1
|
Li J, Wu Y, Liu M, Wang L, Xiao Y. γ-CF 3-Allenamides versus 3-CF 3-Cyclopentenylamines: Substituent-Controlled Divergent Reaction of β-CF 3-1,3-Enynamides with β-Dicarbonyl Compounds. J Org Chem 2024; 89:13789-13794. [PMID: 39254833 DOI: 10.1021/acs.joc.4c01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A distinctive N-substituent-controlled regioselective 1,4-hydrocarbonation or 1,4-hydrocarbonation/5-endo-trig cyclization cascade reaction of β-CF3-1,3-enynamides with β-dicarbonyl compounds in the presence of a simple base is reported. β-CF3-1,3-enynamides having a Ts group N-substituent produce γ-CF3-allenamides via a 1,4-hydrocarbonation process, whereas β-CF3-1,3-enynamides bearing a Ms group N-substituent lead to 3-CF3-cyclopentenylamines through a 1,4-hydrocarbonation/5-endo-trig cyclization cascade process.
Collapse
Affiliation(s)
- Jintong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Yu Wu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Mingqing Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Lei Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yuanjing Xiao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
2
|
Ding Z, Fu Z, Mi R, Li X. Rhodium(III)-Catalyzed Oxidative Cross-Coupling of N-Pyrimidylindoles with Cyclic β-Keto Esters for Accessing All-Carbon Quaternary Centers. Org Lett 2024; 26:5295-5299. [PMID: 38874590 DOI: 10.1021/acs.orglett.4c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Rh(III)-catalyzed direct oxidative C-H/C-H cross-coupling between N-pyrimidylindoles and β-ketoesters is presented. Easily available β-ketoesters are used as an alkylating agent for the facile construction of all-carbon quaternary centers under mild conditions. The ester group in the product can undergo decarboxylation or decarboxylative amination.
Collapse
Affiliation(s)
- Zhiying Ding
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Zhenda Fu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Ruijie Mi
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Xingwei Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
3
|
Wang J, Luo MP, Gu YJ, Liu YY, Yin Q, Wang SG. Chiral Cp x Rhodium(III)-Catalyzed Enantioselective Aziridination of Unactivated Terminal Alkenes. Angew Chem Int Ed Engl 2024; 63:e202400502. [PMID: 38279683 DOI: 10.1002/anie.202400502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Chiral cyclopentadienyl-rhodium(III) Cpx Rh(III) catalysis has been demonstrated to be competent for catalyzing highly enantioselective aziridination of challenging unactivated terminal alkenes and nitrene sources. The chiral Cpx Rh(III) catalysis system exhibited outstanding catalytic performance and wide functional group tolerance, yielding synthetically important and highly valuable chiral aziridines with good to excellent yields and enantioselectivities (up to 99 % yield, 93 % ee). This protocol presents a novel and effective strategy for synthesizing enantioenriched aziridines from simple alkenes. Various transformations were performed on the aziridine products, illustrating the versatility and synthetic potential of this protocol for constructing highly functionalized compounds.
Collapse
Affiliation(s)
- Juanjuan Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mu-Peng Luo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi-Jie Gu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu-Ying Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Meng J, He H, Liu Q, Xu H, Huang H, Ni SF, Li Z. Enantioselective Palladium(II)-Catalyzed Desymmetrizative Coupling of 7-Azabenzonorbornadienes with Alkynylanilines. Angew Chem Int Ed Engl 2024; 63:e202315092. [PMID: 37943545 DOI: 10.1002/anie.202315092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
A PdII -catalyzed, domino enantioselective desymmetrizative coupling of 7-azabenzonorbornadienes with alkynylanilines is disclosed herein. This operationally simple transformation generates three covalent bonds and two contiguous stereocenters with excellent enantio- and diastereo-selectivity. The resulting functionalized indole-dihydronaphthalene-amine conjugates served as an appealing platform to streamline the diversity-oriented synthesis (DOS) of other valuable enantioenriched compounds. DFT calculations revealed that the two stabilizing non-covalent interactions contributed to the observed enantioselectivity.
