1
|
Qin Y, Liu K, Nie C, Xie F, Wang X, Ali A, Wang B, Hong Q, Zhao W. One pot preparation of magnetic benzylated cyclodextrin-based hyper-cross-linked polymer for phthalate esters extraction from tea beverages. Food Chem 2025; 475:143253. [PMID: 39938268 DOI: 10.1016/j.foodchem.2025.143253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
The increasing popularity of packaged beverages has raised concerns about the health risks associated with phthalate esters (PAEs), which are commonly found in plastics used for packaging. This study presents an eco-friendly approach for synthesizing a magnetic benzylated cyclodextrin-based hyper-cross-linked polymer (Fe3O4/BnCD-HCPP), in which FeCl3serves both as a catalyst for the Friedel-Crafts reaction and as an iron source for Fe3O4 nanoparticles. The Fe3O4/BnCD-HCPP composite was used as an adsorbent to extract of PAEs from tea beverages via magnetic solid-phase extraction, followed by gas chromatography-mass spectrometry analysis. The optimized method exhibited excellent sensitivity, with limits of detection ranging from 0.1 to 0.5 μg L-1. Additionally, the method achieved high recovery rates, ranging from 81.5 % to 118.5 %, and demonstrated precision (relative standard deviations <11.6 %) for PAEs spiked into tea beverages. Mechanistic studies indicated that the high extraction efficiency of Fe3O4/BnCD-HCPP for PAEs is due to its favorable pore size distribution, large specific surface area, and multiple interactions, including π-π stacking, hydrophobic force, and host-guest inclusion. This research not only provides an effective method for determining PAEs in complex aqueous matrices but also introduces a novel and sustainable approach for the fabrication of magnetic composites.
Collapse
Affiliation(s)
- Yaqiong Qin
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China
| | - Kunling Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Cong Nie
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China
| | - Fuwei Xie
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China
| | - Xiaoyu Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China.
| | - Ashraf Ali
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Bing Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China
| | - Qunye Hong
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Wang X, Chen H, Wang W, Shen X, Wang J, Chen S, Yu X, Lee CT, Chen Z, Gu C. Highly efficient removal of per- and polyfluoroalkyl substances by extrusion-regenerated aminated polyurethane sponges. WATER RESEARCH 2025; 275:123189. [PMID: 39881473 DOI: 10.1016/j.watres.2025.123189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic compounds widely detected in the environments. Due to their chemical stability, physical adsorption has emerged as one of the most promising techniques for remediating PFAS-containing wastewater, while some newly synthesized functional absorbents in powder form suffer from separation issues. Inspired by mussel biology, we have successfully synthesized a porous spongy absorbent termed aminated polyurethane (PU-PDA-PANI) with over 99.5% removal efficiency for initial 10 mg L-1 perfluorooctanoic acid (PFOA), corresponding to the maximum adsorption capacity of 1.42 g g-1, which was superior to the ion exchange resin (Purolite® PFA694E, 0.764 g g-1). In addition to PFOA, PU-PDA-PANI also showed excellent removal efficiencies for other typical PFAS (i.e. perfluorooctane sulfonates, perfluorobutyric acid, perfluorooctane-1,8-dioic acid, hexafluoropropylene oxide trimer acid, etc), and the adsorption processes resistant to pH changes and co-existing environmental matrixes. Furthermore, PU-PDA-PANI can be readily reused and regenerated by coupling extrusion and elution procedures. The adsorption mechanism of electrostatic, hydrogen bond and hydrophobic synergistic interaction was further proposed with the support of theoretical calculation. In conclusion, this study develops an efficient and recyclable PFAS adsorbent and proposes some new insights for the design of PFAS-selective adsorbents.
