1
|
He N, Zhang J, Miao X, Li D, Wang D. Phosphine-Catalyzed Allylic Alkylation of (Hetero)Aryl Alkynes with Pronucleophiles: Concise Total Synthesis of (±)-Esermethole. Org Lett 2023; 25:6172-6177. [PMID: 37578221 DOI: 10.1021/acs.orglett.3c02275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Allylic alkylations are valuable in the construction of versatile carbon-carbon bonds, which are mostly catalyzed by noble transition metals with additional waste byproduct generation. Here, we present the first organophosphine-catalyzed allylic alkylation of (hetero)aryl alkynes with various carbo-nucleophiles. The methodology is highly atom economical and compatible with a wide substrate scope (more than 38 examples). Moreover, the reaction could be easily scaled up, and deuterium labeling experiments have been conducted to elucidate the plausible mechanism. Finally, the protocol has been utilized to achieve the concise total synthesis of natural product (±)-esermethole.
Collapse
Affiliation(s)
- Ningtao He
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266100, China
| | - Jilong Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266100, China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - De Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
2
|
Ramos De Dios SM, Tiwari VK, McCune CD, Dhokale RA, Berkowitz DB. Biomacromolecule-Assisted Screening for Reaction Discovery and Catalyst Optimization. Chem Rev 2022; 122:13800-13880. [PMID: 35904776 DOI: 10.1021/acs.chemrev.2c00213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction discovery and catalyst screening lie at the heart of synthetic organic chemistry. While there are efforts at de novo catalyst design using computation/artificial intelligence, at its core, synthetic chemistry is an experimental science. This review overviews biomacromolecule-assisted screening methods and the follow-on elaboration of chemistry so discovered. All three types of biomacromolecules discussed─enzymes, antibodies, and nucleic acids─have been used as "sensors" to provide a readout on product chirality exploiting their native chirality. Enzymatic sensing methods yield both UV-spectrophotometric and visible, colorimetric readouts. Antibody sensors provide direct fluorescent readout upon analyte binding in some cases or provide for cat-ELISA (Enzyme-Linked ImmunoSorbent Assay)-type readouts. DNA biomacromolecule-assisted screening allows for templation to facilitate reaction discovery, driving bimolecular reactions into a pseudo-unimolecular format. In addition, the ability to use DNA-encoded libraries permits the barcoding of reactants. All three types of biomacromolecule-based screens afford high sensitivity and selectivity. Among the chemical transformations discovered by enzymatic screening methods are the first Ni(0)-mediated asymmetric allylic amination and a new thiocyanopalladation/carbocyclization transformation in which both C-SCN and C-C bonds are fashioned sequentially. Cat-ELISA screening has identified new classes of sydnone-alkyne cycloadditions, and DNA-encoded screening has been exploited to uncover interesting oxidative Pd-mediated amido-alkyne/alkene coupling reactions.
Collapse
Affiliation(s)
| | - Virendra K Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Christopher D McCune
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Ranjeet A Dhokale
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
3
|
Tom MJ, Evans PA. Asymmetric Rhodium-Catalyzed Allylic Substitution Reactions with Nitrile-Stabilized Carbanions. Synlett 2021. [DOI: 10.1055/a-1696-5713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This Account summarizes our recent work on rhodium-catalyzed allylic alkylation reactions with nitrile-stabilized carbanions. Despite the challenges associated with employing nitrile stabilized nucleophiles in transition-metal-catalyzed reactions, we recently developed both enantiospecific and enantioselective allylic alkylation reactions. Notably, these novel reactions permit the expedient and selective access to an array of acyclic ternary and quaternary stereogenic centers that are present in important biologically active molecules.
1 Introduction
2 Enantiospecific Reactions of Nitrile-Stabilized Anions
3 Enantioselective Reactions of Nitrile-Stabilized Anions
4 Conclusion
Collapse
Affiliation(s)
- Mai-Jan Tom
- Chemistry, Queen’s University, Kingston, Canada
| | | |
Collapse
|
4
|
Palladium-catalyzed asymmetric allylic alkylation of 3-amino-2-oxindoles: Synthesis of 3-allyl-3-amino-2-oxindoles. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Abstract
The asymmetric alkylation of enolates is a particularly versatile method for the construction of α-stereogenic carbonyl motifs, which are ubiquitous in synthetic chemistry. Over the past several decades, the focus has shifted to the development of new catalytic methods that depart from classical stoichiometric stereoinduction strategies (e.g., chiral auxiliaries, chiral alkali metal amide bases, chiral electrophiles, etc.). In this way, the enantioselective alkylation of prochiral enolates greatly improves the step- and redox-economy of this process, in addition to enhancing the scope and selectivity of these reactions. In this review, we summarize the origin and advancement of catalytic enantioselective enolate alkylation methods, with a directed emphasis on the union of prochiral nucleophiles with carbon-centered electrophiles for the construction of α-stereogenic carbonyl derivatives. Hence, the transformative developments for each distinct class of nucleophile (e.g., ketone enolates, ester enolates, amide enolates, etc.) are presented in a modular format to highlight the state-of-the-art methods and current limitations in each area.