Collapse
Affiliation(s)
- Junjie Meng
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
| | - Hui He
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Qianru Liu
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
| | - Huicai Huang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510641, Guangdong, China
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Zhaodong Li
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
5
|
Liu CX, Yin SY, Zhao F, Yang H, Feng Z, Gu Q, You SL. Rhodium-Catalyzed Asymmetric C-H Functionalization Reactions. Chem Rev 2023; 123:10079-10134. [PMID: 37527349 DOI: 10.1021/acs.chemrev.3c00149] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
This review summarizes the advancements in rhodium-catalyzed asymmetric C-H functionalization reactions during the last two decades. Parallel to the rapidly developed palladium catalysis, rhodium catalysis has attracted extensive attention because of its unique reactivity and selectivity in asymmetric C-H functionalization reactions. In recent years, Rh-catalyzed asymmetric C-H functionalization reactions have been significantly developed in many respects, including catalyst design, reaction development, mechanistic investigation, and application in the synthesis of complex functional molecules. This review presents an explicit outline of catalysts and ligands, mechanism, the scope of coupling reagents, and applications.
Collapse
Affiliation(s)
- Chen-Xu Liu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Si-Yong Yin
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Fangnuo Zhao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Hui Yang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Zuolijun Feng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Qing Gu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
6
|
Zhang Z, Jia J, Hu F, Xia Y. Aldehyde Olefination with Arylboroxines Enabled by Binary Rhodium Catalysis. Org Lett 2023; 25:3228-3233. [PMID: 37104730 DOI: 10.1021/acs.orglett.3c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A rhodium-catalyzed olefination of aliphatic aldehydes with arylboroxines is described. The simple rhodium(I) complex [Rh(cod)OH]2 without any external ligands or additives is able to catalyze the reaction in air and neutral conditions, allowing the construction of aryl olefins in an efficient manner with a good functional group tolerance. The mechanistic investigation illustrates that the binary rhodium catalysis is the key for the transformation, which involves a Rh(I)-catalyzed 1,2-addition and a Rh(III)-catalyzed elimination.
Collapse
Affiliation(s)
- Zihao Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Jia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fangdong Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Cobalt(III)-catalyzed asymmetric ring-opening of 7-oxabenzonorbornadienes via indole C-H functionalization. Nat Commun 2023; 14:1094. [PMID: 36841798 PMCID: PMC9968317 DOI: 10.1038/s41467-023-36723-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
Asymmetric ring-opening of 7-oxabenzonorbornadienes is achieved via Co-catalyzed indole C-H functionalization. The utilization of chiral Co-catalyst consisting of a binaphthyl-derived trisubstituted cyclopentadienyl ligand resulted in high yields (up to 99%) and excellent enantioselectivity (>99% ee) for the target products with tolerance for diverse functional groups. Opposite diastereoselectivities are obtained with chiral Co-catalyst or Cp*CoI2CO. Combined experimental and computational studies suggest β-oxygen elimination being the selectivity-determining step of the reaction. Meanwhile, the reactions of 7-azabenzonorbornadiene could also be executed in a diastereodivergent manner.
Collapse
|
8
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Hu P, Liu B, Wang F, Mi R, Li XX, Li X. A Stereodivergent–Convergent Chiral Induction Mode in Atroposelective Access to Biaryls via Rhodium-Catalyzed C–H Bond Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Bingxian Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Ruijie Mi
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xiao-Xi Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Liu X, Tang Z, Si Z, Zhang Z, Zhao L, Liu L. Enantioselective
para
‐C(sp
2
)−H Functionalization of Alkyl Benzene Derivatives via Cooperative Catalysis of Gold/Chiral Brønsted Acid**. Angew Chem Int Ed Engl 2022; 61:e202208874. [DOI: 10.1002/anie.202208874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xun‐Shen Liu
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Zhiqiong Tang
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Zhi‐Yao Si
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Zhikun Zhang
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lei Zhao
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University 3663N Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
11
|
Wu Z, Wu Z, Zhang W, Gu Q, You S. Rh(
III
)‐Catalyzed Enantioselective Intermolecular Aryl C−H Bond Addition to Aldehydes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhi‐Jie Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road Shanghai 201210 China
| | - Zhuo Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wen‐Wen Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road Shanghai 201210 China
| |
Collapse
|
12
|
Liu XS, Tang Z, Si ZY, Zhang Z, Zhao L, Liu L. Enantioselective para‐C(sp2)−H Functionalization of Alkyl Benzene Derivatives via Cooperative Catalysis of Gold/Chiral Brønsted Acid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xun-Shen Liu
