1
|
Wu R, Xiong G, Chen Y, Wang S. Control Patterning of Cyanobiphenyl Liquid Crystals for Electricity Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21693-21700. [PMID: 39368103 DOI: 10.1021/acs.langmuir.4c02733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Controlling molecular self-assembly from organic solution evaporation is an important strategy for developing many functional materials and systems. In this work, it is demonstrated that 4-octyloxy-4'-cyanobiphenyl (8OCB) liquid crystals can be patterned into well-oriented stripes with very high micrometer-scale precision using a sandwich system through a dewetting method. The preparation temperature, concentration, and surface energy are combined to control the morphology and orientation of 8OCB microstripe arrays assisted by silicon micropillars. Microstripes prepared below the isotropic temperature were uniform, well-ordered, and showed high electricity. In addition, 8OCB molecules have a strong tendency toward antiparallel alignment, nearly standing up on the substrate with long axes parallel to the microstripe. Also, we point out the mechanism for the self-assembly process of 8OCB on the air-liquid and liquid-solid surface.
Collapse
Affiliation(s)
- Rui Wu
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guirong Xiong
- School of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
| | - Yanyu Chen
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuai Wang
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
2
|
Zunzunegui-Bru E, Alfarano SR, Zueblin P, Vondracek H, Piccirilli F, Vaccari L, Assenza S, Mezzenga R. Universality in the Structure and Dynamics of Water under Lipidic Mesophase Soft Nanoconfinement. ACS NANO 2024. [PMID: 39088237 DOI: 10.1021/acsnano.4c05857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Water under soft nanoconfinement features physical and chemical properties fundamentally different from bulk water; yet, the multitude and specificity of confining systems and geometries mask any of its potentially universal traits. Here, we advance in this quest by resorting to lipidic mesophases as an ideal nanoconfinement system, allowing inspecting the behavior of water under systematic changes in the topological and geometrical properties of the confining medium, without altering the chemical nature of the interfaces. By combining Terahertz absorption spectroscopy experiments and molecular dynamics simulations, we unveil the presence of universal laws governing the physics of nanoconfined water, recapitulating the data collected at varying levels of hydration and nanoconfinement topologies. This geometry-independent universality is evidenced by the existence of master curves characterizing both the structure and dynamics of simulated water as a function of the distance from the lipid-water interface. Based on our theoretical findings, we predict a parameter-free law describing the amount of interfacial water against the structural dimension of the system (i.e., the lattice parameter), which captures both the experimental and numerical results within the same curve, without any fitting. Our results offer insight into the fundamental physics of water under soft nanoconfinement and provide a practical tool for accurately estimating the amount of nonbulk water based on structural experimental data.
Collapse
Affiliation(s)
- Eva Zunzunegui-Bru
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Serena Rosa Alfarano
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Patrick Zueblin
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Hendrik Vondracek
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5 in Area Science Park Basovizza, Trieste 34149, Italy
| | - Federica Piccirilli
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5 in Area Science Park Basovizza, Trieste 34149, Italy
- Istituto Innovazione e Ricerca Tecnologica (RIT), Strada Statale 14 km 163.5 in Area Science Park Basovizza, Trieste 34149, Italy
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5 in Area Science Park Basovizza, Trieste 34149, Italy
| | - Salvatore Assenza
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
- Department of Materials, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
3
|
Li Y, Ma X, Zhu W, Huang Q, Liu Y, Pan J, Ying Y, Xu X, Fu Y. Enzymatic Catalysis in Size and Volume Dual-Confined Space of Integrated Nanochannel-Electrodes Chip for Enhanced Impedance Detection of Salmonella. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300900. [PMID: 37096928 DOI: 10.1002/smll.202300900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Nanochannel-based confinement effect is a fascinating signal transduction strategy for high-performance sensing, but only size confinement is focused on while other confinement effects are unexplored. Here, a highly integrated nanochannel-electrodes chip (INEC) is created and a size/volume-dual-confinement enzyme catalysis model for rapid and sensitive bacteria detection is developed. The INEC, by directly sandwiching a nanochannel chip (60 µm in thickness) in nanoporous gold layers, creates a micro-droplet-based confinement electrochemical cell (CEC). The size confinement of nanochannel promotes the urease catalysis efficiency to generate more ions, while the volume confinement of CEC significantly enriches ions by restricting diffusion. As a result, the INEC-based dual-confinement effects benefit a synergetic enhancement of the catalytic signal. A 11-times ion-strength-based impedance response is obtained within just 1 min when compared to the relevant open system. Combining this novel nanoconfinement effects with nanofiltration of INEC, a separation/signal amplification-integrated sensing strategy is further developed for Salmonella typhimurium detection. The biosensor realizes facile, rapid (<20 min), and specific signal readout with a detection limit of 9 CFU mL-1 in culturing solution, superior to most reports. This work may create a new paradigm for studying nanoconfined processes and contribute a new signal transduction technique for trace analysis application.