Collapse
Affiliation(s)
- Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hanyang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenran Wang
- Jiangsu Environmental Engineering Technology Co.Ltd, Jiangsu Provincial Environmental Protection Group Co., Ltd, Nanjing, 210019, China
| | - Xiufang Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jiabao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Sen Chen
- Solid Waste Technology Center, Nanjing Institute of Environmental Sciences, Nanjing 210013, China
| | - Xueru Yu
- Solid Waste Technology Center, Nanjing Institute of Environmental Sciences, Nanjing 210013, China
| | - Chew Tin Lee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Zhang K, Dai Y, Liu R, Shi Y, Dai G, Xia F, Zhang X. Facile synthesis of high-swelling cyclodextrin polymer for sustainable water purification. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136910. [PMID: 39700949 DOI: 10.1016/j.jhazmat.2024.136910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Porous materials are widely used in the adsorption field to sequester pollutants to address the global sustainable water security and water scarcity concerns. However, there are still challenges that limit their industrial application, especially the required rational design and construction of porous structures. Here, we report a high-swelling cyclodextrin polymer (His-CDP) that is facilely synthesized without additional design and templates, to achieve high affinity, non-specific and rapid adsorption of pollutants. His-CDP rapidly swells in water with high swelling ratio (706 %), and swelling results in a significant increase in the specific surface area (from 38 m2∙g-1 of dry state to 562 m2∙g-1 of wet state) and abundant adsorption sites. The adsorption rates of His-CDP for methylene blue (MB), bisphenol A (BPA), and copper ion (Cu2+) are 0.304 g∙mg-1∙min-1, 0.370 g∙mg-1∙min-1, and 0.117 g∙mg-1∙min-1, respectively, which are 106-571 times, 5-15 times, and 36-58 times higher than those of activated carbons and low-swelling cyclodextrin polymer. The maximum adsorption capacities of His-CDP for MB, BPA, and Cu2+ are 1.06 mol∙g-1, 0.35 mol∙g-1, and 1.95 mol∙g-1, respectively. His-CDP has high stability, good reproducibility, cost-effective regeneration, and is expected to be produced on a large scale. As a demonstration application, we demonstrate that His-CDP outperforms activated carbons in rapid, high-capacity purification of tap water, treatment of industrial wastewater and remediation of polluted surface water. Our findings open the way for the application of high-swelling polymers in sustainable water purification.
Collapse
Affiliation(s)
- Kai Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Rui Liu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yongli Shi
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Guofei Dai
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Provincial Institute of Water Sciences, Nanchang 330029, China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaojin Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
4
|
Gao B, Wu L, Li S, Yang J, Dou M, Chang G, Li X. Rapid capture of perfluorooctanoic acid and perfluorooctane sulfonate at environmentally relevant concentrations via the 'mesh trap' of triazine-based polymer network: Mechanism and photocatalytic regeneration. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136698. [PMID: 39612877 DOI: 10.1016/j.jhazmat.2024.136698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose a serious threat to groundwater (GW) environment worldwide due to their difficulty in removal and high toxicity. In this study, the 'mesh trap' of triazine-based polymerization network (SNW-1) demonstrated rapid capture performance for Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) at environmentally relevant concentrations (1 μg/L). The SNW-1 can remove more than 90 % of PFOA and PFOS within 300 s and still maintain superior performance under four common GW anions and different [pH]0 (3 - 10). The removal degree of PFOA and PFOS is almost undetectable without SNW-1 dosage. Theoretical calculations were used to simulate the adsorption process and interfacial reaction mechanism in SNW-1/PFOA (Eads = -1.6717 eV) and SNW-1/PFOS (Eads = -1.2695 eV) systems. The adsorption of SNW-1/PFOA is stronger than SNW-1/PFOS. The typical van der Waals weak interactions between SNW-1 and PFOA were confirmed, which is slightly stronger than SNW-1/PFOS. In addition, SNW-1 regeneration in this paper was achieved in a photocatalytic activated peroxydisulfate (PDS) system which was different with previous reports. The desorption rates of PFOA and PFOS adsorbed on the surface of SNW-1 and the defluorination rate in the photocatalytic regeneration system were also tested. The photocatalytic regeneration mechanism between SNW-1 and PDS was electron transfer. And the electron transfer can be divided into three stages: strong adsorption of SNW-1/PDS (Eads = -2.1618 eV), electron transfer from SNW-1 to PDS and PDS cleavage. This study has a broad application prospect in the field of in-situ rapid resistance control of GW in PFAS contaminated sites and provides a theoretical support for environmentally friendly adsorbent regeneration technology.