Collapse
Affiliation(s)
- Timothy B Wright
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - P Andrew Evans
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. of China
| |
Collapse
|
6
|
Lu B, Liang X, Zhang J, Wang Z, Peng Q, Wang X. Dirhodium(II)/Xantphos-Catalyzed Relay Carbene Insertion and Allylic Alkylation Process: Reaction Development and Mechanistic Insights. J Am Chem Soc 2021; 143:11799-11810. [PMID: 34296866 DOI: 10.1021/jacs.1c05701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although dirhodium-catalyzed multicomponent reactions of diazo compounds, nucleophiles and electrophiles have achieved great advance in organic synthesis, the introduction of allylic moiety as the third component via allylic metal intermediate remains a formidable challenge in this area. Herein, an attractive three-component reaction of readily accessible amines, diazo compounds, and allylic compounds enabled by a novel dirhodium(II)/Xantphos catalysis is disclosed, affording various architecturally complex and functionally diverse α-quaternary α-amino acid derivatives in good yields with high atom and step economy. Mechanistic studies indicate that the transformation is achieved through a relay dirhodium(II)-catalyzed carbene insertion and allylic alkylation process, in which the catalytic properties of dirhodium are effectively modified by the coordination with Xantphos, leading to good activity in the catalytic allylic alkylation process.
Collapse
Affiliation(s)
- Bin Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xinyi Liang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jinyu Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zijian Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
7
|
Pareek M, Sunoj RB. Mechanistic insights into rhodium-catalyzed enantioselective allylic alkylation for quaternary stereogenic centers. Chem Sci 2020; 12:2527-2539. [PMID: 34164021 PMCID: PMC8179253 DOI: 10.1039/d0sc04959j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Installing quaternary stereogenic carbon is an arduous task of contemporary importance in the domain of asymmetric catalysis. To this end, an asymmetric allylic alkylation of α,α-disubstituted aldehydes by using allyl benzoate in the presence of Wilkinson's catalyst [Rh(Cl)(PPh3)3], (R)-BINOL–P(OMe) as the external ligand, and LiHMDS as the base has been reported to offer high enantioselectivity. The mechanistic details of this important reaction remain vague, which prompted us to undertake a detailed density functional theory (SMD(THF)/B3LYP-D3) investigation on the nature of the potential active catalyst, energetic features of the catalytic cycle, and the origin of high enantioselectivity. We note that a chloride displacement from the native Rh-phosphine [Rh(Cl)(PPh3)3] by BINOL–P(OMe) phosphite and an ensuing MeCl elimination can result in the in situ formation of a Rh-phosphonate [Rh(BINOL–P
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O)(PPh3)3]. A superior energetic span (δE) noted with such a Rh-phosphonate suggests that it is likely to serve as an active catalyst. The uptake of allyl benzoate by the active catalyst followed by the turnover determining C–O bond oxidative addition furnishes a Rh-π-allyl intermediate, which upon interception by (Z)-Li-enolate (derived from α,α-disubstituted aldehyde) in the enantiocontrolling C–C bond generates a quaternary stereogenic center. The addition of the re prochiral face of the (Z)-Li-enolate to the Rh-bound allyl moiety leading to the R enantiomer of the product is found to be 2.4 kcal mol−1 more preferred over the addition through its si face. The origin of the stereochemical preference for the re face addition is traced to improved noncovalent interactions (NCIs) and less distortion in the enantiocontrolling C–C bond formation transition state than that in the si face addition. Computed enantioselectivity (96%) is in very good agreement with the experimental value (92%), so is the overall activation barrier (δE of 17.1 kcal mol−1), which is in conformity with room temperature reaction conditions. The origin of high enantioselectivity in the formation of quaternary stereogenic carbon.![]()
Collapse
Affiliation(s)
- Monika Pareek
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
8
|
Lin T, Gu Y, Qian P, Guan H, Walsh PJ, Mao J. Nickel-catalyzed reductive coupling of homoenolates and their higher homologues with unactivated alkyl bromides. Nat Commun 2020; 11:5638. [PMID: 33159055 PMCID: PMC7648641 DOI: 10.1038/s41467-020-19194-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/22/2020] [Indexed: 11/08/2022] Open
Abstract
The catalytic generation of homoenolates and their higher homologues has been a long-standing challenge. Like the generation of transition metal enolates, which have been used to great affect in synthesis and medicinal chemistries, homoenolates and their higher homologues have much potential, albeit largely unrealized. Herein, a nickel-catalyzed generation of homoenolates, and their higher homologues, via decarbonylation of readily available cyclic anhydrides has been developed. The utility of nickel-bound homoenolates and their higher homologues is demonstrated by cross-coupling with unactivated alkyl bromides, generating a diverse array of aliphatic acids. A broad range of functional groups is tolerated. Preliminary mechanistic studies demonstrate that: (1) oxidative addition of anhydrides by the catalyst is faster than oxidative addition of alkyl bromides; (2) nickel bound metallocycles are involved in this transformation and (3) the catalyst undergoes a single electron transfer (SET) process with the alkyl bromide.
Collapse
Affiliation(s)
- Tingzhi Lin
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Yuanyun Gu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Pengcheng Qian
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Haixing Guan
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104, USA.
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
| |
Collapse
|
9
|
He D, Huang L, Li J, Wu W, Jiang H. Palladium-Catalyzed Nitrile-Assisted C(sp3)–Cl Bond Formation for Synthesis of Dichlorides. Org Lett 2019; 21:8308-8311. [DOI: 10.1021/acs.orglett.9b03066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dandan He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
10
|
Tang SB, Tu HF, Zhang X, You SL. Rhodium-Catalyzed Asymmetric Allylic Dearomatization of β-Naphthols: Enantioselective Control of Prochiral Nucleophiles. Org Lett 2019; 21:6130-6134. [DOI: 10.1021/acs.orglett.9b02285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sheng-Biao Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Hang-Fei Tu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|