Collapse
Affiliation(s)
- Yue Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xinyue Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenyue Zhu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiao Huang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yameng Liu
- Department of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Jinming Pan
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
4
|
Liu Q, Wang J, Huang X, Wu H, Zong S, Cheng X, Hao H. Spatiotemporal control of l-phenyl-alanine crystallization in microemulsion: the role of water in mediating molecular self-assembly. IUCRJ 2022; 9:370-377. [PMID: 35546797 PMCID: PMC9067117 DOI: 10.1107/s2052252522003001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
Water confined or constrained in a cellular environment can exhibit a diverse structural and dynamical role and hence will affect the self-assembly behavior of biomolecules. Herein, the role of water in the formation of l-phenyl-alanine crystals and amyloid fibrils was investigated. A microemulsion biomimetic system with controllable water pool size was employed to provide a microenvironment with different types of water, which was characterized by small-angle X-ray scattering, attenuated total reflectance-Fourier transform infrared spectroscopy and differential scanning calorimetry. In a bound water environment, only plate-like l-phenyl-alanine crystals and their aggregates were formed, all of which are anhydrous crystal form I. However, when free water dominated, amyloid fibrils were observed. Free water not only stabilizes new oligomers in the initial nucleation stage but also forms bridged hydrogen bonds to induce vertical stacking to form a fibrous structure. The conformational changes of l-phenyl-alanine in different environments were detected by NMR. Different types of water trigger different nucleation and growth pathways, providing a new perspective for understanding molecular self-assembly in nanoconfinement.
Collapse
Affiliation(s)
- Qi Liu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Hao Wu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Shuyi Zong
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xiaowei Cheng
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People’s Republic of China
| |
Collapse
|
5
|
Caselli L, Mendozza M, Muzzi B, Toti A, Montis C, Mello T, Di Cesare Mannelli L, Ghelardini C, Sangregorio C, Berti D. Lipid Cubic Mesophases Combined with Superparamagnetic Iron Oxide Nanoparticles: A Hybrid Multifunctional Platform with Tunable Magnetic Properties for Nanomedical Applications. Int J Mol Sci 2021; 22:9268. [PMID: 34502176 PMCID: PMC8430948 DOI: 10.3390/ijms22179268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
Hybrid materials composed of superparamagnetic iron oxide nanoparticles (SPIONs) and lipid self-assemblies possess considerable applicative potential in the biomedical field, specifically, for drug/nutrient delivery. Recently, we showed that SPIONs-doped lipid cubic liquid crystals undergo a cubic-to-hexagonal phase transition under the action of temperature or of an alternating magnetic field (AMF). This transition triggers the release of drugs embedded in the lipid scaffold or in the water channels. In this contribution, we address this phenomenon in depth, to fully elucidate the structural details and optimize the design of hybrid multifunctional carriers for drug delivery. Combining small-angle X-ray scattering (SAXS) with a magnetic characterization, we find that, in bulk lipid cubic phases, the cubic-to-hexagonal transition determines the magnetic response of SPIONs. We then extend the investigation from bulk liquid-crystalline phases to colloidal dispersions, i.e., to lipid/SPIONs nanoparticles with cubic internal structure ("magnetocubosomes"). Through Synchrotron SAXS, we monitor the structural response of magnetocubosomes while exposed to an AMF: the magnetic energy, converted into heat by SPIONs, activates the cubic-to-hexagonal transition, and can thus be used as a remote stimulus to spike drug release "on-demand". In addition, we show that the AMF-induced phase transition in magnetocubosomes steers the realignment of SPIONs into linear string assemblies and connect this effect with the change in their magnetic properties, observed at the bulk level. Finally, we assess the internalization ability and cytotoxicity of magnetocubosomes in vitro on HT29 adenocarcinoma cancer cells, in order to test the applicability of these smart carriers in drug delivery applications.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; (L.C.); (M.M.); (B.M.); (C.M.); (C.S.)
