1
|
Kalomenopoulos PG, Emayavaramban B, Johnston CP. Enantioselective Synthesis of α-Aryl Ketones by a Cobalt-Catalyzed Semipinacol Rearrangement. Angew Chem Int Ed Engl 2025; 64:e202414342. [PMID: 39312676 PMCID: PMC11720393 DOI: 10.1002/anie.202414342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
A highly enantioselective cobalt-catalyzed semipinacol rearrangement of symmetric α,α-diarylallylic alcohols is disclosed. A chiral cobalt-salen catalyst generates a highly electrophilic carbocation surrogate following hydrogen atom transfer and radical-polar crossover steps. This methodology provides access to enantioenriched α-aryl ketones through invertive displacement of a cobalt(IV) complex during 1,2-aryl migration. A combination of readily available reagents, silane and N-fluoropyridinium oxidant, are used to confer this type of reactivity. An exploration into the effect of aryl substitution revealed the reaction tolerates para- and meta-halogenated, mildly electron-rich and electron-poor aromatic rings with excellent enantioselectivities and yields. The yield of the rearrangement diminished with highly electron-rich aryl rings whereas very electron-deficient and ortho-substituted arenes led to poor enantiocontrol. A Hammett analysis demonstrated the migratory preference for electron-rich aromatic rings, which is consistent with the intermediacy of a phenonium cation.
Collapse
Affiliation(s)
| | | | - Craig P. Johnston
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
2
|
Xiong B, Shi C, Ren Y, Xu W, Liu Y, Zhu L, Cao F, Tang KW, Yin SF. Zn-Catalyzed Dehydroxylative Phosphorylation of Allylic Alcohols with P(III)-Nucleophiles. J Org Chem 2024; 89:3033-3048. [PMID: 38372254 DOI: 10.1021/acs.joc.3c02489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A novel and efficient protocol for the synthesis of diarylallyl-functionalized phosphonates, phosphinates, and phosphine oxides through the zinc-catalyzed dehydroxylative phosphorylation of allylic alcohols with P(III)-nucleophiles via a Michaelis-Arbuzov-type rearrangement is reported. A broad range of allylic alcohols and P(III)-nucleophiles (P(OR)3, ArP(OR)2, and Ar2P(OR)) are well tolerated in this reaction, and the expected dehydroxylative phosphorylation products could be synthesized with good to excellent yields under the optimal reaction conditions. The reaction can be easily scaled up at a gram-synthesis level. Furthermore, through the step-by-step control experiments, kinetic study experiments, and 31P NMR tracking experiments, we acquired insights into the reaction and proposed the possible mechanism for this transformation.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Chonghao Shi
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Yining Ren
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Fan Cao
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
- College of Science, Central South University of Forestry and Technology, Changsha, Hunan 410004, P. R. China
| |
Collapse
|
3
|
He J, Du FH, Zhang C, Du Y. Chemoselective cycloisomerization of O-alkenylbenzamides via concomitant 1,2-aryl migration/elimination mediated by hypervalent iodine reagents. Commun Chem 2023; 6:126. [PMID: 37330613 DOI: 10.1038/s42004-023-00930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
As an ambident nucleophile, controlling the reaction selectivities of nitrogen and oxygen atoms in amide moiety is a challenging issue in organic synthesis. Herein, we present a chemodivergent cycloisomerization approach to construct isoquinolinone and iminoisocoumarin skeletons from o-alkenylbenzamide derivatives. The chemo-controllable strategy employed an exclusive 1,2-aryl migration/elimination cascade, enabled by different hypervalent iodine species generated in situ from the reaction of iodosobenzene (PhIO) with MeOH or 2,4,6-tris-isopropylbenzene sulfonic acid. DFT studies revealed that the nitrogen and oxygen atoms of the intermediates in the two reaction systems have different nucleophilicities and thus produce the selectivity of N or O-attack modes.
