1
|
Zhao M, Xu W, Wu YD, Yang X, Wang J, Zhou JS. Cobalt-Catalyzed Enantioselective Reductive Arylation, Heteroarylation, and Alkenylation of Michael Acceptors via an Elementary Mechanism of 1,4-Addition. J Am Chem Soc 2024; 146:20477-20493. [PMID: 38982945 DOI: 10.1021/jacs.4c06735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Cobalt complexes with chiral quinox ligands effectively promote the enantioselective conjugate addition of enones using aryl, heteroaryl, and alkenyl halides and sulfonates. Additionally, a cobalt complex with a strongly donating diphosphine, BenzP*, successfully catalyzes the asymmetric reductive arylation and alkenylation of α,β-unsaturated amides. Both catalytic systems show broad scopes and tolerance of sensitive functional groups. Both reactions can be scaled up with low loadings of cobalt catalysts. Experimental results and density functional theory (DFT) calculations suggest a new mechanism of elementary 1,4-addition of aryl cobalt(I) complexes.
Collapse
Affiliation(s)
- Mengxin Zhao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Wenqiang Xu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
| | - Xiuying Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianchun Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
2
|
Liu JY, Zhuang SY, Tang YX, Chen XL, Zhou Y, Wu YD, Zheng KL, Wu AX. I 2-DMSO-Mediated Transannulation of Benzo[ d]isoxazol-3-amine: Direct Access to 2,4,5-Substituted Pyrimidine Derivatives. J Org Chem 2023; 88:12000-12012. [PMID: 37540765 DOI: 10.1021/acs.joc.3c01327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
An I2-DMSO-mediated multicomponent [3+1+2] cascade annulation reaction using aryl methyl ketones, enaminones, and benzo[d]isoxazol-3-amine as substrates has been developed. This metal-free reaction involved the transannulation of benzo[d]isoxazol-3-amines with the formation of two C-N bonds and a C-C bond in one pot. Notably, a pyrimidine ring with a 1,4-dicarbonyl scaffold could efficiently transform into a pyrimido[4,5-d]pyridazine skeleton. The phenolic hydroxyl group of the target product could undergo further modification with pharmaceuticals, demonstrating the utility of this method.
Collapse
Affiliation(s)
- Jin-Yi Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shi-Yi Zhuang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yong-Xing Tang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiang-Long Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Kai-Lu Zheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, P. R. China
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, P. R. China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
3
|
Zhang L, Wang X, Pu M, Chen C, Yang P, Wu YD, Chi YR, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Arylation and Heteroarylation of Aldimines via an Elementary 1,4-Addition. J Am Chem Soc 2023. [PMID: 37023358 DOI: 10.1021/jacs.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Nickel catalysts of chiral pyrox ligands promoted enantioselective reductive arylation and heteroarylation of aldimines, using directly (hetero)aryl halides and sulfonates. The catalytic arylation can also be conducted with crude aldimines generated from condensation of aldehydes and azaaryl amines. Mechanistically, density functional theory (DFT) calculations and experiments pointed to an elementary step of 1,4-addition of aryl nickel(I) complexes to N-azaaryl aldimines.
Collapse
Affiliation(s)
- Luoqiang Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xiuhua Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
| | - Caiyou Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
4
|
Nad P, Behera AK, Sen A, Mukherjee A. Catalytic and Mechanistic Approach to the Metal-Free N-Alkylation of 2-Aminopyridines with Diketones. J Org Chem 2022; 87:15403-15414. [PMID: 36350139 DOI: 10.1021/acs.joc.2c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
N-alkylation of amines is an important catalytic reaction in synthetic chemistry. Herein, we report a simple strategy for the N-alkylation of 2-aminopyridines with 1,2-diketones using BF3·OEt2 as a catalyst. The reaction proceeds under aerobic conditions, leading to the formation of a diverse range of substituted secondary amines in good to excellent yields. A close inspection of the mechanistic pathway using various spectroscopic techniques and the computational study revealed that the reaction proceeds through the formation of an iminium-keto intermediate with the liberation of CO2.