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| | - Marco Mendozza
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; (L.C.); (M.M.); (B.M.); (C.M.); (C.S.)
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| | - Beatrice Muzzi
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; (L.C.); (M.M.); (B.M.); (C.M.); (C.S.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 1240, I-53100 Siena, Italy
- ICCOM-CNR, I-50019 Sesto Fiorentino, Florence, Italy
- INSTM, I-50019 Sesto Fiorentino, Florence, Italy
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (A.T.); (L.D.C.M.); (C.G.)
| | - Costanza Montis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; (L.C.); (M.M.); (B.M.); (C.M.); (C.S.)
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| | - Tommaso Mello
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, 50139 Florence, Italy;
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (A.T.); (L.D.C.M.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (A.T.); (L.D.C.M.); (C.G.)
| | - Claudio Sangregorio
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; (L.C.); (M.M.); (B.M.); (C.M.); (C.S.)
- ICCOM-CNR, I-50019 Sesto Fiorentino, Florence, Italy
- INSTM, I-50019 Sesto Fiorentino, Florence, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; (L.C.); (M.M.); (B.M.); (C.M.); (C.S.)
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
6
|
Yao Y, Zhou T, Färber R, Grossner U, Floudas G, Mezzenga R. Designing cryo-enzymatic reactions in subzero liquid water by lipidic mesophase nanoconfinement. NATURE NANOTECHNOLOGY 2021; 16:802-810. [PMID: 33941918 DOI: 10.1038/s41565-021-00893-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Cryo-enzymology provides the possibility to develop unconventional biological reactions and detect intermediates in ultrafast enzymatic catalysis processes, but also illuminates the understanding of life principles in extremely cold environments. The scarcity of biological or biomimetic host systems that provide liquid water at subzero temperatures inhibits the prosperity of cryo-enzymology. Here we introduce cryo-enzymatic reactions in subzero water nanoconfined within lipid mesophases formed by conventional lipids. We show that the enzymatic reactions that ensue outperform the homologue catalytic processes run at standard temperatures. We use phytantriol-based lipidic mesophases (LMPs), within which water remains in the liquid state down to -120 °C, and combine crystallization and dynamic studies of the confined water to provide a fundamental understanding of the physical status of water at subzero temperatures, which sets the stage for cryo-enzymatic reactions in these environments. In the model horseradish peroxidase oxidization, the cation free-radical product is stabilized in LMPs at -20 °C, in contrast to the fast-consuming reactions at temperatures above 0 °C. Furthermore, the LMP system also supports the cascade reaction and lipase reaction at subzero temperatures, at which enzymatic reactions with both hydrophilic and hydrophobic substrates are successfully carried out. Our designed LMP system opens access to the nature of confined water in the biomimetic environment and provides a platform for low-temperature biomacromolecule reconstitution and the cryogenic control of enzymatic reactions in bionanotechnology.
