1
|
Liu CY, Mu YJ, Chen WJ, Yin YA, Lin CG, Miras HN, Song YF. Modulating the Supramolecular Assembly of α-Cyclodextrin and Anderson-type Polyoxometalate through Covalent Modifications. Chemistry 2025; 31:e202403520. [PMID: 39523520 DOI: 10.1002/chem.202403520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
A series of unprecedented supramolecular complexes of covalently modified Anderson-type polyoxometalates (POMs) and α-cyclodextrins (α-CDs) have been obtained and characterized in solid state by single-crystal X-ray diffraction, and in aqueous solution using various techniques including 1H DOSY NMR, 2D NOESY 1H NMR, isothermal titration calorimetry (ITC), and electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS). It has been demonstrated that the supramolecular assembly process could be modulated by different covalent modification modes of the Anderson POMs, giving rise to a new type of POM/α-CD complexes featuring organic-inorganic pseudo-rotaxane structures, which are in good contrast to those of POM/γ-CD complexes of poly-rotaxane structures. Moreover, it is delighted to find that these pseudo-rotaxanes of POM/α-CD complexes exhibit stable chirality in aqueous solution, which has not been accomplished in previously reported POM/CD assemblies.
Collapse
Affiliation(s)
- Chun-Yan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yun-Jing Mu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wu-Ji Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yi-An Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chang-Gen Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | | | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Wang YH, Tong KW, Xiong SR, Chen CQ, Song YH, Yang P. Steerable Structural Evolvement and Adsorption Behavior of Metastable Polyoxovanadate-Based Metal-Organic Polyhedra. Inorg Chem 2024; 63:20984-20992. [PMID: 39441664 DOI: 10.1021/acs.inorgchem.4c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Promoting the advancement of the structure and function of metastable substances is challenging but worthwhile. In particular, how to harness the entangled state and evolution path of labile porous structures has been at the forefront of research in molecular self-assembly. In this work, the metastable structures of polyoxovanadate-based metal-organic polyhedra (VMOPs) can be manually regulated, including separation of the interlocked aggregate by a ligand-widening approach as well as transformation from a tetrahedral to capsule-like scaffold via a vertice-remodeling strategy. In these processes, intra- and intermolecular π···π and C-H···π interactions have been recognized as the primary driving forces. Besides being responsible for commanding the structural evolvement of VMOPs, such weak interactions were able to program their spatial arrangements and hence the adsorption performances for dye and iodine. The successful use of such a weak force-dominated design concept beacons a feasible route for customization of the function-oriented metastable structures. Separation and transformation of the interlocked metastable VMOPs have been achieved via the respective ligand-widening approach and vertice-remodeling strategy. Not only their structures but also adsorption features could be well regulated by such a weak force-dominated design concept.
Collapse
Affiliation(s)
- Yan-Hu Wang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Ke-Wei Tong
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Shi-Ru Xiong
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Chao-Qin Chen
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Yue-Hong Song
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, P. R. China
| | - Peng Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
4
|
Tang MJ, Zhu ZH, Li YL, Qin WW, Liang FP, Wang HL, Zou HH. Specific smart sensing of electron-rich antibiotics or histidine improves the antenna effect, luminescence, and photodynamic sterilization capabilities of lanthanide polyoxometalates. J Colloid Interface Sci 2024; 680:235-246. [PMID: 39504753 DOI: 10.1016/j.jcis.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Excessive discharge of antibiotics seriously threatens human health and is thus a global public health problem. This highlights the urgent need to develop intelligent sensing materials for specific antibiotics that are highly visual, fast, convenient, and inexpensive. Herein, two reverse α-octamolybdate polyoxometalates (POMs; Mo8) were used to chelate lanthanide ions to obtain lanthanide POMs (LnPOMs; LnMo16; Ln = Eu, Sm, Tb, Gd) with highly sensitive smart photoresponses to specific antibiotics (ofloxacin [OFN], norfloxacin [NOR], enrofloxacin [ENR], and oxytetracycline [OTC]) and histidine (His) with luminescence turn-on. Specific antibiotics and His, which has an electron-rich structure, can efficiently enhance the antenna effect, thereby greatly improving the luminescence of EuMo16. Surprisingly, OFN and NOR both enhanced the luminescence of Eu(III) ions and Mo8, whereas ENR and OTC only enhanced the luminescence of Eu(III) ions, showing a differentiated sensitization effect. More notably, the combination of POMs and Ln(III) ions enhanced the ability of LnPOMs to produce reactive oxygen species under light irradiation, and these LnPOMs showed significant sterilization effects on Escherichia coli and Staphylococcus aureus. To our knowledge, this is the first time electron-rich antibiotics or amino acids were used to enhance the luminescence of LnPOMs, achieving luminescence-enhanced photoresponse to specific antibiotics and amino acids.
Collapse
Affiliation(s)
- Meng-Juan Tang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Zhong-Hong Zhu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, PR China
| | - Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Wen-Wen Qin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Hai-Ling Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, PR China.
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
5
|
Zhao ZH, Han BL, Su HF, Guo QL, Wang WX, Zhuo JQ, Guo YN, Liu JL, Luo GG, Cui P, Sun D. Buckling cluster-based H-bonded icosahedral capsules and their propagation to a robust zeolite-like supramolecular framework. Nat Commun 2024; 15:9401. [PMID: 39477935 PMCID: PMC11525653 DOI: 10.1038/s41467-024-53640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Hydrogen-bonded assembly of multiple components into well-defined icosahedral capsules akin to virus capsids has been elusive. In parallel, constructing robust zeolitic-like cluster-based supramolecular frameworks (CSFs) without any coordination covalent bonding linkages remains challenging. Herein, we report a cluster-based pseudoicosahedral H-bonded capsule Cu60, which is buckled by the self-organization of judiciously designed constituent copper clusters and anions. The spontaneous formation of the icosahedron in the solid state takes advantage of 48 charge-assisted CH···F hydrogen bonds between cationic clusters and anions (PF6-), and is highly sensitive to the surface protective ligands on the clusters with minor structural modification inhibiting its formation. Most excitingly, an extended three-periodic robust zeolitic-like CSF, is constructed by edge-sharing the resultant icosahedrons. The perpendicular channels of the CSF feature unusual 3D orthogonal double-helical patterns. The CSF material not only keeps its single-crystal character in the desolvated phase, but also exhibits excellent chemical and thermal stabilities as well as long-lived phosphorescence emission.
