-like activities. Therefore, immobilization of catalytic peptides on solid surfaces can be an extremely useful breakthrough for development of cost-effective catalytic formulations. In this work, a series of peptide amphiphiles (PAs) have been systematically analyzed to find the most effective catalyst with esterase like activity. The PA, containing a catalytic triad, 'Asp(Ser)His' in a branched manner, was further immobilized onto silica nanoparticles through covalent bonding method to obtain surface coated catalytic silica nanoparticles. The heterogenous catalytic formulation not only showed enhanced esterase activity than the self-assembled PA in homogenous phase, but also exceeded the activity of natural CV lipase. The catalytic formulation showed high stereoselectivity towards chiral esters. Moreover, the catalyst remained stable at higher temperature, in presence of various denaturant and retained its activity after several catalytic cycles. The ease of separation, robust nature, reusability and high stereoselectivity of the catalyst opens up the possibility of creating new generation heterogeneous catalysts for further industrial applications.
Collapse
Affiliation(s)
- Payel Dowari
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Malay Kumar Baroi
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Tanushree Das
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Basab Kanti Das
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Sumit Chowdhuri
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Avinash Garg
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India.
| |
Collapse
|
20
|
Krieger A, Zika A, Gröhn F. Functional Nano-Objects by Electrostatic Self-Assembly: Structure, Switching, and Photocatalysis. Front Chem 2022; 9:779360. [PMID: 35359487 PMCID: PMC8961288 DOI: 10.3389/fchem.2021.779360] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
The design of functional nano-objects by electrostatic self-assembly in solution signifies an emerging field with great potential. More specifically, the targeted combination of electrostatic interaction with other effects and interactions, such as the positioning of charges on stiff building blocks, the use of additional amphiphilic, π-π stacking building blocks, or polyelectrolytes with certain architectures, have recently promulgated electrostatic self-assembly to a principle for versatile defined structure formation. A large variety of architectures from spheres over rods and hollow spheres to networks in the size range of a few tenths to a few hundred nanometers can be formed. This review discusses the state-of-the-art of different approaches of nano-object formation by electrostatic self-assembly against the backdrop of corresponding solid materials and assemblies formed by other non-covalent interactions. In this regard, particularly promising is the facile formation of triggerable structures, i.e. size and shape switching through light, as well as the use of electrostatically assembled nano-objects for improved photocatalysis and the possible solar energy conversion in the future. Lately, this new field is eliciting an increasing amount of understanding; insights and limitations thereof are addressed in this article. Special emphasis is placed on the interconnection of molecular building block structures and the resulting nanoscale architecture via the key of thermodynamics.
Collapse
Affiliation(s)
| | | | - Franziska Gröhn
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM) and Bavarian Polymer Institute (BPI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
21
|
Li Z, Xu X, Yu F, Fei J, Li Q, Dong M, Li J. Oriented Nanoarchitectonics of Bacteriorhodopsin for Enhancing ATP Generation in a F
o
F
1
‐ATPase‐Based Assembly System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zibo Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Fanchen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus C 8000 Denmark
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| |
Collapse
|
22
|
Ma J, Deng H, Zhang Z, Zhang L, Qin Z, Zhang Y, Gao L, Jiao T. Facile synthesis of Ag3PO4/PPy/PANI ternary composites for efficient catalytic reduction of 4-nitrophenol and 2-nitroaniline. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Han J, Li H, Zhao L, Kim G, Chen Y, Yan X, Yoon J. Albumin-mediated “Unlocking” of supramolecular prodrug-like nanozymes toward selective imaging-guided phototherapy. Chem Sci 2022; 13:7814-7820. [PMID: 35865904 PMCID: PMC9258398 DOI: 10.1039/d2sc02025d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
An adaptive nanozyme without producing off-target toxicity has been successfully applied in phototherapy.