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Zhiqiong Tang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Zhi-Yao Si
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Zhikun Zhang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Lei Zhao
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Lu Liu
- East China Normal University School of Chemistry and Molecular Engineering 500 Dongchuan Road 200241 Shanghai CHINA
| |
Collapse
|
13
|
Yue Q, Liu B, Liao G, Shi BF. Binaphthyl Scaffold: A Class of Versatile Structure in Asymmetric C–H Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiang Yue
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330031, China
| | - Gang Liao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543Republic of Singapore
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan453007, China
| |
Collapse
|
14
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
15
|
Sato T. Development of Stereodivergent Synthesis of Skipped Dienes and Application to Unified Total Synthesis of Madangamine Alkaloids. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| |
Collapse
|
16
|
Yu W, Chen C, Feng L, Xia T, Shi C, Yang Y, Zhou B. Rhodium(III)-Catalyzed Asymmetric 1,2-Carboamidation of Alkenes Enables Access to Chiral 2,3-Dihydro-3-benzofuranmethanamides. Org Lett 2022; 24:1762-1767. [PMID: 35234476 DOI: 10.1021/acs.orglett.2c00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Through the initial screening and further rational design of chiral cyclopentadienyl ligands, a chiral rhodium-catalyzed enantioselective 1,2-carboamidation of aromatic tethered alkenes was developed, enabling the asymmetric preparation of various chiral 2,3-dihydro-3-benzofuranmethanamides with an enantioenriched all-carbon quaternary center at the β position of amide. This robust transformation has a broad functional group tolerance, excellent enantioselectivities (up to 98.5:1.5 er), and a mild reaction conditions, releasing CO2 as the single byproduct.
Collapse
Affiliation(s)
- Wenwen Yu
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Chen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lei Feng
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqi Xia
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Shi
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaxi Yang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Zhou
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Mao R, Zhao Y, Zhu X, Wang F, Deng WQ, Li X. Rhodium-Catalyzed and Chiral Zinc Carboxylate-Assisted Allenylation of Benzamides via Kinetic Resolution. Org Lett 2021; 23:7038-7043. [PMID: 34477394 DOI: 10.1021/acs.orglett.1c02398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Enantioenriched allenes are important building blocks. While they have been accessed by other coupling methodologies, enantioenriched allenes have been rarely obtained via C-H activation. In this work, kinetic resolution of tertiary propargyl alcohols as an allenylating reagent has been realized via rhodium(III)-catalyzed C-H allenylation of benzamides. The reaction proceeded efficiently under mild conditions, and both the allenylated products and the propargyl alcohols were obtained in high enantioselectivities with an s-factor of up to 139. The resolution results from bias of the two propargylic substituents and is assisted by a chiral zinc carboxylate additive.
Collapse
Affiliation(s)
- Ruxia Mao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Yanliang Zhao
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 266237 (China)
| | - Xiaohan Zhu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Wei-Qiao Deng
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 266237 (China)
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China.,Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 266237 (China)
| |
Collapse
|
18
|
Sato T, Suto T, Nagashima Y, Mukai S, Chida N. Total Synthesis of Skipped Diene Natural Products. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Takaaki Sato
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Takahiro Suto
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Yoshiyuki Nagashima
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Shori Mukai
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Noritaka Chida
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
19
|
Wang F, Jing J, Zhao Y, Zhu X, Zhang XP, Zhao L, Hu P, Deng WQ, Li X. Rhodium-Catalyzed C-H Activation-Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angew Chem Int Ed Engl 2021; 60:16628-16633. [PMID: 34008279 DOI: 10.1002/anie.202105093] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 12/20/2022]
Abstract
Reported herein is asymmetric [3+2] annulation of arylnitrones with different classes of alkynes catalyzed by chiral rhodium(III) complexes, with the nitrone acting as an electrophilic directing group. Three classes of chiral indenes/indenones have been effectively constructed, depending on the nature of the substrates. The coupling system features mild reaction conditions, excellent enantioselectivity, and high atom-economy. In particular, the coupling of N-benzylnitrones and different classes of sterically hindered alkynes afforded C-C or C-N atropochiral pentatomic biaryls with a C-centered point-chirality in excellent enantio- and diastereoselectivity (45 examples, average 95.6 % ee). These chiral center and axis are disposed in a distal fashion and they are constructed via two distinct migratory insertions that are stereo-determining and are under catalyst control.