Collapse
Affiliation(s)
- Zhan-Hua Zhao
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Bao-Liang Han
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China
| | - Hai-Feng Su
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Qi-Lin Guo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Wen-Xin Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China
| | - Jing-Qiu Zhuo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Yong-Nan Guo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Jia-Long Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Geng-Geng Luo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China.
| | - Ping Cui
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China.
| |
Collapse
|
6
|
Xiong X, Fu Y, Wu S, Qin C, Wang X, Su Z. Two High-Nuclear Wheel-Hub-Shaped Transition-Metal-Doped Polyoxovanadates. Inorg Chem 2024; 63:14296-14300. [PMID: 39037868 DOI: 10.1021/acs.inorgchem.4c02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The first two unprecedented high-nuclear wheel-hub-shaped transition-metal-doped polyoxovanadates, [M8Mo4W4V20P20] [M = Ni (1), Co (2)], have been assembled under solvothermal conditions. The center of the cluster consists of two {Ni4(oa)4} rings as the center hole, four {MoO4} units acting as the spokes, and four {WV5(PPOA)5} molecular building blocks serving as the tire. Compound 1 exhibits good catalytic properties and recyclability in oxidative desulfurization reactions.
Collapse
Affiliation(s)
- Xinling Xiong
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yaomei Fu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Shuangxue Wu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Chao Qin
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zhongmin Su
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
7
|
Sun H, Jimbo A, Li C, Yonesato K, Yamaguchi K, Suzuki K. Self-assembled molecular hybrids comprising lacunary polyoxometalates and multidentate imidazole ligands. Chem Sci 2024; 15:9281-9286. [PMID: 38903217 PMCID: PMC11186312 DOI: 10.1039/d4sc02384f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Self-assembly via coordination bonding facilitates the creation of diverse inorganic-organic molecular hybrids with distinct structures and properties. Recent advances in this field have been driven by the versatility of organic ligands and inorganic units. Lacunary polyoxometalates are a class of well-defined metal-oxide clusters with a customizable number of reactive sites and bond directions, which make them promising inorganic units for self-assembled molecular hybrids. Herein, we report a novel synthesis method for self-assembled molecular hybrids utilizing the reversible coordination of multidentate imidazole ligands to the vacant sites of lacunary polyoxometalates. We synthesized self-assembled molecular hybrids including monomer, dimers, and tetramer, demonstrating the potential of our method for constructing intricate hybrids with tailored properties and functionalities.
Collapse
Affiliation(s)
- Haoran Sun
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Atsuhiro Jimbo
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Chifeng Li
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
8
|
Zhang D, Wang C, Lin Z, Dong LZ, Zhang C, Yao Z, Lei P, Dong J, Du J, Chi Y, Lan YQ, Hu C. Fullerene-like Niobovanadate Cage Built from {(Nb)V 5 } Pentagon. Angew Chem Int Ed Engl 2024; 63:e202320036. [PMID: 38191990 DOI: 10.1002/anie.202320036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
The striking aesthetic appeal of fullerene-like clusters has captured the interest of researchers. Nevertheless, the assembly of fullerene-like polyoxovadanadate (POV) cages remains a significant challenge due to the scarcity of suitable pentagonal motif. Herein, we have successfully synthesized the first fullerene-like all-inorganic POV cage, {(V2 O)V30 Nb12 O102 (H2 O)12 } (V30 Nb12 ), by introducing Nb into the POVs. V30 Nb12 is assembled by 12 heterometallic {(Nb)V5 } pentagons through sharing V centers with Ih symmetry, reminiscent of C60 . To our knowledge, the fullerene-like V30 Nb12 not only represents the highest-nuclearity POV cage but also stands as the first niobovanadate cluster. Notably, V30 Nb12 exhibits excellent solution stability, as confirmed by ESI-MS, FT-IR and UV/Vis spectra. As there is no protection organic ligand on its outer surface, V30 Nb12 can be further modified with Cu-complexes to form a fullerene-like cluster based zigzag chain (Cu-V30 Nb12 ).
Collapse
Affiliation(s)
- Di Zhang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Changan Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhengguo Lin
- College of Chemistry and Materials Science, Hebei Normal University, Hebei, 050024, P. R. China
| | - Long-Zhang Dong
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Chao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, Henan University, Henan, 450046, P. R. China
| | - Zishuo Yao
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Peng Lei
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jing Dong
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jianxin Du
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
9
|
Lee S, Xie H, Chen Z, Mian MR, Gómez-Torres A, Syed ZH, Reischauer S, Chapman KW, Delferro M, Farha OK. Metal-Organic Frameworks as a Tunable Platform to Deconvolute Stereoelectronic Effects on the Catalytic Activity of Thioanisole Oxidation. J Am Chem Soc 2024; 146:3955-3962. [PMID: 38295514 DOI: 10.1021/jacs.3c11809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The local environment of a metal active site plays an important role in affecting the catalytic activity and selectivity. In recent studies, tailoring the behavior of a molybdenum-based active site via modulation of the first coordination sphere has led to improved thioanisole oxidation performance, but disentangling electronic effects from steric influences that arise from these modifications is nontrivial, especially in heterogeneous systems. To this end, the tunability of metal-organic frameworks (MOFs) makes them promising scaffolds for controlling the coordination sphere of a heterogeneous, catalytically active metal site while offering additional attractive features such as crystallinity and high porosity. Herein, we report a variety of MOF-supported Mo species, which were investigated for catalytic thioanisole oxidation to methyl phenyl sulfoxide and/or methyl phenyl sulfone using tert-butyl hydroperoxide (tBHP) as the oxidant. In particular, MOFs of contrasting node architectures were targeted, presenting a unique opportunity to investigate the stereoelectronic control of Mo active sites in a systematic manner. A Zr6-based MOF, NU-1000, was employed along with its sulfated analogue Zr6-based NU-1000-SO4 to anchor a dioxomolybdenum species, which enabled examination of support-mediated active site polarizability on catalytic performance. In addition, a MOF containing a mixed metal node, Mo-MFU-4l, was used to probe the stereoelectronic impact of an N-donor ligand environment on the catalytic activity of the transmetalated Mo center. Characterization techniques, including single crystal X-ray diffraction, were concomitantly used with reaction time course profiles to better comprehend the dynamics of different Mo active sites, thus correlating structural change with activity.