Collapse
Affiliation(s)
- Boru Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environmental, Beijing Jiaotong University, Beijing 100044, China
| | - Lairong Wu
- Zhejiang Huafon Thermoplastic Polyurethane Co., Ltd., Wenzhou, Zhejiang 325000, China
| | - Shaokang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jinjin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Mengmeng Dou
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environmental, Beijing Jiaotong University, Beijing 100044, China.
| | - Genwang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Zhang Q, Yue TJ, Sun SY, Jiang SJ, Feng JL, Guo HM. Pillar[5]arene-based Polymer Network for Efficiently Removing Perfluorooctanoic Acid through Synergistic Binding Interactions. CHEMSUSCHEM 2025; 18:e202401391. [PMID: 39305467 DOI: 10.1002/cssc.202401391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/16/2024] [Indexed: 11/06/2024]
Abstract
Perfluorooctanoic acid (PFOA) is currently one of the most important chemicals posing environmental risks, and there is an urgent need to find methods to efficiently remove PFOA from environmental media. Here, two decaamino-pillar[5]arene-based fluorine-rich polymer networks, called FA2P-P and FA6P-P, were constructed using a convenient method. FA6P-P had an excellent ability to take up PFOA, and had a capacity of 1423 (mg PFOA) (g FA6P-P)-1, which is the second highest adsorption capacity reported for any PFOA sorbent. FA6P-P removed >99 % of the PFOA from a solution and decreased the PFOA concentration from 1000 μg L-1 in 5 min at an exceedingly low adsorbent loading of 0.7 mg L-1, giving a final PFOA concentration <4 ng L-1, which is lower than the most recent enforceable maximum concentration set by the United States Environmental Protection Agency. A high rate constant (kobs) of 55.8 g mg-1 h-1 was observed. Pillar[5]arene gives the material hydrophobic properties and also amino sites and hydrophobic chains, which are synergistic PFOA binding sites. The polymer was very stable and readily regenerated. The results indicated that pillar[5]arene-based porous organic polymer sorbents are excellent candidates for capturing PFOA.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Tian-Jiao Yue
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Si-Yuan Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Shi-Jie Jiang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jing-Lan Feng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hai-Ming Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
6
|
Lai Z, Zhou Y, Bai S, Sun Q. Opportunity and Challenge of Advanced Porous Sorbents for PFAS Removal. CHEMSUSCHEM 2025; 18:e202401229. [PMID: 39037172 DOI: 10.1002/cssc.202401229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), comprising over 9,000 persistent synthetic organic contaminants, are extensively found in the environment and pose significant risks to both human and ecological health. Among the strategies for addressing PFAS contamination, adsorption processes have proven to be cost-effective. Traditional sorbents such as ion-exchange resins and activated carbon have been found to exhibit low adsorption capacities and slow equilibration times. Recent innovations in porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs), however, offer significant improvements in the efficiency of PFAS adsorption. This review thoroughly examines the latest advancements in these materials, analyzing their mechanisms of adsorption, and concludes by suggesting directions for future research that could further enhance their effectiveness in PFAS management.