Collapse
Affiliation(s)
- Jiaxin He
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Feng-Huan Du
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Chi Zhang
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
4
|
Zhang J, Deng Y, Mo N, Chen L. Advances in Radical Mediated 1,2-Aryl Migration Reactions of α, α-Diarylallyl Alcohols. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
5
|
Singh FV, Shetgaonkar SE, Krishnan M, Wirth T. Progress in organocatalysis with hypervalent iodine catalysts. Chem Soc Rev 2022; 51:8102-8139. [PMID: 36063409 DOI: 10.1039/d2cs00206j] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine compounds as environmentally friendly and relatively inexpensive reagents have properties similar to transition metals. They are employed as alternatives to transition metal catalysts in organic synthesis as mild, nontoxic, selective and recyclable catalytic reagents. Formation of C-N, C-O, C-S, C-F and C-C bonds can be seamlessly accomplished by hypervalent iodine catalysed oxidative functionalisations. The aim of this review is to highlight recent developments in the utilisation of iodine(III) and iodine(V) catalysts in the synthesis of a wide range of organic compounds including chiral catalysts for stereoselective synthesis. Polymer-, magnetic nanoparticle- and metal organic framework-supported hypervalent iodine catalysts are also described.
Collapse
Affiliation(s)
- Fateh V Singh
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Samata E Shetgaonkar
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Manjula Krishnan
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Cardiff, UK.
| |
Collapse
|
6
|
He J, Zhang J, Li X, Shi H, Du Y. Aryl iodine-catalysed divergent synthesis of isobenzofuranones and isocoumarins via oxidative 1,2-aryl migration/elimination. Chem Commun (Camb) 2022; 58:9096-9099. [PMID: 35876812 DOI: 10.1039/d2cc03101a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The divergent synthesis of isobenzofuranones and isocoumarins was realized from the reaction of 2-alkenyl benzoic acids and mCPBA in the presence of catalytic aryl iodine and (±)-10-camphorsulfonic acid (CSA). The organocatalytic oxidative reaction is assumed to undergo a cascade process involving lactonization, 1,2-aryl migration and elimination enabled by a modified Koser reagent generated in situ.
Collapse
Affiliation(s)
- Jiaxin He
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Jingran Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Xuemin Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Haofeng Shi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
7
|
Khan N, Itaya K, Wirth T. Chiral Iodotriptycenes: Synthesis and Catalytic Applications. ChemistryOpen 2022; 11:e202200145. [PMID: 35822927 PMCID: PMC9278095 DOI: 10.1002/open.202200145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
New iodotriptycenes, including some chiral derivatives, have been synthesised, and their catalytic potential towards oxidative transformations has been investigated. The enantioselectivities observed in the products using chiral iodotriptycene catalysts are low, probably owing to the large distances between the coordinating groups and the iodine moieties in these compounds.
Collapse
Affiliation(s)
- Nasim Khan
- School of ChemistryCardiff UniversityPark Place, Main BuildingCF10 3ATCardiffUK
| | - Katsunori Itaya
- School of ChemistryCardiff UniversityPark Place, Main BuildingCF10 3ATCardiffUK
| | - Thomas Wirth
- School of ChemistryCardiff UniversityPark Place, Main BuildingCF10 3ATCardiffUK
| |
Collapse
|
8
|
Tang P, Wen L, Ma HJ, Yang Y, Jiang Y. Synthesis of acyloxy-2 H-azirine and sulfonyloxy-2 H-azirine derivatives via a one-pot reaction of β-enamino esters, PIDA and carboxylic acid or sulfonic acid. Org Biomol Chem 2022; 20:3061-3066. [PMID: 35344576 DOI: 10.1039/d2ob00364c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PIDA mediated oxidative acyloxylation/azirination and sulfonyloxylation/azirination of β-enamino esters were investigated. A series of functionalized acyloxy-2H-azirine and sulfonyloxy-2H-azirine derivatives was synthesized in moderate to good yields. This represents the first oxidative sulfonyloxylation/azirination of β-enamino esters with PIDA and sulfonic acid for access to sulfonyloxy-2H-azirine. Hypervalent iodine reagents enable cascade C-O/C-N bond formation. Furthermore, a possible reaction pathway was proposed based on the experimental results.