Collapse
Affiliation(s)
- Seryeong Lee
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Alejandra Gómez-Torres
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zoha H Syed
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Susanne Reischauer
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Ren WB, Sun S, Gao Z, Li B, Chen X, Liu Q, Zang HY. Synthesis of Phosphovanadate-Based Porous Inorganic Frameworks with High Proton Conductivity. Inorg Chem 2023. [PMID: 37988635 DOI: 10.1021/acs.inorgchem.3c03703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Materials with high proton conductivity have attracted significant attention for their wide-ranging applications in proton exchange membrane fuel cells. However, the design of new and efficient porous proton-conducting materials remains a challenging task. The structure-controllable and highly stable metal phosphates can be synthesized into layer or frame networks to provide proton transport capabilities. Herein, we have successfully synthesized three isomorphic metal phosphovanadates, namely, H2(C2H10N2)2[MII(H2O)2(VIVO)8(OH)4(PO4)4(HPO4)4] (C2H8N2 = 1,2-ethylenediamine; M = Co, Ni, and Cu), by the hydrothermal method employing ethylenediamine as a template. These pure inorganic open frameworks exhibit a cavity width ranging from 6.4 to 7.5 Å. Remarkably, the proton conductivity of compounds 1-3 can reach 1 × 10-2 S·cm-1 at 85 °C and 97% relative humidity (RH), and they can remain stable at high temperatures as well as long-term stability. This work provides a novel strategy for the development and design of porous proton-conducting materials.
Collapse
Affiliation(s)
- Wei-Bo Ren
- Faculty of Chemistry Changchun, Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Jilin 130024, China
| | - Sai Sun
- Faculty of Chemistry Changchun, Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Jilin 130024, China
| | - Zhixin Gao
- Faculty of Chemistry Changchun, Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Jilin 130024, China
| | - Bo Li
- Faculty of Chemistry Changchun, Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Jilin 130024, China
| | - Xinyu Chen
- Faculty of Chemistry Changchun, Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Jilin 130024, China
| | - Qianqian Liu
- Faculty of Chemistry Changchun, Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Jilin 130024, China
| | - Hong-Ying Zang
- Faculty of Chemistry Changchun, Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Jilin 130024, China
| |
Collapse
|
11
|
Liu S, He Y, Ma X, Liu J, Ma P, Wang J, Niu J. Synthesis and Structure of High-Nuclearity Carboxylate-Modified Heteropolyoxovanadate Serving as a Heterogeneous Catalyst for Selective Oxidation of Alkylbenzenes. Inorg Chem 2023; 62:18384-18390. [PMID: 37906517 DOI: 10.1021/acs.inorgchem.3c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A high-nuclearity carboxylic-modified heteropolyoxovanadate, Na2K10H15[P8VIV24(tart)15(H2O)15(OH)O51]·58H2O [1, tart = C4H2O6], has been successfully synthesized by a conventional aqueous method under mild conditions. The crystallographic study reveals that compound 1 crystallizes in the tetragonal I41/a space group and is composed by a trilayer saddle-like polyoxoanion {P8V24}. Two {V3(tart)(H2O)O11} as linking units bridge the top {P4VIV9(tart)7(H2O)4(OH)O23} and the bottom {P4VIV9(tart)6(H2O)9O22} layers via tartrate ligands and {PO4} tetrahedra, resulting in a 24-nuclearity POV skeleton structure. More interestingly, compound 1 serves as a heterogeneous catalyst for the selective oxidation of diphenylmethanes with 96.2% conversion and 93.6% selectivity under the optimized conditions.
Collapse
Affiliation(s)
- Siyu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Yuzan He
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Xinyi Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jiayu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|
12
|
Research progress of POMs constructed by 1,3,5-benzene-tricarboxylic acid: From synthesis to application. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Zhang Y, Chen RQ, Wang ST, Liu YJ, Fang WH, Zhang J. From an aluminum oxo cluster to an aluminum oxo cluster organic cage. Chem Commun (Camb) 2023; 59:3411-3414. [PMID: 36852667 DOI: 10.1039/d2cc06524j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Presented herein is an example of the conversion of an aluminum oxo cluster (AlOC) to an aluminum oxo cluster organic cage (AlOCOC). We successfully synthesized the first example of an aluminum cluster-based organic cage-Al12 tetrahedral cage via an Al3 cluster. The use of 4-pyrazolecarboxylic acid plays an important role in the construction of the organic cage. Due to the presence of partially deprotonated ligands, the hydrogen-bonding interactions between the discrete tetrahedra generate porous supramolecular structures. Considering the high porosity and the abundant N-H sites, we further investigated the performance of the material towards iodine capture.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Ran-Qi Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Ya-Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| |
Collapse
|
14
|
Zheng H, Zhong J, Liu X, Zhu Y, Hou B, Zhao L, Sun C, Wang X, Su Z. Co-modified polyoxovanadoborates derived Co/BN-CNT/VN based bifunctional electrocatalysts for rechargeable zinc-air batteries. J Colloid Interface Sci 2023; 634:675-683. [PMID: 36563424 DOI: 10.1016/j.jcis.2022.12.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Rational design of high-performance bifunctional electrocatalysts to accelerate the sluggish oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) in rechargeable Zn-air batteries remain an enduring challenge. The construction of multicomponent catalysts is a promising solution to achieve this goal. Herein, B and N co-doped interconnecting graphite carbon and carbon nanotube with the decoration of Co and vanadium nitride (VN) nanoparticles (Co/BN-CNT/VN) are synthesized using Co-modified polyoxovanadoborates as precursors. The optimized composite achieves superior bifunctional oxygen electrocatalytic activity and stability, which is comparable to noble metal catalysts and reported bifunctional electrocatalysts. Specifically, the half-potential of ORR reaches 0.85 V, and the overpotential of OER is low to 296 mV at a current density of 10 mA cm-2. Strikingly, zinc-air batteries assembled based on Co/BN-CNT/VN demonstrate a small charge-discharge voltage gap of 0.873 V, a remarkable peak-power density of 156.3 mW cm-2, and outstanding cycling durability (∼1000 cycles at 10 mA cm-2). This work affords a new alternative strategy to create cost-effective and high-potency bifunctional oxygen electrocatalysts for advanced air batteries.