Collapse
Affiliation(s)
- Zhuozhi Lai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yaolu Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
| | - Shanshan Bai
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
7
|
Gao Z, Sun J, Shi L, Yuan W, Yan H, Tian W. Precise Supramolecular Nanoarchitectonics for Simultaneous Enhanced Photoluminescence and Photocatalysis in a Co-Assembly by a Biomimetic Isolation-Conduction Strategy. Angew Chem Int Ed Engl 2024:e202423174. [PMID: 39714439 DOI: 10.1002/anie.202423174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Limited by the two mutually exclusive physicochemical processes of separation and recombination of photogenerated carriers, achieving photoluminescence and photocatalysis simultaneously is extremely challenging but essential for ever-growing complex issues and specialized scenarios. Here we proposed a biomimetic isolation-conduction strategy induced by an arene-perfluoroarene (A-P) interaction for enabling photoluminescence and photocatalytic hydrogen evolution reaction (HER) activity in the co-assembly of aromatic monomers and octafluoronapthalene (OFN). Inspired by the isolation-conduction effect of periodic isolation of myelin sheaths on the axons of vertebrate nerve fibers by node of Ranvier, we use OFN as a molecular isolator embedded in the aromatic monomers array to block the singlet-to-triplet pathway, while the enlarged intermolecular dipoles resulting from the A-P interactions facilitate the conduction of photogenerated carriers in the isolated regions. The resultant co-assembly exhibits an enhanced monomeric green emission compared to the corresponding monocomponent self-assembly with weak red emission. Meanwhile, it also has an enhanced photocatalytic HER performance with a rate of 2.45 mmol g-1 h-1, which is 15.2 times more than the self-assembled one. On this basis, a sequential fluoric wastewater reuse system that includes real-time fluorescence detection/removal of perfluorooctanoic acids and photocatalytic HER device is constructed.
Collapse
Affiliation(s)
- Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- The two authors contributed equally to this work
| | - Jianxiang Sun
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- The two authors contributed equally to this work
| | - Lulu Shi
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Yuan
- Department of Chemistry, National University of Singapore 3, Science Drive 3, Singapore, 117543, Singapore
| | - Hongxia Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
8
|
Li YQ, Zhao H, Han E, Jiang Z, Bai Q, Guan YM, Zhang Z, Wu T, Wang P. Dynamic selection in metallo-organic cube Cd II 8L 4 conformations induced by perfluorooctanoate encapsulation. Chem Sci 2024; 16:364-370. [PMID: 39620083 PMCID: PMC11604167 DOI: 10.1039/d4sc07105k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Metallo-organic cages possess flexibility comparable to that of biological receptors and can alter their conformations to better accommodate guest species due to the dynamic reversibility of the coordination bond. Induced fit is widely accepted involving conformation change of the host, while few definitive examples are related to conformation selection. Herein, we report the generation of metallo-organic cube CdII 8L4 with two coexisting conformations, which have been fully confirmed by NMR, ESI-MS and single-crystal X-ray diffraction analysis. The specific guest perfluorooctanoate PFOA selectively binds to the active conformer C 2h-1 to form the PFOA⊂C 2h-1 complex. Furthermore, conformer D 2-2 isomerizes to conformer C 2h-1 in the presence of PFOA, for maximizing the guest binding affinity. This study provides an effective working paradigm for conformation selection, facilitating the understanding of the fundamental mechanism of molecular recognition.