Collapse
Affiliation(s)
- Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Jierui Jing
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Yanliang Zhao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Xiaohan Zhu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Xue-Peng Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Liujie Zhao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Wei-Qiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.,Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
20
|
Wang J, Chen H, Kong L, Wang F, Lan Y, Li X. Enantioselective and Diastereoselective C–H Alkylation of Benzamides: Synergized Axial and Central Chirality via a Single Stereodetermining Step. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02450] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jinlei Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Lingheng Kong
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| |
Collapse
|
21
|
Pan C, Yin SY, Wang SB, Gu Q, You SL. Oxygen-Linked Cyclopentadienyl Rhodium(III) Complexes-Catalyzed Asymmetric C-H Arylation of Benzo[h]quinolines with 1-Diazonaphthoquinones. Angew Chem Int Ed Engl 2021; 60:15510-15516. [PMID: 33856719 DOI: 10.1002/anie.202103638] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Indexed: 12/24/2022]
Abstract
Chiral cyclopentadienyl rhodium (CpRh) complex-catalyzed asymmetric C-H functionalization reactions have witnessed a significant progress in organic synthesis. In sharp contrast, the reported chiral Cp ligands are limited to C-linked Cp and are often synthetically challenging. To address these issues, we have developed a novel class of tunable chiral cyclopentadienyl ligands bearing oxygen linkers, which were efficient catalysts for C-H arylation of benzo[h]quinolines with 1-diazonaphthoquinones, affording axially chiral heterobiaryls in excellent yields and enantioselectivity (up to 99 % yield, 98.5:1.5 er). Mechanistic studies suggest that the reaction is likely to proceed by electrophilic C-H activation, and followed by coupling of the cyclometalated rhodium(III) complex with 1-diazonaphthoquinones.
Collapse
Affiliation(s)
- Chongqing Pan
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai, 200032, China
| | - Si-Yong Yin
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai, 200032, China
| | - Shao-Bo Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai, 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
22
|
Wang F, Jing J, Zhao Y, Zhu X, Zhang X, Zhao L, Hu P, Deng W, Li X. Rhodium‐Catalyzed C−H Activation‐Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fen Wang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Jierui Jing
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Yanliang Zhao
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| | - Xiaohan Zhu
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xue‐Peng Zhang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Liujie Zhao
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Panjie Hu
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Wei‐Qiao Deng
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| |
Collapse
|
23
|
Pan C, Yin S, Wang S, Gu Q, You S. Oxygen‐Linked Cyclopentadienyl Rhodium(III) Complexes‐Catalyzed Asymmetric C−H Arylation of Benzo[
h
]quinolines with 1‐Diazonaphthoquinones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chongqing Pan
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| | - Si‐Yong Yin
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| | - Shao‐Bo Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
24
|
Mi R, Zhang X, Wang J, Chen H, Lan Y, Wang F, Li X. Rhodium-Catalyzed Regio-, Diastereo-, and Enantioselective Three-Component Carboamination of Dienes via C–H Activation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01615] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ruijie Mi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Xuepeng Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Jinlei Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| |
Collapse
|
25
|
Selective annulation of benzamides with internal alkynes catalyzed by an electron-deficient rhodium catalyst. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Liu B, Xie P, Zhao J, Wang J, Wang M, Jiang Y, Chang J, Li X. Rhodium‐Catalyzed Enantioselective Synthesis of β‐Amino Alcohols via Desymmetrization of
gem
‐Dimethyl Groups. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bingxian Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Pengfei Xie
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Jie Zhao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Juanjuan Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Manman Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Yuqin Jiang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| |
Collapse
|
27
|
Brandes DS, Sirvent A, Mercado BQ, Ellman JA. Three-Component 1,2-Carboamidation of Bridged Bicyclic Alkenes via Rh III-Catalyzed Addition of C-H Bonds and Amidating Reagents. Org Lett 2021; 23:2836-2840. [PMID: 33739839 PMCID: PMC8026749 DOI: 10.1021/acs.orglett.1c00851] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A three-component method is described for the preparation of syn-1,2-disubstituted bridged bicyclic compounds. The reaction was demonstrated for readily available aromatic and heteroaromatic C-H bond substrates with tertiary and secondary amide, lactam, pyrazole, and triazole directing groups and a variety of bridged bicyclic alkenes, including norbornene, benzonorbornadiene, oxygen- and nitrogen-bridged analogs, and an unsaturated tropinone. A broad dioxazolone scope was also observed. The use of a chiral Cp-derived RhIII catalyst enables asymmetric synthesis of products.