Collapse
Affiliation(s)
- Haiyan Zheng
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China
| | - Jun Zhong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123 Jiangsu, China
| | - Xinyan Liu
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China
| | - Ying Zhu
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China
| | - Baoshan Hou
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China
| | - Liang Zhao
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China.
| | - Chunyi Sun
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China.
| | - Xinlong Wang
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China
| | - Zhongmin Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
15
|
Yang Y, Fu Y, Wu S, Zhao L, Qin C, Wang X, Su Z. Endohedral Functionalization for Structural Transformation of Polyoxovanadate-Based Metal-Organic Cube. Inorg Chem 2023; 62:648-652. [PMID: 36583537 DOI: 10.1021/acs.inorgchem.2c03635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Functionalized internal modifications of metal-organic polyhedra (MOPs) can endow properties and functions different from the original ones. Until now, there have been only a few examples of endohedral modifications of polyoxovanadate-based MOPs. Herein, an efficient coordination-driven strategy was chosen for the inner modification of two metal-organic cubes (MOCs) with different sizes, VMOC-1 and VMOC-4, constructed from polyoxovanadate clusters [V6O6(OCH3)9(SO4)(CO2)3]2- SBU and tetradentate ligands. Pyridinophosphonic acid with potential coordination capability was introduced to replace the sulfate of the hexavanadate cluster and graft the pyridine functional group inside the cage. The introduction of pyridylphosphate in the VMOC-4 system gave a cubic cage with a pyridyl endo-modified isomer. Interestingly, the smaller cubic cage VMOC-1 was induced to undergo structural transformation to obtain VMOC-py-1. The organic dyes adsorption of VMOC-py-1 and VMOC-1 showed that the endomodified structure could adsorb larger and more dyes, compared to the original cube.
Collapse
Affiliation(s)
- Yang Yang
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Shuangxue Wu
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Liang Zhao
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Chao Qin
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xinlong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zhongmin Su
- College of Science, Hainan University, Haikou 570228, China
| |
Collapse
|
16
|
Zhou XY, Wang F, Zhang J. Syntheses of new high-symmetric polyoxometalates with Mo4O4 cubane core. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
17
|
Zhu M, Han S, Liu J, Tan M, Wang W, Suzuki K, Yin P, Xia D, Fang X. {Mo
126
W
30
}: Polyoxometalate Cages Shaped by π–π Interactions. Angew Chem Int Ed Engl 2022; 61:e202213910. [DOI: 10.1002/anie.202213910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Minghui Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Shicheng Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Junrui Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Mengjin Tan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Wei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Kosuke Suzuki
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656 Japan
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xikui Fang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
18
|
Recent advances on high-nuclear polyoxometalate clusters. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Zhang T, Hou Y, Hou B, Zhao L, Wang X, Qin C, Su Z. High-nuclear polyoxovanadates assembled from pentagonal building blocks. Chem Commun (Camb) 2022; 58:11111-11114. [PMID: 36102788 DOI: 10.1039/d2cc04436f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The design and synthesis of high-nuclear polyoxometalates (POMs) constructed from pentagonal molecular building blocks (MBBs) are attractive and challenging. Herein, three new high-nuclear polyoxovanadates, including {V20W2P20} (1), {V18W4P14} (2), and {V26W6P16} (3), have been successfully synthesized under solvothermal conditions. All these structures are assembled from pentagonal MBB {WV5(PhPO3)5} with different configurations. Compound 1 exhibits efficient, stable, and versatile catalytic activity for sulfide oxidation.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Yuhan Hou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Baoshan Hou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Liang Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China. .,College of Science, Hainan University, Haikou 570228, China
| | - Chao Qin
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Zhongmin Su
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China. .,College of Science, Hainan University, Haikou 570228, China
| |
Collapse
|
20
|
Hou B, Gu X, Gan H, Zheng H, Zhu Y, Wang X, Su Z. Face-Directed Construction of a Metal-Organic Isohedral Tetrahedron for the Highly Efficient Capture of Environmentally Toxic Oxoanions and Iodine. Inorg Chem 2022; 61:7103-7110. [PMID: 35482439 DOI: 10.1021/acs.inorgchem.2c00584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Geometric analysis has been guiding the design and construction of metal-organic polyhedra. Here, a series of isohedral tetrahedra ZrIT-1 and -2 and VIT-1 and -2 were synthesized by a one-pot method relying on trivalent molecular building blocks. Structural analysis shows that the isohedral tetrahedra constructed with {V6(SO4)(CO2)3} have three different sets of prism lengths, while those constructed with {Zr3O(CO2)3} have two different sets of prism lengths. Comparison of two types of polyhedra reveals that the different sizes and coordination flexibilities of the two MBBs result in different cavity volumes. The environmentally toxic oxoanion trapping ability of ZrIT-1 was explored due to its structural stability and cation cage properties. The results show that ZrIT-1 can capture permanganate and dichromate anions in water with high efficiency and selectivity. Notably, the permanganate adsorption capacity can reach ∼276.6 mg/g, which exceeds those of most metal-organic framework materials. In addition, the adsorption and desorption of iodine showed that ZrIT-1 has a reversible adsorption capacity for iodine.
Collapse
Affiliation(s)
- Baoshan Hou
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Xiaoyan Gu
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Hongmei Gan
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Haiyan Zheng
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Ying Zhu
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Xinlong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| | - Zhongmin Su
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
21
|
Chang Q, Meng X, Ruan W, Feng Y, Li R, Zhu J, Ding Y, Lv H, Wang W, Chen G, Fang X. Metal–Organic Cages with {SiW
9
Ni
4
} Polyoxotungstate Nodes. Angew Chem Int Ed Engl 2022; 61:e202117637. [DOI: 10.1002/anie.202117637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 01/14/2023]
Affiliation(s)
- Qing Chang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiangyu Meng
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Wenjun Ruan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Yeqin Feng
- MOE Key Laboratory of Cluster Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Rui Li
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Jiayu Zhu
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Hongjin Lv
- MOE Key Laboratory of Cluster Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Wei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Xiamen Institute of Rare Earth Materials Haixi Institutes Chinese Academy of Sciences Xiamen Fujian 361021 China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xikui Fang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
22
|
Chang Q, Meng X, Ruan W, Feng Y, Li R, Zhu J, Ding Y, Lv H, Wang W, Chen G, Fang X. Metal–Organic Cages with {SiW9Ni4} Polyoxotungstate Nodes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qing Chang
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Xiangyu Meng
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Wenjun Ruan
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yeqin Feng
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Rui Li
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Jiayu Zhu
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Yong Ding
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Hongjin Lv
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Wei Wang
- Chinese Academy of Sciences Fujian Institute of Research of the Structural of Matter CHINA
| | - Guanying Chen
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Xikui Fang
- Harbin Institute of Technology Department of Applied Chemistry A405 Mingde Building 150001 Harbin CHINA
| |
Collapse
|
23
|
Bao SJ, Xu ZM, Yu TC, Song YL, Wang H, Niu Z, Li X, Abrahams BF, Braunstein P, Lang JP. Flexible Vertex Engineers the Controlled Assembly of Distorted Supramolecular Tetrahedral and Octahedral Cages. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9819343. [PMID: 35282470 PMCID: PMC8897743 DOI: 10.34133/2022/9819343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022]
Abstract
Designing and building unique cage assemblies attract increasing interest from supramolecular chemists but remain synthetically challenging. Herein, we propose the use of a flexible vertex with adjustable angles to selectively form highly distorted tetrahedral and octahedral cages, for the first time, in which the flexible vertex forms from the synergistic effect of coordination and covalent interactions. The inherent interligand angle of the vertex can be modulated by guest anions present, which allows for the fine-tuning of different cage geometries. Furthermore, the reversible structural transformation between tetrahedral and octahedral cages was achieved by anion exchange monitored by mass spectrometric technique, the smaller anions favoring tetrahedral cages, while the larger anions supporting octahedral cages. Additionally, the KBr-based cage thin films exhibited prominent enhancement of their third-order NLO responses in two or three orders of magnitude compared to those obtained for their corresponding solutions. This work not only provides a new methodology to build irregular polyhedral structures in a controlled and tunable way but also provides access to new kinds of promising functional optical materials.