Collapse
Affiliation(s)
- Jingjing Han
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Haidong Li
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yahui Chen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
- New and Renewable Energy Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
24
|
Wang H, Yang WL, Ma RH, Tang YM, Zhang CL. Study on synthesis of rare earth tungsten heteropoly acid glycine composite catalyst and degradation of dyes. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1999430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hao Wang
- College of Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Wan-Li Yang
- College of Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Rong-Hua Ma
- College of Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Yi-Min Tang
- College of Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Cheng-Li Zhang
- College of Chemical Engineering, Qiqihar University, Qiqihar, China
| |
Collapse
|
25
|
Han D, Zhao H, Gao L, Qin Z, Ma J, Han Y, Jiao T. Preparation of carboxymethyl chitosan/phytic acid composite hydrogels for rapid dye adsorption in wastewater treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Ren H, Wu L, Tan L, Bao Y, Ma Y, Jin Y, Zou Q. Self-assembly of amino acids toward functional biomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1140-1150. [PMID: 34760429 PMCID: PMC8551877 DOI: 10.3762/bjnano.12.85] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Biomolecules, such as proteins and peptides, can be self-assembled. They are widely distributed, easy to obtain, and biocompatible. However, the self-assembly of proteins and peptides has disadvantages, such as difficulty in obtaining high quantities of materials, high cost, polydispersity, and purification limitations. The difficulties in using proteins and peptides as functional materials make it more complicate to arrange assembled nanostructures at both microscopic and macroscopic scales. Amino acids, as the smallest constituent of proteins and the smallest constituent in the bottom-up approach, are the smallest building blocks that can be self-assembled. The self-assembly of single amino acids has the advantages of low synthesis cost, simple modeling, excellent biocompatibility and biodegradability in vivo. In addition, amino acids can be assembled with other components to meet multiple scientific needs. However, using these simple building blocks to design attractive materials remains a challenge due to the simplicity of the amino acids. Most of the review articles about self-assembly focus on large molecules, such as peptides and proteins. The preparation of complicated materials by self-assembly of amino acids has not yet been evaluated. Therefore, it is of great significance to systematically summarize the literature of amino acid self-assembly. This article reviews the recent advances in amino acid self-assembly regarding amino acid self-assembly, functional amino acid self-assembly, amino acid coordination self-assembly, and amino acid regulatory functional molecule self-assembly.
Collapse
Affiliation(s)
- Huan Ren
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lifang Wu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lina Tan
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yanni Bao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuchen Ma
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yong Jin
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianli Zou
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
27
|
Chen MN, Zhuo S, Xing LB, Zou Q. Nanozymes based on coassembly of albumin and photosensitizer for photocontrolled RAFT polymerization. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Wu Z, Zhao Y, Mi L, Guo Y, Wang H, Liu K, Zhang K, Wang B. Preparation of g-C3N4/TiO2 by template method and its photocatalytic performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126756] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Li N, Wang R, Wang C, Gao J, Liu Z, Gu J, Jiao T. Self-assembled photo-responsive black phosphorus-azobenzene composite Langmuir films with chemical gas sensor and photoelectric conversion applications. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Fei J, Han Z, Deng Y, Wang T, Zhao J, Wang C, Zhao X. Enhanced photocatalytic performance of iron phthalocyanine/TiO2 heterostructure at joint fibrous interfaces. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Han Y, Zhang Y, Wu S, Jalalah M, Alsareii SA, Yin Y, Harraz FA, Li G. Co-assembly of Peptides and Carbon Nanodots: Sensitive Analysis of Transglutaminase 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36919-36925. [PMID: 34328724 DOI: 10.1021/acsami.1c10326] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The structures assembled by peptides have attracted great attention due to their unique physicochemical properties. Moreover, the co-assembly of peptides with additional components can endow the structures with extended functions. In this work, we have explored the co-assembly of peptides and carbon nanodots (CNDs) by taking advantage of their non-covalent binding; thus, the obtained structure may show both the recognition capability of peptides and the catalytic activity of CNDs. Therefore, we have further used the assembled structure for the sensitive analysis of transglutaminase 2 with a low detection limit of 0.25 pg/mL. By simply replacing the peptide sequences or the nanomaterials, the strategy proposed in this work can be developed as a universal model to build the co-assemblies of peptides and nanomaterials, thus leading to their broader applications in biological and biomedical research.
Collapse
Affiliation(s)
- Yiwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yichen Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Shuai Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
- Department of Electrical Engineering, Faculty of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
- Department of Surgery, College of Medicine, Najran University, Najran 11001, Saudi Arabia
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87 Helwan, Cairo 11421, Egypt
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
32
|
Mulungulungu GA, Mao T, Han K. Efficient removal of high-concentration copper ions from wastewater via 2D g-C3N4 photocatalytic membrane filtration. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126714] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Lee H, Kim H, Lee SY. Self-Assembling Peptidic Bolaamphiphiles for Biomimetic Applications. ACS Biomater Sci Eng 2021; 7:3545-3572. [PMID: 34309378 DOI: 10.1021/acsbiomaterials.1c00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bolaamphiphile, which is a class of amphiphilic molecules, has a unique structure of two hydrophilic head groups at the ends of the hydrophobic center. Peptidic bolaamphiphiles that employ peptides or amino acids as their hydrophilic groups exhibit unique biochemical activities when they self-organize into supramolecular structures, which are not observed in a single molecule. The self-assembled peptidic bolaamphiphiles hold considerable promise for imitating proteins with biochemical activities, such as specific affinity toward heterogeneous substances, a catalytic activity similar to a metalloenzyme, physicochemical activity from harmonized amino acid segments, and the capability to encapsulate genes like a viral vector. These diverse activities give rise to large research interest in biomaterials engineering, along with the synthesis and characterization of the assembled structures. This review aims to address the recent progress in the applications of peptidic bolaamphiphile assemblies whose densely packed peptide motifs on their surface and their stacked hydrophobic centers exhibit unique protein-like activity and designer functionality, respectively.