Collapse
Affiliation(s)
- Daniel S Brandes
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ana Sirvent
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
28
|
Liu B, Xie P, Zhao J, Wang J, Wang M, Jiang Y, Chang J, Li X. Rhodium‐Catalyzed Enantioselective Synthesis of β‐Amino Alcohols via Desymmetrization of
gem
‐Dimethyl Groups. Angew Chem Int Ed Engl 2021; 60:8396-8400. [DOI: 10.1002/anie.202014080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Bingxian Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Pengfei Xie
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Jie Zhao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Juanjuan Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Manman Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Yuqin Jiang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| |
Collapse
|
29
|
Wu L, Xu H, Gao H, Li L, Chen W, Zhou Z, Yi W. Chiral Allylic Amine Synthesis Enabled by the Enantioselective CpXRh(III)-Catalyzed Carboaminations of 1,3-Dienes. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liexin Wu
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Huiying Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui Gao
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Liping Li
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Weijie Chen
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
30
|
Vivek Kumar S, Yen A, Lautens M, Guiry PJ. Catalytic asymmetric transformations of oxa- and azabicyclic alkenes. Chem Soc Rev 2021; 50:3013-3093. [DOI: 10.1039/d0cs00702a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This review provides an overview of the fundamental concepts and recent developments in a wide range of enantioselective transformations involving oxa- and azabicyclic alkenes.
Collapse
Affiliation(s)
- Sundaravel Vivek Kumar
- Synthesis and Solid State Pharmaceutical Centre
- Centre for Synthesis and Chemical Biology
- School of Chemistry
- University College Dublin
- Dublin 4
| | - Andy Yen
- Department of Chemistry
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Mark Lautens
- Department of Chemistry
- Davenport Chemical Laboratories
- University of Toronto
- Toronto
- Canada
| | - Patrick J. Guiry
- Synthesis and Solid State Pharmaceutical Centre
- Centre for Synthesis and Chemical Biology
- School of Chemistry
- University College Dublin
- Dublin 4
| |
Collapse
|
31
|
Achar TK, Maiti S, Jana S, Maiti D. Transition Metal Catalyzed Enantioselective C(sp2)–H Bond Functionalization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03743] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tapas Kumar Achar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sadhan Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
32
|
Mas‐Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N. Chiral Cyclopentadienyl Ligands: Design, Syntheses, and Applications in Asymmetric Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008166] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Josep Mas‐Roselló
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Ana G. Herraiz
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Benoît Audic
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Aragorn Laverny
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| |
Collapse
|
33
|
Mas‐Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N. Chiral Cyclopentadienyl Ligands: Design, Syntheses, and Applications in Asymmetric Catalysis. Angew Chem Int Ed Engl 2020; 60:13198-13224. [DOI: 10.1002/anie.202008166] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Josep Mas‐Roselló
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Ana G. Herraiz
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Benoît Audic
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Aragorn Laverny
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| |
Collapse
|
34
|
Ding PG, Hu XS, Yu JS, Zhou J. Diastereodivergent Synthesis of α-Chiral Tertiary Azides through Catalytic Asymmetric Michael Addition. Org Lett 2020; 22:8578-8583. [DOI: 10.1021/acs.orglett.0c03178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pei-Gang Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Xiao-Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, People’s Republic of China
| |
Collapse
|
35
|
Liang H, Vasamsetty L, Li T, Jiang J, Pang X, Wang J. A New Class of C 2 -Symmetric Chiral Cyclopentadienyl Ligand Derived from Ferrocene Scaffold: Design, Synthesis and Application. Chemistry 2020; 26:14546-14550. [PMID: 32470226 DOI: 10.1002/chem.202001814] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/13/2020] [Indexed: 12/12/2022]
Abstract
A new class of C2 -symmetric, chiral cyclopentadienyl ligand based on planar chiral ferrocene backbone was developed. A series of its corresponding rhodium(I), iridium(I), and ruthenium(II) complexes were prepared as well. In addition, the rhodium(I) complexes were evaluated in the asymmetric catalytic intramolecular amidoarylation of olefin-tethered benzamides via C-H activation.