Collapse
Affiliation(s)
- Pinaki Nad
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur 492015, Chhattisgarh, India
| | - Anil Kumar Behera
- Department of Chemistry (CMDD Lab), GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India
| | - Anik Sen
- Department of Chemistry (CMDD Lab), GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur 492015, Chhattisgarh, India
| |
Collapse
|
5
|
Wen W, Ai ZP, Yang CL, Li CX, Wu ZL, Cai T, Guo QX. Enantioselective synthesis of α-amino ketones through palladium-catalyzed asymmetric arylation of α-keto imines. Chem Sci 2022; 13:3796-3802. [PMID: 35432891 PMCID: PMC8966749 DOI: 10.1039/d2sc00386d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/06/2022] [Indexed: 11/23/2022] Open
Abstract
Chiral α-amino ketones are common structural motifs in natural products and pharmaceuticals, as well as important synthons in organic synthesis. Thus, establishing efficient methods for preparing compounds with these privileged scaffolds is an important endeavor in synthetic chemistry. Herein we disclose a new catalytic asymmetric approach for the synthesis of chiral α-amino ketones through a chiral palladium-catalyzed arylation reaction of in situ generated challenging α-keto imines from previously unreported C-acyl N-sulfonyl-N,O-aminals, with arylboronic acids. The current reaction offers a straightforward approach to the asymmetric synthesis of acyclic α-amino ketones in a practical and highly stereocontrolled manner. Meanwhile, the multiple roles of the chiral Pd(ii) complex catalyst in the reaction were also reported. Chiral α-amino ketones are common structural motifs in natural products and pharmaceuticals, as well as important synthons in organic synthesis.![]()
Collapse
Affiliation(s)
- Wei Wen
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhao-Pin Ai
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chang-Lin Yang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chao-Xing Li
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhu-Lian Wu
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tian Cai
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qi-Xiang Guo
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Jiao T, Yao T. Nickel-Catalyzed Enantioselective Reductive Conjugate Arylation and Heteroarylation via an Elementary Mechanism of 1,4-Addition. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Hu Y, Wang C, Zhu H, Xing J, Dou X. Rhodium‐Catalysed Asymmetric Arylation of Pyridylimines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yan Hu
- Department of Chemistry, School of Science China Pharmaceutical University Nanjing 211198 People's Republic of China
| | - Chenhong Wang
- Department of Chemistry, School of Science China Pharmaceutical University Nanjing 211198 People's Republic of China
| | - Huilong Zhu
- Department of Chemistry, School of Science China Pharmaceutical University Nanjing 211198 People's Republic of China
| | - Junhao Xing
- Department of Chemistry, School of Science China Pharmaceutical University Nanjing 211198 People's Republic of China
| | - Xiaowei Dou
- Department of Chemistry, School of Science China Pharmaceutical University Nanjing 211198 People's Republic of China
| |
Collapse
|
8
|
Luo X, Zhao Y, Tao S, Yang ZT, Luo H, Yang W. A simple and efficient copper-catalyzed three-component reaction to synthesize ( Z)-1,2-dihydro-2-iminoquinolines. RSC Adv 2021; 11:31152-31158. [PMID: 35496874 PMCID: PMC9041411 DOI: 10.1039/d1ra06330h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
A operationally simple synthesis of (Z)-1,2-dihydro-2-iminoquinolines that proceeds under mild conditions is achieved by copper-catalyzed reaction of 1-(2-aminophenyl)ethan-1-ones, sulfonyl azides and terminal ynones. In particular, the reaction goes through a base-free CuAAC/ring-opening process to obtain the Z-configured products due to hydrogen bonding.
