1
|
Preda G, Pasini D. One-Handed Covalent Helical Ladder Polymers: The Dawn of a Tailorable Class of Chiral Functional Materials. Angew Chem Int Ed Engl 2024; 63:e202407495. [PMID: 38818664 DOI: 10.1002/anie.202407495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
In the last decades, chemists have developed methods to synthesize helical molecular architectures using a combination of covalent and non-covalent interactions. Very recently, the new class of completely covalent, one-handed helical ladder polymers has vigorously emerged. Such polymers can be rationally and programmably obtained through an approach guided by the principles of chirality-assisted-synthesis (CAS) and making use synergically of two disciplines that have so far rarely interacted: non-planar chiral π-conjugated synthons and ladder polymer chemistry. The precise programmability of the 3D structure and new mechanical and chiroptical properties will lead to potential applications in areas such as enantiorecognition, catalysis, spintronics and chiral-related optoelectronics. This minireview examines the emerging field of one-handed helical ladder polymers, analyzing their synthesis, applications, and limitations.
Collapse
Affiliation(s)
- Giovanni Preda
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
2
|
McCarthy DR, Xu K, Schenkelberg ME, Balegamire NAN, Liang H, Bellino SA, Li J, Schneebeli ST. Kinetically controlled synthesis of rotaxane geometric isomers. Chem Sci 2024; 15:4860-4870. [PMID: 38550687 PMCID: PMC10967009 DOI: 10.1039/d3sc04412b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/24/2024] [Indexed: 04/30/2024] Open
Abstract
Geometric isomerism in mechanically interlocked systems-which arises when the axle of a mechanically interlocked molecule is oriented, and the macrocyclic component is facially dissymmetric-can provide enhanced functionality for directional transport and polymerization catalysis. We now introduce a kinetically controlled strategy to control geometric isomerism in [2]rotaxanes. Our synthesis provides the major geometric isomer with high selectivity, broadening synthetic access to such interlocked structures. Starting from a readily accessible [2]rotaxane with a symmetrical axle, one of the two stoppers is activated selectively for stopper exchange by the substituents on the ring component. High selectivities are achieved in these reactions, based on coupling the selective formation reactions leading to the major products with inversely selective depletion reactions for the minor products. Specifically, in our reaction system, the desired (major) product forms faster in the first step, while the undesired (minor) product subsequently reacts away faster in the second step. Quantitative 1H NMR data, fit to a detailed kinetic model, demonstrates that this effect (which is conceptually closely related to minor enantiomer recycling and related processes) can significantly improve the intrinsic selectivity of the reactions. Our results serve as proof of principle for how multiple selective reaction steps can work together to enhance the stereoselectivity of synthetic processes forming complex mechanically interlocked molecules.
Collapse
Affiliation(s)
- Dillon R McCarthy
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Ke Xu
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Mica E Schenkelberg
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Nils A N Balegamire
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Huiming Liang
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Shea A Bellino
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Jianing Li
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Severin T Schneebeli
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
3
|
Kazim M, Feng Z, Vemulapalli S, Siegler MA, Chopra A, Minh Nguyen P, Gargiulo Holl M, Guan L, Dudding T, Tantillo DJ, Lectka T. Through-Space, Lone-Pair Promoted Aromatic Substitution: A Relay Mechanism Can Beat Out Direct Activation. Chemistry 2023; 29:e202301550. [PMID: 37219499 DOI: 10.1002/chem.202301550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
We report a detailed experimental and theoretical analysis of through-space arene activation with halogens, tetrazoles and achiral esters and amides. Contrary to previously assumed direct activation through σ-complex stabilization, our results suggest that these reactions proceed by a relay mechanism wherein the lone pair-containing activators form exothermic π-complexes with electrophilic nitronium ion before transferring it to the probe ring through low barrier transition states. Noncovalent interactions (NCI) plots and Quantum Theory of Atoms in Molecules (QTAIM) analyses depict favorable interactions between the Lewis base (LB) and the nitronium ion in the precomplexes and the transition states, suggesting directing group participation throughout the mechanism. The regioselectivity of substitution also comports with a relay mechanism. In all, these data pave the way for an alternate platform of electrophilic aromatic substitution (EAS) reactions.