Collapse
Affiliation(s)
- Yang Yao
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Tao Zhou
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Raphael Färber
- High Voltage Laboratory, ETH Zürich, Zürich, Switzerland
| | - Ulrike Grossner
- Advanced Power Semiconductor Laboratory, ETH Zürich, Zürich, Switzerland
| | - George Floudas
- Max Planck Institute for Polymer Research, Mainz, Germany
- Department of Physics, University of Ioannina, Ioannina, Greece
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- Department of Materials, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
7
|
Pirbhai M, Albrecht C, Tirrell C. A multispectral-sensor-based colorimetric reader for biological assays. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:064103. [PMID: 34243509 DOI: 10.1063/5.0040602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Tests that depend on changes in color are commonly used in biosensing. Here, we report on a colorimetric reader for such applications. The device is simple to construct and operate, making it ideal for research laboratories with limited resources or skilled personnel. It consists of a commercial multispectral sensor interfaced with a Raspberry Pi and a touchscreen. Unlike camera-based readers, this instrument requires no calibration of wavelengths by the user or extensive image processing to obtain results. We demonstrate its potential for colorimetric biosensing by applying it to the birefringent enzyme-linked immunosorbent assay. It was able to prevent certain false positives that the assay is susceptible to and lowered its limit of detection for glucose by an order of magnitude.
Collapse
Affiliation(s)
- M Pirbhai
- Department of Physics, St. Lawrence University, 23 Romoda Dr., Canton, New York 13617, USA
| | - C Albrecht
- Department of Physics, University of Oregon, 1585 E 13th Ave., Eugene, Oregon 97403, USA
| | - C Tirrell
- Department of Physics, St. Lawrence University, 23 Romoda Dr., Canton, New York 13617, USA
| |
Collapse
|
8
|
Wang K, Li Z, Huang Y, YaotianTao, Liang X, Chu X, He N, Gui S, Li Z. Additives-directed lyotropic liquid crystals architecture: Simulations and experiments. Int J Pharm 2021; 600:120353. [PMID: 33549811 DOI: 10.1016/j.ijpharm.2021.120353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/17/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
In this study, alkanes and sucrose esters are employed to investigate the influence of additives on lyotropic liquid crystal architecture. After molecular dynamic simulations and experiment characterization, we showed how the additives control the structure of LLCs. By controlling the polarity of additives, the phase behavior of LLCs can be engineered to form the required structure. Dissipative particle dynamics (DPD) is introduced for simulating the self-assembly of phytantriol (PT), providing intuitionistic images and structure information, which shows that additives with low-polarity complicate the internal structure of liquid crystal systems. Then the ternary phase diagrams of additives, PT, and water are constructed to systematically study the effects of additives on the phase behavior of LLCs. Consistent with DPD simulation results, there is a certain regularity in the effects of additives on the structure of liquid crystals. The difference in the structure of LLCs is due to the variability in the critical packing parameter (CPP) obtained by changing the polarity of additives. Our findings demonstrate that additives polarity is a key factor in LLCs structure, and may pave a promising avenue for novel LLCs development and translation, determining the self-assembly process and the resulting phase of LLCs.
Collapse
Affiliation(s)
- Kang Wang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhi Li
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yiming Huang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - YaotianTao
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China; Engineering Technology Research Center of Modernized Pharmaceutics Anhui Education Department (AUCM), China; Anhui Province Key Laboratory of Pharmaceutical Technology and Application (Anhui University of Chinese Medicine), Hefei, China
| | - Xiao Liang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoqin Chu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China; Engineering Technology Research Center of Modernized Pharmaceutics Anhui Education Department (AUCM), China; Anhui Province Key Laboratory of Pharmaceutical Technology and Application (Anhui University of Chinese Medicine), Hefei, China
| | - Ning He
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China; Engineering Technology Research Center of Modernized Pharmaceutics Anhui Education Department (AUCM), China; Anhui Province Key Laboratory of Pharmaceutical Technology and Application (Anhui University of Chinese Medicine), Hefei, China
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China; Engineering Technology Research Center of Modernized Pharmaceutics Anhui Education Department (AUCM), China; Anhui Province Key Laboratory of Pharmaceutical Technology and Application (Anhui University of Chinese Medicine), Hefei, China.