Collapse
Affiliation(s)
- Hao Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of, Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Laxmaiah Vasamsetty
- Key Laboratory of Bioinorganic and Synthetic Chemistry of, Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Teng Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of, Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of, Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xingying Pang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of, Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of, Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
36
|
Li G, Yan X, Jiang J, Liang H, Zhou C, Wang J. Chiral Bicyclo[2.2.2]octane-Fused CpRh Complexes: Synthesis and Potential Use in Asymmetric C-H Activation. Angew Chem Int Ed Engl 2020; 59:22436-22440. [PMID: 32840946 DOI: 10.1002/anie.202010489] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 12/19/2022]
Abstract
A new class of chiral cyclopentadienyl rhodium(I) complexes (CpRhI ) bearing C2 -symmetric chiral bridged-ring-fused Cp ligands was prepared. The complexes were successfully applied to the asymmetric C-H activation reaction of N-methoxybenzamides with quinones, affording a series of chiral hydrophenanthridinones in up to 82 % yield with up to 99 % ee. Interestingly, structure analysis reveals that the side wall of the optimal chiral CpRhI catalyst is vertically more extended, horizontally less extended, and closer to the metal center in comparison with the classic binaphthyl and spirobiindanyl CpRhI complexes, and may thus account for its superior catalytic performance.
Collapse
Affiliation(s)
- Guozhu Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiaoqiang Yan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hao Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Chao Zhou
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
37
|
Li G, Yan X, Jiang J, Liang H, Zhou C, Wang J. Chiral Bicyclo[2.2.2]octane‐Fused CpRh Complexes: Synthesis and Potential Use in Asymmetric C−H Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guozhu Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xiaoqiang Yan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hao Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Chao Zhou
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
38
|
Sun J, Yuan W, Tian R, Wang P, Zhang X, Li X. Rhodium(III)‐Catalyzed Asymmetric [4+1] and [5+1] Annulation of Arenes and 1,3‐Enynes: A Distinct Mechanism of Allyl Formation and Allyl Functionalization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jiaqiong Sun
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Weiliang Yuan
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Rong Tian
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Peiyuan Wang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xue‐Peng Zhang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| |
Collapse
|
39
|
Sun J, Yuan W, Tian R, Wang P, Zhang X, Li X. Rhodium(III)‐Catalyzed Asymmetric [4+1] and [5+1] Annulation of Arenes and 1,3‐Enynes: A Distinct Mechanism of Allyl Formation and Allyl Functionalization. Angew Chem Int Ed Engl 2020; 59:22706-22713. [DOI: 10.1002/anie.202010832] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Jiaqiong Sun
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Weiliang Yuan
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Rong Tian
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Peiyuan Wang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xue‐Peng Zhang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| |
Collapse
|
40
|
Shaaban S, Davies C, Waldmann H. Applications of Chiral Cyclopentadienyl (Cp
x
) Metal Complexes in Asymmetric Catalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000752] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saad Shaaban
- Max‐Planck‐Institute of Molecular Physiology Department of Chemical Biology Otto‐Hahn‐Straße 11 44227 Dortmund Germany
| | - Caitlin Davies
- Max‐Planck‐Institute of Molecular Physiology Department of Chemical Biology Otto‐Hahn‐Straße 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemical Biology Otto‐Hahn‐Straße 4a 44227 Dortmund Germany
| | - Herbert Waldmann
- Max‐Planck‐Institute of Molecular Physiology Department of Chemical Biology Otto‐Hahn‐Straße 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemical Biology Otto‐Hahn‐Straße 4a 44227 Dortmund Germany
| |
Collapse
|
41
|
Duchemin C, Cramer N. Enantioselective Cp x Rh III -Catalyzed Carboaminations of Acrylates. Angew Chem Int Ed Engl 2020; 59:14129-14133. [PMID: 32410313 DOI: 10.1002/anie.202006149] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 12/18/2022]
Abstract
Enantioselective carboaminations of olefins constitute an attractive strategy for a rapid increase in molecular complexity from readily available starting materials. Reported here is an intermolecular asymmetric carboamination of acrylates using rhodium(III)-catalyzed alkenyl C-H activations of N-enoxysuccinimides to generate the nitrogen and carbon portion for the transfer. A rhodium complex equipped with a tailored bulky trisubstituted chiral Cpx ligand ensures carboamination chemoselectivity as well high levels of enantioinduction. The transformation operates under mild reaction conditions at ambient temperatures and provides access to a variety of α-amino esters in good yields and excellent enantiomeric ratios of >99.5:0.5.