Collapse
Affiliation(s)
- Hyesung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hanbee Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sang-Yup Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
34
|
Zhang R, Cai L, Cai Y, Han Q, Li Y, Zhang T, Liu Y, Zeng K, Zhao C, Yu J, Yang Z. Lamellar insert SnS2 anchored on BiOBr for enhanced photocatalytic degradation of organic pollutant under visible-light. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Affiliation(s)
- Panpan Li
- National Engineering Research Center for Colloidal Materials School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry Shandong University Ministry of Education Jinan Shandong 250100 P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
- Key Laboratory of Colloid and Interface Chemistry Shandong University Ministry of Education Jinan Shandong 250100 P. R. China
| |
Collapse
|
36
|
Bao S, Liu H, Liang H, Li C, Bai J. Electrospinned silk-ribbon-like carbon-doped TiO2 ultrathin nanosheets for enhanced visible-light photocatalytic activity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Geng R, Chang R, Zou Q, Shen G, Jiao T, Yan X. Biomimetic Nanozymes Based on Coassembly of Amino Acid and Hemin for Catalytic Oxidation and Sensing of Biomolecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008114. [PMID: 33760401 DOI: 10.1002/smll.202008114] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/03/2021] [Indexed: 05/20/2023]
Abstract
Nanoassemblies based on self-assembly of biological building blocks are promising in mimicking the nanostructures, properties, and functionalities of natural enzymes. However, it remains a challenge to design of biomimetic nanozymes with tunable nanostructures and enhanced catalytic activities starting from simple biomolecules. Herein, the construction of nanoassemblies through coassembly of an amphiphilic amino acid and hemin is reported. The nanostructures and morphologies of the resulting nanoassemblies are readily controlled by tuning the molar ratio between the amino acid and hemin, thus leading to tailored peroxidase-mimicking activities of the nanoassemblies. Importantly, the optimized nanoassemblies exhibit a remarkable catalytic efficiency that is comparable to the natural counterpart when considering molecular mass along with good robustness in multiple catalytic cycles. The nanoassemblies are effectively integrated as biomimetic nanozymes in a sensing system for catalytic detection of glucose. Therefore, this work demonstrates that nanozymes with advanced catalytic capabilities can be constructed by self-assembly of minimalist biological building blocks and may thus promote the rational design and catalytic applications of biomimetic nanozymes.
Collapse
Affiliation(s)
- Rui Geng
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Guizhi Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, 211135, P. R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
38
|
Tang B, Xu W, Xu JF, Zhang X. Transforming a Fluorochrome to an Efficient Photocatalyst for Oxidative Hydroxylation: A Supramolecular Dimerization Strategy Based on Host-Enhanced Charge Transfer. Angew Chem Int Ed Engl 2021; 60:9384-9388. [PMID: 33587309 DOI: 10.1002/anie.202100185] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/08/2021] [Indexed: 12/17/2022]
Abstract
The development of non-covalent synthetic strategy to fabricate efficient photocatalysts is of great importance in theranostic and organic materials. Herein, a fluorochrome N,N'-dimethyl 2,5-bis(4-pyridinium)thiazolo[5,4-d]thiazolediiodide (MPT) was transformed into an efficient photocatalyst through supramolecular dimerization in the cavity of cucurbit[8]uril (CB[8]). The host-enhanced charge transfer interaction within the supramolecular dimer 2MPT-CB[8] dramatically promoted intersystem crossing to produce triplet. In addition, the staggered conformation of 2MPT-CB[8] facilitated the energy transfer and electron transfer of the triplet. As a result, 2MPT-CB[8] could serve as a high-efficiency photocatalyst for the oxidative hydroxylation of arylboronic acids. This supramolecular dimerization strategy enriches the supramolecular engineering of functional π-systems. It is anticipated that this strategy can be extended to fabricate various π-systems with tailor-made functions.