Collapse
Affiliation(s)
- Shu-Jin Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ze-Ming Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Tian-Chen Yu
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Ying-Lin Song
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | | | - Pierre Braunstein
- Université de Strasbourg-CNRS, Institut de Chimie (UMR 7177 CNRS), 4 Rue Blaise Pascal CS 90032, 67081 Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
24
|
Chen X, Wang P, Wang T, Xu L. Improved Photocatalytic Performance of the First Polyoxometalate Electron Acceptor-Modified Cu2ZnSnS4 Photocatalyst for Cr(VI) Reduction. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421120050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Liu Y, Wang B, Bian L, Qin Y, Wang C, Zheng L, Cao Q. Morphology-Dependent Peroxidase Mimicking Enzyme Activity of Copper Metal-Organic Polyhedra Assemblies. Chemistry 2021; 27:15730-15736. [PMID: 34505733 DOI: 10.1002/chem.202102631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 11/11/2022]
Abstract
The morphology of nanomaterials (geometric shape and dimension) play a significant role in its various physical and chemical properties. Thus, it is essential to link morphology with performance in specific applications. For this purpose, the morphology of copper metal-organic polyhedra (Cu-MOP) can be modulated through distinct assembly process, which facilitates the exploration of the relationship between morphology and catalytic performance. In this work, the assemblies of Cu-MOP with three different morphologies (nanorods, nanofibers and nanosheets) were facilely prepared by the variation of solvent mixture of N, N-dimethylformamide (DMF) and methanol, revealed the important role of the interaction between the surface group and the solvent on the morphology of these assemblies. Cu-MOP nanofibers exhibited the highest mimetic peroxidase enzyme activity over the Cu-MOP nanosheets and nanorods, which have been utilized in the detection of glucose. Cu-MOPs assemblies with tunable morphology accompanied with adjustable mimic peroxidase activity, had great potential applications in the field of bioanalytical chemistry and biomedicals.
Collapse
Affiliation(s)
- Yanxiong Liu
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Baoru Wang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Longchun Bian
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Yu Qin
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Chunqiong Wang
- Yunnan Tobacco Quality Supervision and Test Station, Kunming, Yunnan, 650106, China
| | - Liyan Zheng
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Qiue Cao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| |
Collapse
|
26
|
Wang J, Liu X, Du Z, Xu Y. Organo-functionalized polyoxovanadates: crystal architecture and property aspects. Dalton Trans 2021; 50:7871-7886. [PMID: 34008655 DOI: 10.1039/d1dt00494h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polyoxovanadates (POVs), as one of the most prominent members of polyoxometalates (POMs), have been subject to extensive studies by virtue of their aesthetically intriguing structures and potential applications in catalysis, magnetism, and optics, among others. In recent years, organo-functionalized POVs have received considerable attention due to the combination of the advantages of POVs with the importance of organic species. In this review, the key developments of polyoxovanadates and, particularly, the achievements that are related to polyoxovanadates modified with organic ligands and transition metal-organic ligand are summarized. Herein, we systematically introduce the structural features of organo-functionalized POVs and their main applications involved in the magnetism and catalysis aspects. Finally, the current challenges and future prospects in the design, synthesis, and property investigation of polyoxovanadates are also discussed.
Collapse
Affiliation(s)
- Jilei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China.
| | - Xiaomei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China.
| | - Zeyu Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China.
| | - Yan Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China.
| |
Collapse
|
27
|
Guo J, Chang Q, Liu Z, Wang Y, Liu C, Wang M, Huang D, Chen G, Zhao H, Wang W, Fang X. How to not build a cage: endohedral functionalization of polyoxometalate-based metal-organic polyhedra. Chem Sci 2021; 12:7361-7368. [PMID: 34163825 PMCID: PMC8171318 DOI: 10.1039/d1sc01243f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/02/2021] [Indexed: 01/14/2023] Open
Abstract
Introducing functionalities into the interior of metal-organic cage complexes can confer properties and utilities (e.g. catalysis, separation, drug delivery, and guest recognition) that are distinct from those of unfunctionalized cages. Endohedral functionalization of such cage molecules, for decades, has largely relied on modifying their organic linkers to covalently append targeted functional groups to the interior surface. We herein introduce an effective coordination method to bring in functionalities at the metal sites instead, for a set of polyhedral cages where the nodes are in situ formed polyoxovanadate clusters, [VIV 6O6(OCH3)9(μ6-SO4)(COO)3]2-. Replacing the central sulfates of these hexavanadate clusters with more strongly coordinating phosphonate groups allows the installation of functionalities within the cage cavities. Organophosphonates with phenyl, biphenyl, and terphenyl tails were examined for internalization. Depending on the size/shape of the cavities, small phosphonates can fit into the molecular containers whereas larger ones inhibit or transform the framework architecture, whereby the first non-cage complex was isolated from a reaction that otherwise would lead to entropically favored regular polyhedra cages. The results highlight the complex and dynamic nature of the self-assembly process involving polyoxometalates and the scope of molecular variety accessible by the introduction of endo functional groups.
