1
|
Zhang A, Fang J, Li X, Wang J, Chen M, Chen HJ, He G, Xie X. Cellular nanointerface of vertical nanostructure arrays and its applications. NANOSCALE ADVANCES 2022; 4:1844-1867. [PMID: 36133409 PMCID: PMC9419580 DOI: 10.1039/d1na00775k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/28/2021] [Indexed: 06/16/2023]
Abstract
Vertically standing nanostructures with various morphologies have been developed with the emergence of the micro-/nanofabrication technology. When cells are cultured on them, various bio-nano interfaces between cells and vertical nanostructures would impact the cellular activities, depending on the shape, density, and height of nanostructures. Many cellular pathway activation processes involving a series of intracellular molecules (proteins, RNA, DNA, enzymes, etc.) would be triggered by the cell morphological changes induced by nanostructures, affecting the cell proliferation, apoptosis, differentiation, immune activation, cell adhesion, cell migration, and other behaviors. In addition, the highly localized cellular nanointerface enhances coupled stimulation on cells. Therefore, understanding the mechanism of the cellular nanointerface can not only provide innovative tools for regulating specific cell functions but also offers new aspects to understand the fundamental cellular activities that could facilitate the precise monitoring and treatment of diseases in the future. This review mainly describes the fabrication technology of vertical nanostructures, analyzing the formation of cellular nanointerfaces and the effects of cellular nanointerfaces on cells' fates and functions. At last, the applications of cellular nanointerfaces based on various nanostructures are summarized.
Collapse
Affiliation(s)
- Aihua Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- School of Biomedical Engineering, Sun Yat-Sen University Guangzhou 510006 China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University Guangzhou 510080 China
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, University of Macau Taipa Macau SAR China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- The First Affiliated Hospital of Sun Yat-Sen University Guangzhou 510080 China
| |
Collapse
|
2
|
Fu J, Liu X, Tan L, Cui Z, Zheng Y, Liang Y, Li Z, Zhu S, Yeung KWK, Feng X, Wang X, Wu S. Photoelectric-Responsive Extracellular Matrix for Bone Engineering. ACS NANO 2019; 13:13581-13594. [PMID: 31697055 DOI: 10.1021/acsnano.9b08115] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using noninvasive stimulation of cells to control cell fate and improve bone regeneration by optical stimulation can achieve the aim of precisely orchestrating biological activities. In this study, we create a fast and repeatable photoelectric-responsive microenvironment around an implant using a bismuth sulfide/hydroxyapatite (BS/HAp) film. The unexpected increase of photocurrent on the BS/HAp film under near-infrared (NIR) light is mainly due to the depletion of holes through PO43- from HAp and interfacial charge transfer by HAp compared with BS. The electrons activate the Na+ channel of mesenchymal stem cells (MSCs) and change the cell adhesion in the intermediate environment. The behavior of MSCs is tuned by changing the photoelectronic microenvironment. RNA sequencing reveals that when photoelectrons transfer to the cell membrane, sodium ions flux and the membrane potential depolarizes to change the cell shape. Meanwhile, calcium ions fluxed and FDE1 was upregulated. Furthermore, the TCF/LEF in the cell nucleus began transcription to regulate the downstream genes involved in osteogenic differentiation, which is performed through the Wnt/Ca2+ signaling pathway. This research has created a biological therapeutic strategy, which can achieve in vitro remotely, precisely, and noninvasively controlling cell differentiation behaviors by tuning the in vivo photoelectric microenvironment using NIR light.
Collapse
Affiliation(s)
- Jieni Fu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Xiangmei Liu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Lei Tan
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Zhenduo Cui
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Yanqin Liang
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Zhaoyang Li
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Shengli Zhu
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li KaShing Faculty of Medicine , The University of Hong Kong , Pokfulam , Hong Kong 999077 , People's Republic of China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , People's Republic of China
| | - Xianbao Wang
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Shuilin Wu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , People's Republic of China
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China , Tianjin University , Tianjin 300072 , People's Republic of China
| |
Collapse
|
3
|
Zhu Y, Liu X, Wu J, Wong TM, Feng X, Yang C, Wu S, Zheng Y, Liu X, Cheung KMC, Yeung KWK. Micro- and Nanohemispherical 3D Imprints Modulate the Osteogenic Differentiation and Mineralization Tendency of Bone Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35513-35524. [PMID: 31507175 DOI: 10.1021/acsami.9b05521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface topography has been reported to play a key role in modulating cell behaviors, yet the mechanism through which it modulates these behaviors is not fully understood, especially in the case of three-dimensional (3D) topographies. In this study, a series of novel hemispherical 3D imprints ranging from the nanoscale to the microscale were prepared on titanium (Ti) surfaces using a customized interfacial lithography method. Mouse embryo osteoblast precursor cells (MC3T3-E1) were selected to investigate the solitary effect of specific hemispherical 3D imprints on cellular behaviors. The results indicated that varied hemispherical 3D imprints can affect the formation of filopodia and the arrangement of the cytoskeleton in different ways. Specifically, they can alter the spreading morphologies of cells and lead to deformation of the nucleus, which eventually affects cell proliferation and osteogenic differentiation. Cells cultured on different hemispherical 3D imprints exhibited promoted proliferation and osteogenic differentiation to different degrees; for example, cells cultured on 90 and 500 nm hemispherical imprints formed abundant filopodia and exhibited the highest alkaline phosphatase activity and osteogenic gene expression, respectively. Four-week tibia implantation also confirmed that 90 nm hemispherical imprints improved the osteogenic ability in vivo compared with an unpatterned Ti substrate. In addition to promoted proliferation, colonization of more cells on the surface of implants and induction of rapid osteogenic differentiation can occur. Our work provides a rational way to balance cell proliferation and differentiation, which can accelerate bone integration of an implant and host tissue.
Collapse
Affiliation(s)
- Yizhou Zhu
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Pokfulam, Hong Kong 999077 , China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology , The University of Hong Kong-Shenzhen Hospital , Shenzhen 518053 , China
| | - Xiangmei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
| | - Jun Wu
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology , The University of Hong Kong-Shenzhen Hospital , Shenzhen 518053 , China
| | - Tak Man Wong
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Pokfulam, Hong Kong 999077 , China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Shuilin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering , Hubei University , Wuhan 430062 , China
- School of Materials Science & Engineering , Tianjin University , Tianjin 300350 , China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering , Peking University , Beijing 100871 , China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Kenneth M C Cheung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Pokfulam, Hong Kong 999077 , China
| | - Kelvin W K Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Pokfulam, Hong Kong 999077 , China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology , The University of Hong Kong-Shenzhen Hospital , Shenzhen 518053 , China
- China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou 310058 , China
| |
Collapse
|