Collapse
Affiliation(s)
- Yu-Qing Li
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Ermeng Han
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Zhiyuan Jiang
- Department of Chemistry, The University of Hong Kong Hong Kong SAR 999077
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Yu-Ming Guan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Pingshan Wang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
9
|
Šorm D, Brus J, Pintar A, Sedláček J, Kovačič S. Hierarchically Porous Polyacetylene Networks: Adsorptive Photocatalysts for Efficient Bisphenol A Removal from Water. ACS POLYMERS AU 2024; 4:420-427. [PMID: 39399892 PMCID: PMC11468696 DOI: 10.1021/acspolymersau.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 10/15/2024]
Abstract
In this article, we report a series of functionalized polyacetylene-type networks formed by chain-growth insertion coordination polymerization in high internal phase emulsions (HIPEs). All polymerized HIPEs (polyHIPEs) contain a hierarchically structured, 3D-interconnected porous framework consisting of a micro-, meso- and macropore system, resulting in exceptionally high specific surface areas (up to 1055 m2·g-1) and total porosities of over 95%. The combination of π-conjugated and hierarchically porous structure in one material enabled the use of these polyacetylene polyHIPEs as adsorptive photocatalysts for the removal of chemical contaminants from water. All polyacetylene polyHIPEs demonstrated high efficiency in the adsorption of bisphenol A from water (up to 48%) and the subsequent photocatalytic degradation. Surprisingly, high adsorption capacity did not affect the photocatalytic efficiency (up to 58%). On the contrary, this dual function seems to be very promising, as some polyacetylene polyHIPEs almost completely removed bisphenol A from water (97%) through the adsorption-photooxidation mechanism. It also appears that the presence of polar functional side groups in the polyacetylene backbone improves the contact of the polyacetylene network with the aqueous bisphenol A solution, which can thus be more easily adsorbed and subsequently oxidized, compensating for the lower specific surface area of some networks, namely, 471 and 308 m2·g-1 in the case of 3-ethynylphenol- and 3-ethynylaniline-based polyacetylene polyHIPEs, respectively.
Collapse
Affiliation(s)
- David Šorm
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2 128 43, Czech Republic
| | - Jiří Brus
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Heyrovský
Sq. 2, 162 00 Prague, Czech Republic
| | - Albin Pintar
- Department
of Inorganic Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Jan Sedláček
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2 128 43, Czech Republic
| | - Sebastijan Kovačič
- Department
of Inorganic Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| |
Collapse
|
10
|
Lin ZW, Wang J, Dyakiv Y, Helbling DE, Dichtel WR. Structural Features of Styrene-Functionalized Cyclodextrin Polymers That Promote the Adsorption of Perfluoroalkyl Acids in Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28409-28422. [PMID: 38768313 DOI: 10.1021/acsami.4c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Cross-linked β-cyclodextrin (β-CD) polymers are promising adsorbents for the removal of per- and polyfluoroalkyl substances (PFAS) from contaminated water sources, including contaminated groundwater, drinking water, and wastewater. We previously reported porous, styrene-functionalized β-cyclodextrin (StyDex) polymers derived from radical polymerization with vinyl comonomers. Because of the versatility of these polymerizations, StyDex polymer compositions are tunable, which facilitates efforts to establish structure-adsorption relationships and to discover improved materials. Here, we evaluate the material properties and PFAS adsorption of 20 StyDex derivatives with varied comonomer structure and loading, regiochemistry of styrene placement on the CD monomer, and CD size. A StyDex polymer containing N,N'-dimethylbutyl ammonium ions exhibited the most effective PFAS adsorption in batch experiments. Furthermore, a StyDex polymer containing β-CD exhibited size-selective host-guest interactions with perfluoroalkyl acids (PFAAs) and neutral contaminants in aqueous electrolyte when compared to similar polymers containing either α-CD or γ-CD. Polymers based on β-CD monomers with an average of seven styrene groups randomly positioned over the 21 available hydroxyl groups performed similarly to those based on a β-CD monomer functionalized regiospecifically at each of the seven 6' positions. The former β-CD monomer is prepared in a single step from unmodified β-CD, so the ability to use it without compromising performance demonstrates promise for developing economically competitive adsorbents. These results offered important insights into structure-adsorption properties of StyDex polymers and will inform the design of improved StyDex formulations.