Collapse
Affiliation(s)
- Ji Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Qing Chang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Zhiwei Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Yangming Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Chuanhong Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Mou Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Danmeng Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Hongmei Zhao
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Wei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Xiamen Fujian 361021 China
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences Xiamen Fujian 361021 China
| | - Xikui Fang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
28
|
Wang XY, Chen WC, Shao KZ, Wang XL, Zhao L, Su ZM. An octahedral polyoxomolybdate-organic molecular cage. Chem Commun (Camb) 2021; 57:1042-1045. [PMID: 33409516 DOI: 10.1039/d0cc07120j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An unprecedented Mo-organic molecular cage built on interesting {MoVI2O5} secondary building blocks and BTC ligands, which has been successfully synthesized and systematically characterized, presents the first example of an isopolyoxomolybdates(vi)-organic molecular cage. An investigation into the related Cs+-exchange experiment was performed in detail.
Collapse
Affiliation(s)
- Xin-Ying Wang
- Key Laboratory of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, P. R. China.
| | - Wei-Chao Chen
- Key Laboratory of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, P. R. China.
| | - Kui-Zhan Shao
- Key Laboratory of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, P. R. China.
| | - Xin-Long Wang
- Key Laboratory of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, P. R. China.
| | - Liang Zhao
- Key Laboratory of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, P. R. China.
| | - Zhong-Min Su
- Key Laboratory of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, P. R. China.
| |
Collapse
|
29
|
Shi N, Wang YJ, Li XX, Sun YQ, Zheng ST. An inorganic Co-containing heteropolyoxoniobate: reversible chemochromism and H 2O-dependent proton conductivity properties. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01065d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A novel pure inorganic cobalt-containing heteropolyoxoniobate is constructed from crescent-shaped [SiNb18O54]14− units. It exhibits reversible chemochromism, H2O-dependent proton conductivity, water vapor adsorption and magnetic properties.
Collapse
Affiliation(s)
- Nian Shi
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Yong-Jiang Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Xin-Xiong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Yan-Qiong Sun
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Shou-Tian Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
30
|
Wang FF, Li JH, Liu HY, Deng SP, Liu YY, Ma JF. Functionalized resorcin[4]arene-based coordination polymers as heterogeneous catalysts for click reactions. NEW J CHEM 2021. [DOI: 10.1039/d0nj06051h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
One Cu(i) and two Cd(ii) coordination polymers have been achieved using a 4-mercaptopyridine-functionalized resorcin[4]arene. 1 exhibits predominant efficiency and excellent recyclability for the synthesis of 1,2,3-triazoles and β-OH-1,2,3-triazoles.
Collapse
Affiliation(s)
- Fei-Fei Wang
- Key Lab of Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Jia-Hui Li
- Key Lab of Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Hai-Yan Liu
- Key Lab of Chemical Additive Synthesis and Separation
- Department of Chemical and Environmental Engineering, Yingkou Institute of Technology
- Yingkou 115014
- China
| | - Shu-Ping Deng
- Key Lab of Chemical Additive Synthesis and Separation
- Department of Chemical and Environmental Engineering, Yingkou Institute of Technology
- Yingkou 115014
- China
| | - Ying-Ying Liu
- Key Lab of Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Jian-Fang Ma
- Key Lab of Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
31
|
Gong Y, Qin C, Zhang Y, Sun C, Pan Q, Wang X, Su Z. Face‐Directed Assembly of Molecular Cubes: In Situ Substitution of a Predetermined Concave Cluster. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yaru Gong
- Key Lab of Polyoxometalate Science of Ministry of Education National & Local United Engineering Laboratory for Power Battery Institution Northeast Normal University Changchun Jilin 130024 China
- Key Laboratory of Advanced Materials of Tropical Island Resources Ministry of Education, Hainan University Haikou 570228 China
| | - Chao Qin
- Key Lab of Polyoxometalate Science of Ministry of Education National & Local United Engineering Laboratory for Power Battery Institution Northeast Normal University Changchun Jilin 130024 China
| | - Yuteng Zhang
- Key Lab of Polyoxometalate Science of Ministry of Education National & Local United Engineering Laboratory for Power Battery Institution Northeast Normal University Changchun Jilin 130024 China
| | - Chunyi Sun
- Key Lab of Polyoxometalate Science of Ministry of Education National & Local United Engineering Laboratory for Power Battery Institution Northeast Normal University Changchun Jilin 130024 China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources Ministry of Education, Hainan University Haikou 570228 China
| | - Xinlong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education National & Local United Engineering Laboratory for Power Battery Institution Northeast Normal University Changchun Jilin 130024 China
| | - Zhongmin Su
- Key Lab of Polyoxometalate Science of Ministry of Education National & Local United Engineering Laboratory for Power Battery Institution Northeast Normal University Changchun Jilin 130024 China
| |
Collapse
|
32
|
Two coordination polymers based on p-tert-butylcalix[4]arene as efficient luminescent sensor for Fe3+ and MnO4− ions. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Wang X, Zhang T, Li Y, Lin J, Li H, Wang XL. In Situ Ligand-Transformation-Involved Synthesis of Inorganic–Organic Hybrid Polyoxovanadates as Efficient Heterogeneous Catalysts for the Selective Oxidation of Sulfides. Inorg Chem 2020; 59:17583-17590. [DOI: 10.1021/acs.inorgchem.0c02798] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiang Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Tong Zhang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Yunhui Li
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Jiafeng Lin
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Huan Li
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Xiu-Li Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| |
Collapse
|
34
|
Abstract
Metal-organic polyhedra are a member of metal-organic materials, and are together with metal-organic frameworks utilized as emerging porous platforms for numerous applications in energy- and bio-related sciences. However, metal-organic polyhedra have been significantly underexplored, unlike their metal-organic framework counterparts. In this review, we will cover the topologies and the classification of metal-organic polyhedra and share several suggestions, which might be useful to synthetic chemists regarding the future directions in this rapid-growing field.
Collapse
Affiliation(s)
- Soochan Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea.
| | | | | | | | | |
Collapse
|
35
|
Gong Y, Qin C, Zhang Y, Sun C, Pan Q, Wang X, Su Z. Face-Directed Assembly of Molecular Cubes: In Situ Substitution of a Predetermined Concave Cluster. Angew Chem Int Ed Engl 2020; 59:22034-22038. [PMID: 32896078 DOI: 10.1002/anie.202010824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/24/2022]
Abstract
Systematic design and self-assembly of metal-organic polyhedra with predictable configurations has been a long-standing challenge in crystal engineering. Herein a concave polyoxovanadate cluster, [V6 O6 (OCH3 )9 (SO4 )4 ]5- , which can be generated in situ under specific reaction conditions, is reported. Based on this cluster, a potential trivalent molecular building block, [V6 O6 (OCH3 )9 (SO4 )(CO2 )3 ]2- , can be obtained by the bridging-ligand-substitution strategy and it possesses appropriate angle information for the design of molecular cubes. Utilizing the face-directed assembly of the trivalent molecular building block and a diverse set of tetratopic carboxylate linkers, a series of metal-organic cubes (VMOC-1-VMOC-5) with the same topology but different functionalities and dimensions were designed and constructed. An inclusion study using VMOC-3 shows that they are potential molecular receptors for selective capture of size-matching polycyclic aromatic hydrocarbon guest molecules.