Collapse
Affiliation(s)
- Xiai Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Department of Pharmacy, Hunan University of Medicine Huaihua 418000 China
| | - Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Susu Tao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Zhong-Tao Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| |
Collapse
|
9
|
Wosińska-Hrydczuk M, Skarżewski J. New Advances in the Synthetic Application of Enantiomeric 1-Phenylethylamine (α-PEA): Privileged Chiral Inducer and Auxiliary. Molecules 2020; 25:E4907. [PMID: 33114098 PMCID: PMC7660327 DOI: 10.3390/molecules25214907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
New developments in the synthesis, resolution, and synthetic applications of chiral 1-phenylethylamine (α-PEA) reported in the last decade have been reviewed. In particular, improvements in the synthesis of α-PEA and its derivatives and chiral resolution, as well as their applications in the resolution of other compounds, were discussed. α-PEA was used as a chiral auxiliary in the diastereoselective synthesis of medicinal substances and natural products. Chiral ligands with α-PEA moieties were applied in asymmetric reactions, and effective modular chiral organocatalysts were constructed with α-PEA fragments and used in important synthetic reactions.
Collapse
Affiliation(s)
| | - Jacek Skarżewski
- Chair of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland;
| |
Collapse
|
10
|
Pineschi M. The Binomial Copper-Catalysis and Asymmetric Ring Opening of Strained Heterocycles: Past and Future Challenges. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mauro Pineschi
- Department of Pharmacy; University of Pisa; Via Bonanno 33 56126 Pisa Italy
| |
Collapse
|
11
|
Brethomé AV, Paton RS, Fletcher SP. Retooling Asymmetric Conjugate Additions for Sterically Demanding Substrates with an Iterative Data-Driven Approach. ACS Catal 2019; 9:7179-7187. [PMID: 32064147 PMCID: PMC7011729 DOI: 10.1021/acscatal.9b01814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/27/2019] [Indexed: 12/13/2022]
Abstract
![]()
The
development of catalytic enantioselective methods is routinely
carried out using easily accessible and prototypical substrates. This
approach to reaction development often yields asymmetric methods that
perform poorly using substrates that are sterically or electronically
dissimilar to those used during the reaction optimization campaign.
Consequently, expanding the scope of previously optimized catalytic
asymmetric reactions to include more challenging substrates is decidedly
nontrivial. Here, we address this challenge through the development
of a systematic workflow to broaden the applicability and reliability
of asymmetric conjugate additions to substrates conventionally regarded
as sterically and electronically demanding. The copper-catalyzed asymmetric
conjugate addition of alkylzirconium nucleophiles to form tertiary
centers, although successful for linear alkyl chains, fails for more
sterically demanding linear α,β-unsaturated ketones. Key
to adapting this method to obtain high enantioselectivity was the
synthesis of modified phosphoramidite ligands, designed using quantitative
structure–selectivity relationships (QSSRs). Iterative rounds
of model construction and ligand synthesis were executed in parallel
to evaluate the performance of 20 chiral ligands. The copper-catalyzed
asymmetric addition is now more broadly applicable, even tolerating
linear enones bearing tert-butyl β-substituents.
The presence of common functional groups is tolerated in both nucleophiles
and electrophiles, giving up to 99% yield and 95% ee across 20 examples.
Collapse
Affiliation(s)
- Alexandre V. Brethomé
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Robert S. Paton
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Stephen P. Fletcher
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
12
|
Brüllingen E, Neudörfl JM, Goldfuss B. Enantioselective Cu-catalyzed 1,4-additions of organozinc and Grignard reagents to enones: exceptional performance of the hydrido-phosphite-ligand BIFOP-H. NEW J CHEM 2019. [DOI: 10.1039/c8nj05886e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Enantioselective CuI-catalyzed 1,4-additions and DFT computations concerning the enantioselective mechanism.
Collapse
Affiliation(s)
- Eric Brüllingen
- Department of Chemistry
- University of Cologne
- Organic Chemistry
- 50939 Cologne
- Germany
| | - Jörg-Martin Neudörfl
- Department of Chemistry
- University of Cologne
- Organic Chemistry
- 50939 Cologne
- Germany
| | - Bernd Goldfuss
- Department of Chemistry
- University of Cologne
- Organic Chemistry
- 50939 Cologne
- Germany
| |
Collapse
|