Collapse
Affiliation(s)
- Zhi-Wei Lin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jieyuan Wang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yaryna Dyakiv
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Gotad PS, Bochenek C, Wesdemiotis C, Jana SC. Separation of Perfluorooctanoic Acid from Water Using Meso- and Macroporous Syndiotactic Polystyrene Gels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10208-10216. [PMID: 38695840 DOI: 10.1021/acs.langmuir.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Per- and polyfluoroalkyl substances are an emerging class of contaminants that are environmentally persistent, bioaccumulative, and noxious to human health. Among these, perfluorooctanoic acid (PFOA) molecules are widely found in ground and surface water sources. A novel high surface area, meso- and macroporous syndiotactic polystyrene (sPS) wet gel is used in this work as the adsorbent of PFOA molecules from water at environmentally relevant PFOA concentrations (≤1 μg/L) and cleanse water to below the U.S. EPA's 2023 health advisory limit of 4 parts per trillion (ppt). The sigmoidal shape of the PFOA adsorption isotherm indicates a two-step adsorption mechanism attributed to the strong affinity of PFOA molecules for the sPS surface and molecular aggregation at solid-liquid interfaces or within the pores of the sPS wet gel. The adsorption kinetics and the effects of sPS wet gel porosity, pore size, and pore volume on the removal efficiency are reported. The adsorption kinetics is seen to be strongly dependent on pore size and pore volume.
Collapse
Affiliation(s)
- Pratik S Gotad
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Calum Bochenek
- Department of Chemistry, The University of Akron, Akron, Ohio 44304, United States
| | - Chrys Wesdemiotis
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, The University of Akron, Akron, Ohio 44304, United States
| | - Sadhan C Jana
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
12
|
Yang X, Yu L, Chen S, Liu M, Miao Q, Wu H, Gao W. Cyclodextrin Polymer-Loaded Micro-Ceramic Balls for Solid-Phase Extraction of Triazole Pesticides from Water. Int J Mol Sci 2024; 25:1959. [PMID: 38396637 PMCID: PMC10888555 DOI: 10.3390/ijms25041959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
A citric acid cross-linked β-cyclodextrin (β-CD) polymer was synthesized and loaded on micro-ceramic balls to fabricate the solid-phase adsorbents (P-MCB) for adsorption and extraction of triazole pesticides from water. The stability of β-CD polymer and P-MCB was investigated in solutions with different pH values at different temperatures. The adsorption properties and the influence of kinetics, sorbent amount, pesticide concentration, and temperature on the adsorption capacity were evaluated. The results showed P-MCB had favorable adsorption of 15.98 mg/g flutriafol in 3.5 h. The equilibrium data followed the Freundlich equation, and the adsorption of flutriafol and diniconazole followed the second-order kinetics. The recovery rate of P-MCB for triazole pesticides in water was satisfactory, and the recovery rate was still 80.1%, even at the 10th cycle. The P-MCB had good stability, with a degradation rate of 0.2% ± 0.08 within 10 days, which could ensure extraction and recycling.
Collapse
Affiliation(s)
- Xiaobo Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China (Q.M.); (H.W.)
| | - Lingli Yu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China (Q.M.); (H.W.)
| | - Shuqi Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China (Q.M.); (H.W.)
| | - Miaochang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China (Q.M.); (H.W.)
| | - Qian Miao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China (Q.M.); (H.W.)
| | - Huayue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China (Q.M.); (H.W.)
| | - Wenxia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China (Q.M.); (H.W.)
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
13
|
Cho S, Kim Y. J-Aggregate-Triggering BODIPYs: an Ultrasensitive Chromogenic and Fluorogenic Sensing Platform for Perfluorooctanesulfonate. Chemistry 2023; 29:e202302897. [PMID: 37864280 DOI: 10.1002/chem.202302897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
Contamination of water supplies by polyfluoroalkyl substances, notably perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), has serious health and environmental consequences. Therefore, the development of straightforward and effective means of monitoring and removing PFASs is urgently required. In this study, we report a rapid and sensitive method for the detection of PFOS and PFOA in water that rely on the J-aggregate formation of meso-ester-BODIPY dyes. The dye C10-mim, which contains a hydrophilic methylimidazolium group and a hydrophobic alkylated BODIPY, self-assembles in water into weakly green-emissive micellar assemblies. Upon binding to PFOS or PFOA, a spontaneous disassembly and reorganization forms orange-emissive J-aggregates. The rapid formation (≤5 s) of J-aggregates and the accompanying spectral shifts provide a superior sensing performance, with excellent sensitivity (limit of detection=0.18 ppb for PFOS) and distinct chromogenic and fluorogenic "turn-on" responses.