Collapse
Affiliation(s)
- Muhammad Kazim
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
- Current address: Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Zhitao Feng
- Department of Chemistry, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Srini Vemulapalli
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Anant Chopra
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Phuong Minh Nguyen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Maxwell Gargiulo Holl
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Liangyu Guan
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Travis Dudding
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Dean J Tantillo
- Department of Chemistry, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Hung TY, Kuck D, Chow HF. Donor-Acceptor Tribenzotriquinacene-Based Molecular Wizard Hats Bearing Three ortho-Benzoquinone Units. Chemistry 2022; 29:e202203749. [PMID: 36585931 DOI: 10.1002/chem.202203749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Two π-extended bay-bridged tribenzotriquinacenes ("TBTQ wizard hats") 12 and 16 bearing three mutually conjugated, alternating veratrole-type and ortho-benzoquinone units were synthesized. The electronic properties of these complementarily arranged, nonplanar push-pull systems are affected by the fusion with the rigid, C3 -symmetric TBTQ core to a different extent, as revealed by X-ray structural analysis, UV-vis spectroscopy and cyclovoltammetry. The combination of three quinone units within the original TBTQ core and three veratrole-type bay bridging units in 12 gives rise to a more efficiently π-conjugated chromophore, as reflected by the shallower shape of wizard hat and its absorption in the visible up to 750 nm in comparison to 16. Congener 12 contains an aromatic 18-π electron system in contrast to the cross-conjugated analog 16. X-ray structure analysis of the precursor dodecaether 15 revealed the formation of a cage-like supramolecular dimer, in which the peripheral dioxane-type ether groups interlace by twelve noncovalent C-H⋅⋅⋅⋅⋅O bonds.
Collapse
Affiliation(s)
- Tsz-Yu Hung
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Dietmar Kuck
- Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hak-Fun Chow
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
5
|
Lv M, Li X. Ni(II)-Catalyzed Asymmetric Nitration of Oxindoles: Construction of Cipargamin Analogues. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mingjun Lv
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
6
|
Seifert M, Barth D, Kuck D. Benzoannellated Fenestranes Bearing
para
‐Terphenyl Units. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monika Seifert
- Department of Chemistry Bielefeld University 33615 Bielefeld Germany
| | - Dieter Barth
- Department of Chemistry Bielefeld University 33615 Bielefeld Germany
| | - Dietmar Kuck
- Department of Chemistry Bielefeld University 33615 Bielefeld Germany
| |
Collapse
|
7
|
Nie X, Su H, Wang T, Miao H, Chen B, Zhang G. Aromatic Electrophilic Directing for Fluorescence and Room-Temperature Phosphorescence Modulation. J Phys Chem Lett 2021; 12:3099-3105. [PMID: 33754734 DOI: 10.1021/acs.jpclett.1c00520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability to modulate luminescence is crucial for organic light-emitting molecules. However, the correlation between molecular structure and emission is not always obvious and systematic. Here, using a well-established empirical rule on electrophilic substitution involving directing groups in organic chemistry, we present a model system, where two luminophores are covalently linked to benzene ortho, meta, and para to each other, to demonstrate that the rule can also be useful in predicting the fluorescence and phosphorescence behaviors of these disubstituted benzene molecules. The benzene ring works as a "molecular wire" that transduces electron density when the two luminophores form ortho- and para-isomers, while little to no transduction can be noted for the meta-isomer, based on well-established organic chemistry. We anticipate that many more "textbook examples" of electronic directing in organic chemistry can be used for systematic modulation of molecular fluorescence and room-temperature phosphorescence.