Collapse
Affiliation(s)
- Coralie Duchemin
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
42
|
Wang SG, Cramer N. Asymmetric CpxRh(III)-Catalyzed Acrylic Acid C–H Functionalization with Allenes Provides Chiral γ-Lactones. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02430] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shou-Guo Wang
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Duchemin C, Cramer N. Enantioselective Cp
x
Rh
III
‐Catalyzed Carboaminations of Acrylates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Coralie Duchemin
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| |
Collapse
|
44
|
Chen W, Li J, Xie H, Wang J. Rhodium(III)-Catalyzed Asymmetric Addition of Inert Arene C–H Bond to Aldehydes To Afford Enantioenriched Phthalides. Org Lett 2020; 22:3586-3590. [DOI: 10.1021/acs.orglett.0c01052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenkun Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jie Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hui Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
45
|
Yoshino T, Satake S, Matsunaga S. Diverse Approaches for Enantioselective C-H Functionalization Reactions Using Group 9 Cp x M III Catalysts. Chemistry 2020; 26:7346-7357. [PMID: 31994236 DOI: 10.1002/chem.201905417] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Indexed: 12/27/2022]
Abstract
Transition-metal-catalyzed C-H functionalization reactions with Cp*MIII catalysts (M=Co, Rh, Ir) have found a wide variety of applications in organic synthesis. Albeit the intrinsic difficulties in achieving catalytic stereocontrol using these catalysts due to their lack of additional coordination sites for external chiral ligands and the conformational flexibility of the Cp ligand, catalytic enantioselective C-H functionalization reactions using the Group 9 metal triad with Cp-type ligands have been intensively studied since 2012. In this minireview, the progress in these reactions according to the type of the chiral catalyst used are summarized and discussed. The development of chiral Cpx ligands the metal complexes thereof, artificial metalloenzymes, chiral carboxylate-assisted enantioselective C-H activations, enantioselective alkylations assisted by chiral carboxylic acids or chiral sulfonates, and chiral transient directing groups are discussed.
Collapse
Affiliation(s)
- Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shun Satake
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
46
|
Yan X, Zhao P, Liang H, Xie H, Jiang J, Gou S, Wang J. Rhodium(III)-Catalyzed Asymmetric C–H Activation of N-Methoxybenzamide with Quinone and Its Application in the Asymmetric Synthesis of a Dihydrolycoricidine Analogue. Org Lett 2020; 22:3219-3223. [DOI: 10.1021/acs.orglett.0c01002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoqiang Yan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Peng Zhao
- School of Chemistry and Chemical Engineering, State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Hao Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hui Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Shaohua Gou
- School of Chemistry and Chemical Engineering, State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
47
|
Yu C, Sanjosé-Orduna J, Patureau FW, Pérez-Temprano MH. Emerging unconventional organic solvents for C-H bond and related functionalization reactions. Chem Soc Rev 2020; 49:1643-1652. [PMID: 32115586 DOI: 10.1039/c8cs00883c] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Solvent engineering is an increasingly essential topic in the chemical sciences. In this context, some recently appeared unconventional solvents have shown their large potential in the field of C-H bond functionalization reactions. This review aims not only at recognizing and classifying a short selection of these emerging solvents, in particular halogenated ones, but also at providing a medium term perspective of the possibilities they will offer for synthetic method development.