Collapse
Affiliation(s)
- Pan Tang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Long Wen
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Hao-Jie Ma
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yi Yang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| |
Collapse
|
9
|
Bartolo ND, Demkiw KM, Read JA, Valentín EM, Yang Y, Dillon AM, Hu CT, Ward MD, Woerpel KA. Conformationally Biased Ketones React Diastereoselectively with Allylmagnesium Halides. J Org Chem 2022; 87:3042-3065. [PMID: 35167300 PMCID: PMC9022492 DOI: 10.1021/acs.joc.1c02844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The addition of the highly reactive reagent allylmagnesium halide to α-substituted acyclic chiral ketones proceeded with high stereoselectivity. The stereoselectivity cannot be analyzed by conventional stereochemical models because these reactions do not conform to the requirements of those models. Instead, the stereoselectivity arises from the approach of the nucleophile to the most accessible diastereofaces of the lowest-energy conformations of the ketones. High stereoselectivity is expected, and the stereochemical outcome can be predicted, with conformationally biased ketones that have sterically distinguishable diastereofaces wherein only one face is accessible for nucleophilic addition. The conformations of the ketones can be determined by a combination of computational modeling and, in some cases, structure determination by X-ray crystallography.
Collapse
Affiliation(s)
- Nicole D. Bartolo
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Krystyna M. Demkiw
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Jacquelyne A. Read
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | | | - Yingying Yang
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Alexandra M. Dillon
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Chunhua T. Hu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Michael D. Ward
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - K. A. Woerpel
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| |
Collapse
|
10
|
Zhifang Y, Yifu C, Beibei Z, Yunyi D, Chi H, Yunfei D. Oxidative Rearrangement Reactions Mediated by Hypervalent-Iodine Reagents. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Zhang H, Cormanich RA, Wirth T. Chiral Ligands in Hypervalent Iodine Compounds: Synthesis and Structures of Binaphthyl-Based λ 3 -Iodanes. Chemistry 2021; 28:e202103623. [PMID: 34783401 DOI: 10.1002/chem.202103623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 12/22/2022]
Abstract
Several novel binaphthyl-based chiral hypervalent iodine(III) reagents have been prepared and structurally analysed. Various asymmetric oxidative reactions were applied to evaluate the reactivities and stereoselectivities of those reagents. Moderate to excellent yields were observed; however, very low stereoselectivities were obtained. NMR experiments indicated that these reagents are very easily hydrolysed in either chloroform or DMSO solvents leading to the limited stereoselectivities. It is concluded that the use of chiral ligands is an unsuccessful way to prepare efficient stereoselective iodine(III) reagents.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK.,Lanzhou Petrochemical University of Vocational Technology, Lanzhou, 730060, P. R. China
| | - Rodrigo A Cormanich
- Institute of Chemistry, University of Campinas, Campinas, Sao Paulo, 13083-862, Brazil
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| |
Collapse
|
12
|
Li X, Li G, Cheng Y, Du Y. The aryl iodine-catalyzed organic transformation via hypervalent iodine species generated in situ. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The application of hypervalent iodine species generated in situ in organic transformations has emerged as a useful and powerful tool in organic synthesis, allowing for the construction of a series of bond formats via oxidative coupling. Among these transformations, the catalytic aryl iodide can be oxidized to hypervalent iodine species, which then undergoes oxidative reaction with the substrates and the aryl iodine regenerated again once the first cyclic cycle of the reaction is completed. This review aims to systematically summarize and discuss the main progress in the application of in situ-generated hypervalent iodine species, providing references and highlights for synthetic chemists who might be interested in this field of hypervalent iodine chemistry.