Collapse
Affiliation(s)
- Xiancheng Nie
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hao Su
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Tao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hui Miao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Biao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Guoqing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Zhang ZQ, Ren QX, Tian WF, Sun WH, Cao XP, Shi ZF, Chow HF, Kuck D. Synthesis of Enantiopure Hydrocarbon Cages Based on an Optically Resolved C3-Symmetric Triaminotribenzotriquinacene. Org Lett 2021; 23:1478-1483. [PMID: 33525871 DOI: 10.1021/acs.orglett.1c00176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of the enantiomerically pure, D3-symmetric covalent hydrocarbon cages (+)-(M,M)-4 and (-)-(P,P)-4 bearing two C3-symmetrically functionalized tribenzobenzotriquinacene (TBTQ) vertices is reported. The enantiomerically pure TBTQ building blocks (+)-(M)-5 and (-)-(P)-5 were prepared via the diastereomeric TBTQ triamides obtained by use of both Boc-d- and Boc-l-phenylglycine as chiral auxiliaries.
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qing-Xia Ren
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wan-Fa Tian
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wen-Hua Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Xiao-Ping Cao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zi-Fa Shi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hak-Fun Chow
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Dietmar Kuck
- Department of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
9
|
Li ZM, Tan Y, Ma YP, Cao XP, Chow HF, Kuck D. Chiral Derivatives of 2-Aminotribenzotriquinacene: Synthesis and Optical Resolution. J Org Chem 2020; 85:6478-6488. [PMID: 32271016 DOI: 10.1021/acs.joc.0c00396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Starting from a hitherto unknown 2-aminotribenzotriquinacene, several 2-amino-3-X-substituted TBTQ derivatives, all bearing a single ortho-difunctionalized indane wing, were synthesized as rigid and chiral building blocks for the potential construction of complex supramolecular architectures. Efficient access to two pairs of enantiomeric TBTQ derivatives, namely, the peripheral ortho-nitroaniline (X = NO2) and the related anthranilic acid (X = CO2H), was developed using chiral auxiliaries as the resolving reagents. The structure of the intermediate diastereomers was confirmed by 1H and 13C NMR spectroscopy, high-resolution mass spectroscopy (HRMS), and polarimetry. The absolute configuration of the optically active derivatives was confirmed by quantum chemical time-dependent density functional theory (TD-DFT) calculations of the theoretical electronic circular dichroism (ECD) spectra and by single-crystal X-ray structure analysis of a synthesis intermediate.
Collapse
Affiliation(s)
- Zhi-Min Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yingfei Tan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - You-Ping Ma
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiao-Ping Cao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hak-Fun Chow
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Dietmar Kuck
- Department of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
10
|
Wagner P, Rominger F, Oeser T, Mastalerz M. Solvent-Controlled Racemic Resolution of C3-Symmetric Trihydroxytribenzotriquinacenes. J Org Chem 2020; 85:3981-3989. [PMID: 31990546 DOI: 10.1021/acs.joc.9b03410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A racemic C3-symmetric trihydroxytribenzotriquinacene was resolved on a large scale by fractional crystallization of the corresponding (1S)-camphanic esters, achieving both enantiopure enantiomers (>99% ee) in 35% and 32% yields. The method relies on a distinct solvent-controlled discrimination process between the diastereomers. The enantiopure trihydroxytribenzotriquinacenes were converted into four other enantiopure building blocks, which are valuable precursors for supramolecular and materials chemistry to illustrate the utility of the synthesized compounds.