Collapse
Affiliation(s)
- Yaru Gong
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China.,Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou, 570228, China
| | - Chao Qin
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yuteng Zhang
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Chunyi Sun
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou, 570228, China
| | - Xinlong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhongmin Su
- Key Lab of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
36
|
Oppenheim JJ, Skorupskii G, Dincă M. Aperiodic metal-organic frameworks. Chem Sci 2020; 11:11094-11103. [PMID: 34094352 PMCID: PMC8162495 DOI: 10.1039/d0sc04798h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/30/2020] [Indexed: 11/23/2022] Open
Abstract
Metal-organic frameworks (MOFs) represent one of the most diverse structural classes among solid state materials, yet few of them exhibit aperiodicity, or the existence of long-range order in the absence of translational symmetry. From this apparent conflict, a paradox has emerged: even though aperiodicity frequently arises in materials that contain the same bonding motifs as MOFs, aperiodic structures and MOFs appear to be nearly disjoint classes. In this perspective, we highlight a subset of the known aperiodic coordination polymers, including both incommensurate and quasicrystalline structures. We further comment upon possible reasons for the absence of such structures and propose routes to potentially access aperiodic MOFs.
Collapse
Affiliation(s)
- Julius J Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Grigorii Skorupskii
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| |
Collapse
|
37
|
Bao SJ, Xu ZM, Ju Y, Song YL, Wang H, Niu Z, Li X, Braunstein P, Lang JP. The Covalent and Coordination Co-Driven Assembly of Supramolecular Octahedral Cages with Controllable Degree of Distortion. J Am Chem Soc 2020; 142:13356-13361. [PMID: 32697582 DOI: 10.1021/jacs.0c07014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Discovering and constructing novel and fancy structures is the goal of many supramolecular chemists. In this work, we propose an assembly strategy based on the synergistic effect of coordination and covalent interactions to construct a set of octahedral supramolecular cages and adjust their degree of distortion. Our strategy innovatively utilizes the addition of sulfur atoms of a metal sulfide synthon, [Et4N][Tp*WS3] (A), to an alkynyl group of a pyridine-containing linker, resulting in a novel vertex with low symmetry, and of Cu(I) ions. By adjusting the length of the linker and the position of the reactive alkynyl group, the control of the deformation degree of the octahedral cages can be realized. These supramolecular cages exhibit enhanced third-order nonlinear optical (NLO) responses. The results offer a powerful strategy to construct novel distorted cage structures as well as control the degree of distortion of supramolecular geometries.
Collapse
Affiliation(s)
- Shu-Jin Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ze-Ming Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu China
| | - Yun Ju
- School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu China
| | - Ying-Lin Song
- School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu China
| | - Heng Wang
- Chemistry Department, University of South Florida, Tampa, Florida 33620United States
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu China
| | - Xiaopeng Li
- Chemistry Department, University of South Florida, Tampa, Florida 33620United States
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 67081 Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
38
|
Covalently crosslinked zirconium-based metal-organic framework aerogel monolith with ultralow-density and highly efficient Pb(II) removal. J Colloid Interface Sci 2020; 561:211-219. [DOI: 10.1016/j.jcis.2019.11.074] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/28/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022]
|
39
|
El-Sayed ESM, Yuan D. Metal-Organic Cages (MOCs): From Discrete to Cage-based Extended Architectures. CHEM LETT 2020. [DOI: 10.1246/cl.190731] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- El-Sayed M. El-Sayed
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
- Chemical Refining Laboratory, Refining Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
40
|
Zheng Y, Gan H, Zhao Y, Li W, Wu Y, Yan X, Wang Y, Li J, Li J, Wang X. Self‐Assembly and Antitumor Activity of a Polyoxovanadate‐Based Coordination Nanocage. Chemistry 2019; 25:15326-15332. [DOI: 10.1002/chem.201903333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/13/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yan Zheng
- School of Public HealthJilin University, 1163 Xinmin Street, Changchun Jilin 130021 P.R. China
- Department of GeriatricsFirst Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Hongmei Gan
- Department of ChemistryNortheast Normal University 5268 Renmin Street, Changchun Jilin 130024 P.R. China
| | - Yao Zhao
- School of Public HealthJilin University, 1163 Xinmin Street, Changchun Jilin 130021 P.R. China
| | - Wanling Li
- School of Public HealthJilin University, 1163 Xinmin Street, Changchun Jilin 130021 P.R. China
| | - Yuchen Wu
- School of Public HealthJilin University, 1163 Xinmin Street, Changchun Jilin 130021 P.R. China
| | - Xuechun Yan
- School of Public HealthJilin University, 1163 Xinmin Street, Changchun Jilin 130021 P.R. China
| | - Yifan Wang
- School of Public HealthJilin University, 1163 Xinmin Street, Changchun Jilin 130021 P.R. China
| | - Jinhua Li
- School of Public HealthJilin University, 1163 Xinmin Street, Changchun Jilin 130021 P.R. China
| | - Juan Li
- School of Public HealthJilin University, 1163 Xinmin Street, Changchun Jilin 130021 P.R. China
| | - Xinlong Wang
- Department of ChemistryNortheast Normal University 5268 Renmin Street, Changchun Jilin 130024 P.R. China
| |
Collapse
|
41
|
Huang B, Xiao Z, Wang Y, Ke D, Zhu C, Zhang S, H u X, Wu P. Destroy the inherent symmetry of vanadium-based inorganic cluster through chiral organic ligand: Synthesis and characterization of a polyoxovanadate-derived amino acid ester hybrid. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Liu GC, Lu X, Li XW, Wang XL, Xu N, Li Y, Lin HY, Chen YQ. Metal/Carboxylate-Induced Versatile Structures of Nine 0D → 3D Complexes with Different Fluorescent and Electrochemical Behaviors. ACS OMEGA 2019; 4:17366-17378. [PMID: 31656910 PMCID: PMC6812125 DOI: 10.1021/acsomega.9b02124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/06/2019] [Indexed: 05/04/2023]