Collapse
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency , School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072 , China
| | - Guangchen Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency , School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072 , China
| | - Yifu Cheng
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency , School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072 , China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency , School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072 , China
| |
Collapse
|
13
|
Hu L, Gao T, Deng Q, Xiong Y. Organoiodine-induced hydroxylation as well as enantioselective alkoxylation/hydroxylation of allylic alcohols via 1,2- aryl migration. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Zhang J, Jalil A, He J, Yu Z, Cheng Y, Li G, Du Y, Zhao K. Lactonization with concomitant 1,2-aryl migration and alkoxylation mediated by dialkoxyphenyl iodides generated in situ. Chem Commun (Camb) 2021; 57:7426-7429. [PMID: 34231573 DOI: 10.1039/d1cc03110d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of alkoxylated isobenzofuranones were conveniently synthesized from the reaction of 2-(1-arylvinyl)benzoic acids with PhI(OR)2, generated in situ from the reaction of iodosobenzene (PhIO) with alkyl alcohols. This hypervalent iodine mediated one-pot transformation is postulated to undergo a cascade reaction involving lactonization, 1,2-aryl migration and alkoxylation processes. The organocatalytic and chiral organoiodine-catalyzed asymmetric reactions of the current transformation were also probed.
Collapse
Affiliation(s)
- Jingran Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Ayesha Jalil
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Jiaxin He
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhenyang Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yifu Cheng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Guangchen Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Kang Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
15
|
Zhang XM, Li BS, Wang SH, Zhang K, Zhang FM, Tu YQ. Recent development and applications of semipinacol rearrangement reactions. Chem Sci 2021; 12:9262-9274. [PMID: 34349896 PMCID: PMC8314203 DOI: 10.1039/d1sc02386a] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
As has been well-recognized, semipinacol rearrangement functions as an exceptionally useful methodology in the synthesis of β-functionalized ketones, creation of quaternary carbon centers, and construction of challenging carbocycles. Due to their versatile utilities in organic synthesis, development of novel rearrangement reactions has been a vibrant topic that continues to shape the research field. Recent breakthroughs in novel electrophiles, tandem processes, and enantioselective catalytic transformations further enrich the toolbox of this chemistry and spur the strategic applications of this methodology in natural product synthesis. These achievements will be discussed in this minireview.
Collapse
Affiliation(s)
- Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and School of Pharmacy, Lanzhou University Lanzhou 730000 P. R. China
| | - Bao-Sheng Li
- School of Chemistry and Chemical Engineering, Chongqing University Chongqing 400030 P. R. China
| | - Shao-Hua Wang
- State Key Laboratory of Applied Organic Chemistry and School of Pharmacy, Lanzhou University Lanzhou 730000 P. R. China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry and School of Pharmacy, Lanzhou University Lanzhou 730000 P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry and School of Pharmacy, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
16
|
Guo G, Yuan Y, Wan S, Cao X, Sun Y, Huo C. K 2S 2O 8 promoted dehydrative cross-coupling between α,α-disubstituted allylic alcohols and thiophenols/thiols. Org Chem Front 2021. [DOI: 10.1039/d1qo00148e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
K2S2O8 promoted dehydrative cross-coupling between α,α-disubstituted allylic alcohols and thiophenols/thiols is demonstrated for the first time, leading to a wide range of allyl sulfides in good to high yields.
Collapse
Affiliation(s)
- Guozhe Guo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Shuocheng Wan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Xuehui Cao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Yali Sun
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| |
Collapse
|
17
|
Deng T, Shi E, Thomas E, Driver TG. I(III)-Catalyzed Oxidative Cyclization-Migration Tandem Reactions of Unactivated Anilines. Org Lett 2020; 22:9102-9106. [PMID: 33124834 DOI: 10.1021/acs.orglett.0c03497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An I(III)-catalyzed oxidative cyclization-migration tandem reaction using Selectfluor as the oxidant was developed that converts unactivated anilines into 3H-indoles is reported herein. The reaction requires as little as 1 mol % of the iodocatalyst and is mild, tolerating pyridine and thiophene functional groups, and the dependence of the diastereoselectivity of the process on the identity of the iodoarene or iodoalkane precatalyst suggests that the catalyst is present for the stereochemical determining C-N bond forming step.