Collapse
Affiliation(s)
- Bohan Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weiquan Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
39
|
Tang B, Xu W, Xu J, Zhang X. Transforming a Fluorochrome to an Efficient Photocatalyst for Oxidative Hydroxylation: A Supramolecular Dimerization Strategy Based on Host‐Enhanced Charge Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bohan Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Weiquan Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiang‐Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
40
|
|
41
|
Li D, Zhou C, Liang X, Shi X, Song Q, Chen M, Jiang D. Noble-metal-free Mo2C co-catalsyt modified perovskite oxide nanosheet photocatalysts with enhanced hydrogen evolution performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Facile preparation of agar/polyvinyl alcohol-based triple-network composite hydrogels with excellent mechanical performances. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Kong X, Yang R, Li Y, Wei Y, Sun Y, Lyu H, Yin D, Zhu X, Lu G, Liu Q. Co3O4-binuclear phthalocyanine nanocomposites with enhanced peroxidase-like activity for sensitive detection of glutathione. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Xu X, Fei J, Xu Y, Li G, Dong W, Xue H, Li J. Boric Acid‐Fueled ATP Synthesis by F
o
F
1
ATP Synthase Reconstituted in a Supramolecular Architecture. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100190 Beijing China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100190 Beijing China
| | - Youqian Xu
- Third Military Medical University 400038 Chongqing China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
| | - Weiguang Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
| | - Huimin Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100190 Beijing China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100190 Beijing China
| |
Collapse
|
45
|
Xu X, Fei J, Xu Y, Li G, Dong W, Xue H, Li J. Boric Acid-Fueled ATP Synthesis by F o F 1 ATP Synthase Reconstituted in a Supramolecular Architecture. Angew Chem Int Ed Engl 2021; 60:7617-7620. [PMID: 33369011 DOI: 10.1002/anie.202016253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Significant strides toward producing biochemical fuels have been achieved by mimicking natural oxidative and photosynthetic phosphorylation. Here, different from these strategies, we explore boric acid as a fuel for tuneable synthesis of energy-storing molecules in a cell-like supramolecular architecture. Specifically, a proton locked in boric acid is released in a modulated fashion by the choice of polyols. As a consequence, controlled proton gradients across the lipid membrane are established to drive ATP synthase embedded in the biomimetic architecture, which facilitates tuneable ATP production. This strategy paves a unique route to achieve highly efficient bioenergy conversion, holding broad applications in synthesis and devices that require biochemical fuels.
Collapse
Affiliation(s)
- Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Youqian Xu
- Third Military Medical University, 400038, Chongqing, China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Weiguang Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Huimin Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
46
|
Bhattacharyya A, De Sarkar S, Das A. Supramolecular Engineering and Self-Assembly Strategies in Photoredox Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04952] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ayan Bhattacharyya
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246. India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
47
|
Liu S, Du P, Sun H, Yu HY, Wang ZG. Bioinspired Supramolecular Catalysts from Designed Self-Assembly of DNA or Peptides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03753] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Siyuan Liu
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Peidong Du
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Sun
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Hai-Yin Yu
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
48
|
Dai X, Dong X, Liu Z, Liu G, Liu Y. Controllable Singlet Oxygen Generation in Water Based on Cyclodextrin Secondary Assembly for Targeted Photodynamic Therapy. Biomacromolecules 2020; 21:5369-5379. [DOI: 10.1021/acs.biomac.0c01547] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xianyin Dai
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoyun Dong
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Zhixue Liu
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Guoxing Liu
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Liu
- Department College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
49
|
Xie X, Zheng T, Li W. Recent Progress in Ionic Coassembly of Cationic Peptides and Anionic Species. Macromol Rapid Commun 2020; 41:e2000534. [PMID: 33225490 DOI: 10.1002/marc.202000534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/10/2020] [Indexed: 12/25/2022]
Abstract
Peptide assembly has been extensively exploited as a promising platform for the creation of hierarchical nanostructures and tailor-made bioactive materials. Ionic coassembly of cationic peptides and anionic species is paving the way to provide particularly important contribution to this topic. In this review, the recent progress of ionic coassembly soft materials derived from the electrostatic coupling between cationic peptides and anionic species in aqueous solution is systematically summarized. The presentation of this review starts from a brief background on the general importance and advantages of peptide-based ionic coassembly. After that, diverse combinations of cationic peptides with small anions, macro- and/or oligo-anions, anionic polymers, and inorganic polyoxometalates are described. Emphasis is placed on the hierarchical structures, value-added properties, and applications. The molecular design of cationic peptides and the general principles behind the ionic coassembled structures are discussed. It is summarized that the combination of interesting and unique characteristics that arise both from the chemical diversity of peptides and the wide range of anionic species may contribute in a variety of output, including drug delivery, tissue engineering, gene transfection, and antibacterial activity. The emergent new phenomena and findings are illustrated. Finally, the outlook for the peptide-based ionic coassembly systems is also presented.
Collapse
Affiliation(s)
- Xiaoming Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China.,Department of Chemistry, Xinzhou Teachers' University, Xinzhou, Shanxi, 034000, China
| | - Tingting Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| |
Collapse
|
50
|
Han J, Yoon J. Supramolecular Nanozyme-Based Cancer Catalytic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:7344-7351. [DOI: 10.1021/acsabm.0c01127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingjing Han
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|