Collapse
Affiliation(s)
- Congjun Yu
- Institute for Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | | | | | | |
Collapse
|
48
|
Vinogradov MM, Loginov DA. Rhoda- and iridacarborane halide complexes: Synthesis, structure and application in homogeneous catalysis. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Molotkov AP, Arsenov MA, Kapustin DA, Muratov DV, Shepel' NE, Fedorov YV, Smol'yakov AF, Knyazeva EI, Lypenko DA, Dmitriev AV, Aleksandrov AE, Maltsev EI, Loginov DA. Effect of Cp-Ligand Methylation on Rhodium(III)-Catalyzed Annulations of Aromatic Carboxylic Acids with Alkynes: Synthesis of Isocoumarins and PAHs for Organic Light-Emitting Devices. Chempluschem 2020; 85:334-345. [PMID: 32048812 DOI: 10.1002/cplu.202000048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 01/28/2020] [Indexed: 01/24/2023]
Abstract
An efficient protocol was developed for the synthesis of π-extended isocoumarins and polycyclic aromatic hydrocarbons based on the oxidative coupling of aromatic carboxylic acids with internal alkynes catalyzed by (cyclopentadienyl)rhodium complexes. The coupling chemoselectivity strongly depends on whether Cp or the methylated Cp* ligands are used. The pentamethyl derivative [Cp*RhCl2 ]2 predominantly gives isocoumarins, while the non-methylated complex [CpRhI2 ]n produces naphthalene derivatives. The polyaromatic carboxylic acids (such as 1-naphthoic acid, 1-pyrenecarboxylic acid, fluorene-1-carboxylic acid, and dibenzofuran-4-carboxylic acid) are suitable for this approach. A mixture of Cp*H/RhCl3 can be used as a catalyst instead of [Cp*RhCl2 ]2 . The structures of 3,4-diphenylindeno[1,2-h]isochromen-1(11H)-one and 7,10-dimethyl-8,9-diphenylbenzo[pqr]tetraphene were determined by X-ray diffraction. In addition, the optical properties of the prepared compounds were studied. 7,8-Diphenyl-10H-phenaleno[1,9-gh]isochromen-10-one was employed as an emissive layer for OLED manufacturing. The OLED emits yellow-green light with a maximum intensity 1740 cd ⋅ m-2 at 15 V.
Collapse
Affiliation(s)
- Alexander P Molotkov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Science, 28 ul. Vavilova, 119991, Moscow, Russian Federation
| | - Mikhail A Arsenov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Science, 28 ul. Vavilova, 119991, Moscow, Russian Federation
| | - Daniil A Kapustin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Science, 28 ul. Vavilova, 119991, Moscow, Russian Federation
| | - Dmitry V Muratov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Science, 28 ul. Vavilova, 119991, Moscow, Russian Federation
| | - Nikolay E Shepel'
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Science, 28 ul. Vavilova, 119991, Moscow, Russian Federation
| | - Yury V Fedorov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Science, 28 ul. Vavilova, 119991, Moscow, Russian Federation
| | - Alexander F Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Science, 28 ul. Vavilova, 119991, Moscow, Russian Federation.,Faculty of Science, RUDN University, 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation.,Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow, 117997, Russian Federation
| | - Elena I Knyazeva
- Faculty of Science, RUDN University, 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation
| | - Dmitry A Lypenko
- A.N. Frumkin Institute of Physical Chemistry and, Electrochemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, bld.4, Moscow, 119071, Russian Federation
| | - Artem V Dmitriev
- A.N. Frumkin Institute of Physical Chemistry and, Electrochemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, bld.4, Moscow, 119071, Russian Federation
| | - Alexey E Aleksandrov
- A.N. Frumkin Institute of Physical Chemistry and, Electrochemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, bld.4, Moscow, 119071, Russian Federation
| | - Eugeny I Maltsev
- A.N. Frumkin Institute of Physical Chemistry and, Electrochemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, bld.4, Moscow, 119071, Russian Federation
| | - Dmitry A Loginov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Science, 28 ul. Vavilova, 119991, Moscow, Russian Federation
| |
Collapse
|
50
|
Zheng G, Zhou Z, Zhu G, Zhai S, Xu H, Duan X, Yi W, Li X. Rhodium(III)‐Catalyzed Enantio‐ and Diastereoselective C−H Cyclopropylation of N‐Phenoxylsulfonamides: Combined Experimental and Computational Studies. Angew Chem Int Ed Engl 2020; 59:2890-2896. [DOI: 10.1002/anie.201913794] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Guangfan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry of MOESchool of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 P. R. China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Guoxun Zhu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Shuailei Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry of MOESchool of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 P. R. China
| | - Huiying Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Xujing Duan
- Key Laboratory of Applied Surface and Colloid Chemistry of MOESchool of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 P. R. China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Xingwei Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOESchool of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 P. R. China
| |
Collapse
|