Collapse
Affiliation(s)
- Philippe Wagner
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Thomas Oeser
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Zhu T, Liu Y, Smetankova M, Zhuo S, Mou C, Chai H, Jin Z, Chi YR. Carbene‐Catalyzed Desymmetrization and Direct Construction of Arenes with All‐Carbon Quaternary Chiral Center. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tingshun Zhu
- Nanyang Technological University Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences Singapore 637371 Singapore
- Present address: School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yingguo Liu
- Nanyang Technological University Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences Singapore 637371 Singapore
| | - Marie Smetankova
- Nanyang Technological University Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences Singapore 637371 Singapore
| | - Shitian Zhuo
- Nanyang Technological University Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences Singapore 637371 Singapore
| | - Chengli Mou
- School of Pharmacy Guizhou University of Traditional Chinese Medicine, Huaxi District Guiyang Guizhou 550025 China
| | - Huifang Chai
- School of Pharmacy Guizhou University of Traditional Chinese Medicine, Huaxi District Guiyang Guizhou 550025 China
| | - Zhichao Jin
- Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University, Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- Nanyang Technological University Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences Singapore 637371 Singapore
| |
Collapse
|
12
|
Zhu T, Liu Y, Smetankova M, Zhuo S, Mou C, Chai H, Jin Z, Chi YR. Carbene‐Catalyzed Desymmetrization and Direct Construction of Arenes with All‐Carbon Quaternary Chiral Center. Angew Chem Int Ed Engl 2019; 58:15778-15782. [DOI: 10.1002/anie.201910183] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/27/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Tingshun Zhu
- Nanyang Technological University Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences Singapore 637371 Singapore
- Present address: School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yingguo Liu
- Nanyang Technological University Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences Singapore 637371 Singapore
| | - Marie Smetankova
- Nanyang Technological University Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences Singapore 637371 Singapore
| | - Shitian Zhuo
- Nanyang Technological University Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences Singapore 637371 Singapore
| | - Chengli Mou
- School of Pharmacy Guizhou University of Traditional Chinese Medicine, Huaxi District Guiyang Guizhou 550025 China
| | - Huifang Chai
- School of Pharmacy Guizhou University of Traditional Chinese Medicine, Huaxi District Guiyang Guizhou 550025 China
| | - Zhichao Jin
- Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University, Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- Nanyang Technological University Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences Singapore 637371 Singapore
| |
Collapse
|
13
|
Pavlović RZ, Zhiquan L, Güney M, Lalisse RF, Hopf RG, Gallucci J, Moore C, Xie H, Hadad CM, Badjić JD. Multivalent C−H⋅⋅⋅Cl/Br−C Interactions Directing the Resolution of Dynamic and Twisted Capsules. Chemistry 2019; 25:13124-13130. [PMID: 31282022 DOI: 10.1002/chem.201903006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Radoslav Z. Pavlović
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Lei Zhiquan
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Murat Güney
- Department of Chemistry, Science and Art Faculty Agri Ibrahim Çeçen University Agri Turkey
| | - Remy F. Lalisse
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Ryan G. Hopf
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Judith Gallucci
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Curtis Moore
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Han Xie
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Christopher M. Hadad
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Jovica D. Badjić
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| |
Collapse
|
14
|
Campbell JP, Sharafi M, Murphy KE, Bocanegra JL, Schneebeli ST. Precise molecular shape control of linear and branched strips with chirality-assisted synthesis. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1638922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Mona Sharafi
- Department of Chemistry, The University of Vermont, Burlington, VT, USA
| | - Kyle E. Murphy
- Department of Chemistry, The University of Vermont, Burlington, VT, USA
| | | | | |
Collapse
|
15
|
Abstract
Chirality is a natural attribute nature of living matter and plays an important role in maintaining the metabolism, evolution and functional activities of living organisms. Asymmetric conformation represents the chiral structure of biomacromolecules in living organisms on earth, such as the L-amino acids of proteins and enzymes, and the D-sugars of DNA or RNA, which exist preferentially as one enantiomer. Circularly polarized light (CPL), observed in the formation regions of the Orion constellation, has long been proposed as one of the origins of single chirality. Herein, the CPL triggered asymmetric polymerization, photo-modulation of chirality based on polymers are described. The mechanisms between CPL and polymers (including polydiacetylene, azobenzene polymers, chiral coordination polymers, and polyfluorene) are described in detail. This minireview provides a promising flexible asymmetric synthesis method for the fabrication of chiral polymer via CPL irradiation, with the hope of obtaining a better understanding of the origin of homochirality on earth.
Collapse
|