Abstract
To investigate the effect of the polycarboxylates and metal ions on the assembly and structures of complexes based on a thiophene-containing bis-pyridyl-bis-amide N,N'-bis(pyridine-3-yl)thiophene-2,5-dicarboxamide (3-bptpa) ligand, nine 0D → 3D complexes of [Ni2(3-bptpa)4(1,2-BDC)2(H2O)2] (1), [Ni(3-bptpa)(IP)(H2O)2]·H2O (2), [Ni(3-bptpa)(5-MIP)(H2O)2]·H2O (3), [Ni(3-bptpa)(5-NIP)(H2O)] (4), [Ni(3-bptpa)(5-AIP)]·2H2O (5), [Ni2(OH)(3-bptpa)(1,3,5-BTC)]·DMA·5H2O (6), [Cu(3-bptpa)(5-MIP)]·3H2O (7), [Cu(3-bptpa)(5-AIP)(H2O)0.25]·H2O (8), and [Cu(3-bptpa)(1,3,5-HBTC)] (9) (1,2-H2BDC = 1,2-benzenedicarboxylic acid, H2IP = 1,3-benzenedicarboxylic acid, 5-H2MIP = 5-methylisophthalic acid, 5-H2NIP = 5-nitroisophthalic acid, 5-H2AIP = 5-aminoisophthalic acid, DMA = N,N'-dimethylacetamide, and 1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid) have been hydrothermally/solvothermally synthesized and structurally characterized by IR, thermogravimetric, powder X-ray diffraction, and single-crystal X-ray diffraction. Complex 1 is a zero-dimensional (0D) bimetallic complex. Complexes 2 and 3 feature two similar one-dimensional ladderlike structures. Complex 4 displays a two-dimensional (2D) 4-connected network based on single-metallic nodes. Complex 5 shows a 2D double-layer structure containing a pair of 63 [Ni(5-AIP)] honeycomblike sheets. Complex 6 is a 3,5-connected three-dimensional (3D) framework derived from bimetallic nodes and 63 [Ni2(OH)(1,3,5-BTC)] honeycomblike sheets. Complex 7 displays a 2D 4-connected grid based on bimetallic nodes. Complex 8 features a 2D double-layer structure based on two 4-connected [Cu(3-bptpa)(5-AIP)] sheets and bridging coordinated water molecules. Complex 9 is a 2D structure extended by incomplete deprotonation of 1,3,5-HBTC and 3-bptpa linkers. The effect of the metal ions and polycarboxylates on the structures of the title complexes was discussed, and the fluorescent properties of 1-9 were investigated. The carbon paste electrodes bulk-modified by complexes 3, 5, and 6-9 show different electrocatalytic activities for the oxidation of ascorbic acid as well as the reduction of hydrogen peroxide, nitrites, and bromates.
Collapse
Affiliation(s)
- Guo-Cheng Liu
- Faculty of Chemistry and Chemical Engineering, Liaoning Province Silicon Materials Engineering Technology Research Centre, Bohai University, Jinzhou 121013, P. R. China
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, and Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, P. R. China
| | - Xue Lu
- Faculty of Chemistry and Chemical Engineering, Liaoning Province Silicon Materials Engineering Technology Research Centre, Bohai University, Jinzhou 121013, P. R. China
| | - Xiao-Wu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, and Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, P. R. China
| | - Xiu-Li Wang
- Faculty of Chemistry and Chemical Engineering, Liaoning Province Silicon Materials Engineering Technology Research Centre, Bohai University, Jinzhou 121013, P. R. China
| | - Na Xu
- Faculty of Chemistry and Chemical Engineering, Liaoning Province Silicon Materials Engineering Technology Research Centre, Bohai University, Jinzhou 121013, P. R. China
| | - Yan Li
- Faculty of Chemistry and Chemical Engineering, Liaoning Province Silicon Materials Engineering Technology Research Centre, Bohai University, Jinzhou 121013, P. R. China
| | - Hong-Yan Lin
- Faculty of Chemistry and Chemical Engineering, Liaoning Province Silicon Materials Engineering Technology Research Centre, Bohai University, Jinzhou 121013, P. R. China
| | - Yong-Qiang Chen
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi 030619, P. R. China
| |
Collapse
|
43
|
Gong Y, Tao Y, Xu N, Sun C, Wang X, Su Z. Two polyoxovanadate-based metal-organic polyhedra with undiscovered "near-miss Johnson solid" geometry. Chem Commun (Camb) 2019; 55:10701-10704. [PMID: 31429464 DOI: 10.1039/c9cc05984a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Newfangled frangipani-like [MV5O6(μ3-O)5(SO4)(COO)5] (M = Nb/W) polyanions served as 5-connected molecular building blocks (MBBs) that simultaneously assembled with 4-connected [V5O9Cl] MBBs and tricarboxylate ligands (H3BTC) to form two new polyoxovanadate-based metal-organic polyhedra {[MV5O6(μ3-O)5(SO4)]4[V5O9Cl]4(BTC)12} with undiscovered "near-miss Johnson solid" geometry. Moreover, the variable-temperature magnetic susceptibilities were investigated.
Collapse
Affiliation(s)
- Yaru Gong
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China.
| | - Yanli Tao
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China.
| | - Na Xu
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China.
| | - Chunyi Sun
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China.
| | - Xinlong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China.
| | - Zhongmin Su
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China. and Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| |
Collapse
|
44
|
Li C, Mizuno N, Yamaguchi K, Suzuki K. Self-Assembly of Anionic Polyoxometalate–Organic Architectures Based on Lacunary Phosphomolybdates and Pyridyl Ligands. J Am Chem Soc 2019; 141:7687-7692. [DOI: 10.1021/jacs.9b02541] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chifeng Li
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Noritaka Mizuno
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Precursory Research
for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
45
|
Ma Y, Shi L, Zhou M, Li B, Chen Z, Wu L. Cell adhesion and proliferation in chiral pores triggered by polyoxometalates. Chem Commun (Camb) 2019; 55:7001-7004. [DOI: 10.1039/c9cc03432c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The chirality of polyoxometalate anchoring in the cavity of pitted films was demonstrated to strongly influence the adhesion and proliferation of E. coli cells.
Collapse
Affiliation(s)
- Yingyi Ma
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Lei Shi
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Mengcheng Zhou
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Zhijun Chen
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|