Collapse
Affiliation(s)
- Tianning Deng
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Emily Shi
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Elana Thomas
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Tom G Driver
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
18
|
Zhang B, Li X, Guo B, Du Y. Hypervalent iodine reagent-mediated reactions involving rearrangement processes. Chem Commun (Camb) 2020; 56:14119-14136. [PMID: 33140751 DOI: 10.1039/d0cc05354f] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypervalent iodine reagents have been extensively employed in various types of oxidative organic reactions including oxidative coupling/cyclization, bifunctionalization of olefins and cyclopropane, C-H functionalization, and oxidative rearrangement reactions. In this review, the developments of the exclusive hypervalent iodine-mediated reactions involving oxidative rearrangement processes, including [1,2]-migration, Hofmann rearrangement, Beckmann rearrangement, ring contraction, ring expansion, [3,3]-sigmatropic/iodonium-Claisen rearrangement and some miscellaneous rearrangements, have been summarized.
Collapse
Affiliation(s)
- Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | |
Collapse
|
19
|
Abazid AH, Nachtsheim BJ. A Triazole-Substituted Aryl Iodide with Omnipotent Reactivity in Enantioselective Oxidations. Angew Chem Int Ed Engl 2020; 59:1479-1484. [PMID: 31600009 PMCID: PMC7003988 DOI: 10.1002/anie.201912023] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/10/2019] [Indexed: 12/29/2022]
Abstract
A widely applicable triazole‐substituted chiral aryl iodide is described as catalyst for enantioselective oxidation reactions. The introduction of a substituent in ortho‐position to the iodide is key for its high reactivity and selectivity. Besides a robust and modular synthesis, the main advantage of this catalyst is the excellent performance in a plethora of mechanistically diverse enantioselective transformations, such as spirocyclizations, phenol dearomatizations, α‐oxygenations, and oxidative rearrangements. DFT‐calculations of in situ generated [hydroxy(tosyloxy)iodo]arene isomers give an initial rational for the observed reactivity.
Collapse
Affiliation(s)
- Ayham H Abazid
- Institut für Organische und Analytische Chemie, Universität Bremen, Leobener Straße 7, 28359, Bremen, Germany
| | - Boris J Nachtsheim
- Institut für Organische und Analytische Chemie, Universität Bremen, Leobener Straße 7, 28359, Bremen, Germany
| |
Collapse
|
20
|
A Triazole‐Substituted Aryl Iodide with Omnipotent Reactivity in Enantioselective Oxidations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Boelke A, Nachtsheim BJ. Evolution of
N
‐Heterocycle‐Substituted Iodoarenes (NHIAs) to Efficient Organocatalysts in Iodine(I/III)‐Mediated Oxidative Transformations. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Andreas Boelke
- Institute for Organic and Analytical ChemistryUniversity of Bremen 28359 Bremen Germany
| | - Boris J. Nachtsheim
- Institute for Organic and Analytical ChemistryUniversity of Bremen 28359 Bremen Germany
| |
Collapse
|
22
|
Abstract
Asymmetric organocatalytic oxidations have been witnessed to an impressive development in the last years thanks to the establishment of important chiral hypervalent iodines(III/V). Many different approaches involving both stoichiometric and catalytic versions have provided a fundamental advance in this area within asymmetric synthesis. The easily handing, nontoxic, mild, environmentally friendly (green oxidants), and high stability that are features of these reagents have been applied to many reactions and also have allowed exploring further unprecedented enantioselective transformations. The intention of the present review is thus to highlight as a whole the many approaches utilized up to date to prepare chiral iodines(III/V), as well as their reactivity in a comprehensive manner.
Collapse
Affiliation(s)
- Alejandro Parra
- Facultad de Ciencias, Departamento de Química Orgánica, Institute for Advance Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid , 28049 Madrid , Spain
| |
Collapse
|
23
|
Zheng H, Sang Y, Houk KN, Xue XS, Cheng JP. Mechanism and Origins of Enantioselectivities in Spirobiindane-Based Hypervalent Iodine(III)-Induced Asymmetric Dearomatizing Spirolactonizations. J Am Chem Soc 2019; 141:16046-16056. [DOI: 10.1021/jacs.9b08243] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hanliang Zheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yueqian Sang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|