| | - Zhenbao Li
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China; Engineering Technology Research Center of Modernized Pharmaceutics Anhui Education Department (AUCM), China; Anhui Province Key Laboratory of Pharmaceutical Technology and Application (Anhui University of Chinese Medicine), Hefei, China
| |
Collapse
|
9
|
Mendozza M, Balestri A, Montis C, Berti D. Controlling the Kinetics of an Enzymatic Reaction through Enzyme or Substrate Confinement into Lipid Mesophases with Tunable Structural Parameters. Int J Mol Sci 2020; 21:ijms21145116. [PMID: 32698376 PMCID: PMC7404178 DOI: 10.3390/ijms21145116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid liquid crystalline mesophases, resulting from the self-assembly of polymorphic lipids in water, have been widely explored as biocompatible drug delivery systems. In this respect, non-lamellar structures are particularly attractive: they are characterized by complex 3D architectures, with the coexistence of hydrophobic and hydrophilic regions that can conveniently host drugs of different polarities. The fine tunability of the structural parameters is nontrivial, but of paramount relevance, in order to control the diffusive properties of encapsulated active principles and, ultimately, their pharmacokinetics and release. In this work, we investigate the reaction kinetics of p-nitrophenyl phosphate conversion into p-nitrophenol, catalysed by the enzyme Alkaline Phosphatase, upon alternative confinement of the substrate and of the enzyme into liquid crystalline mesophases of phytantriol/H2O containing variable amounts of an additive, sucrose stearate, able to swell the mesophase. A structural investigation through Small-Angle X-ray Scattering, revealed the possibility to finely control the structure/size of the mesophases with the amount of the included additive. A UV-vis spectroscopy study highlighted that the enzymatic reaction kinetics could be controlled by tuning the structural parameters of the mesophase, opening new perspectives for the exploitation of non-lamellar mesophases for confinement and controlled release of therapeutics.
Collapse
|
10
|
Salvati Manni L, Fong WK, Mezzenga R. Lipid-based mesophases as matrices for nanoscale reactions. NANOSCALE HORIZONS 2020; 5:914-927. [PMID: 32322863 DOI: 10.1039/d0nh00079e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipidic mesophases are versatile bioorganic materials that have been effectively employed as nanoscale matrices for membrane protein crystallization, drug delivery and as food emulsifiers over the last 30 years. In this review, the focus is upon studies that have employed non-lamellar lipid mesophases as matrices for organic, inorganic and enzymatic reactions. The ability of lipidic mesophases to incorporate hydrophilic, amphiphilic and hydrophobic molecules, together with the high interfacial area of the lipidic cubic and inverse hexagonal phases has been exploited in heterogeneous catalysis as well as for enzyme immobilization. The unique nanostructure of these mesophases is the driving force behind their ability to act as templates for synthesis, resulting in the creation of highly ordered polymeric and inorganic materials with complex geometries.
Collapse
Affiliation(s)
- Livia Salvati Manni
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland.
| | | | | |
Collapse
|
11
|
Shy AN, Kim BJ, Xu B. Enzymatic Noncovalent Synthesis of Supramolecular Soft Matter for Biomedical Applications. MATTER 2019; 1:1127-1147. [PMID: 32104791 PMCID: PMC7043404 DOI: 10.1016/j.matt.2019.09.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Enzymatic noncovalent synthesis (ENS), a process that integrates enzymatic reactions and supramolecular (i.e., noncovalent) interactions for spatial organization of higher-order molecular assemblies, represents an emerging research area at the interface of physical and biological sciences. This review provides a few representative examples of ENS in the context of supramolecular soft matter. After a brief comparison of enzymatic covalent and noncovalent synthesis, we discuss ENS of man-made molecules for generating supramolecular nanostructures (e.g., supramolecular hydrogels) in cell-free conditions. Then, we introduce ENS in a cellular environment. To illustrate the unique merits for applications, we discuss intercellular, peri- or intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and targeted delivery. Finally, we provide an outlook on the potential of ENS. We hope that this review offers a new perspective for scientists who develop supramolecular soft matter to address societal needs at various frontiers.
Collapse
Affiliation(s)
- Adrianna N. Shy
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | - Beom Jin Kim
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|