Collapse
Affiliation(s)
- Siyoung Cho
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| |
Collapse
|
14
|
Lin ZW, Shapiro EF, Barajas-Rodriguez FJ, Gaisin A, Ateia M, Currie J, Helbling DE, Gwinn R, Packman AI, Dichtel WR. Trace Organic Contaminant Removal from Municipal Wastewater by Styrenic β-Cyclodextrin Polymers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19624-19636. [PMID: 37934073 DOI: 10.1021/acs.est.3c04233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Trace organic contaminants (TrOCs) present major removal challenges for wastewater treatment. TrOCs, such as perfluoroalkyl and polyfluoroalkyl substances (PFAS), are associated with chronic toxicity at ng L-1 exposure levels and should be removed from wastewater to enable safe reuse and release of treated effluents. Established adsorbents, such as granular activated carbon (GAC), exhibit variable TrOC removal and fouling by wastewater constituents. These shortcomings motivate the development of selective novel adsorbents that also maintain robust performance in wastewater. Cross-linked β-cyclodextrin (β-CD) polymers are promising adsorbents with demonstrated TrOC removal efficacy. Here, we report a simplified and potentially scalable synthesis of a porous polymer composed of styrene-linked β-CD and cationic ammonium groups. Batch adsorption experiments demonstrate that the polymer is a selective adsorbent exhibiting complete removal for six out of 13 contaminants with less adsorption inhibition than GAC in wastewater. The polymer also exhibits faster adsorption kinetics than GAC and ion exchange (IX) resin, higher adsorption affinity for PFAS than GAC, and is regenerable by solvent wash. Rapid small-scale column tests show that the polymer exhibits later breakthrough times compared to GAC and IX resin. These results demonstrate the potential for β-CD polymers to remediate TrOCs from complex water matrices.
Collapse
Affiliation(s)
- Zhi-Wei Lin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emma F Shapiro
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Arsen Gaisin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mohamed Ateia
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | | | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rosa Gwinn
- AECOM, Dallas, Texas 75240, United States
| | - Aaron I Packman
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Chen Y, Li H, Huang H, Zhang B, Ye Z, Yu X, Shentu X. Recent Advances in Non-Targeted Screening of Compounds in Plastic-Based/Paper-Based Food Contact Materials. Foods 2023; 12:4135. [PMID: 38002192 PMCID: PMC10670899 DOI: 10.3390/foods12224135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Ensuring the safety of food contact materials has become a pressing concern in recent times. However, detecting hazardous compounds in such materials can be a complex task, and traditional screening methods may not be sufficient. Non-targeted screening technologies can provide comprehensive information on all detectable compounds, thereby supporting the identification, detection, and risk assessment of food contact materials. Nonetheless, the non-targeted screening of food contact materials remains a challenging issue. This paper presents a detailed review of non-targeted screening technologies relying on high-resolution mass spectrometry for plastic-based and paper-based food contact materials over the past five years. Methods of extracting, separating, concentrating, and enriching compounds, as well as migration experiments related to non-targeted screening, are examined in detail. Furthermore, instruments and devices of high-resolution mass spectrometry used in non-targeted screening technologies for food contact materials are discussed and summarized. The research findings aim to provide a theoretical basis and practical reference for the risk management of food contact materials and the development of relevant regulations and standards.
Collapse
Affiliation(s)
- Ya Chen
- College of Life Science, China Jiliang University, Hangzhou 310018, China;
| | - Hongyan Li
- Zhejiang Institute of Product Quality and Safety Science, Hangzhou 310018, China;
| | - Haizhi Huang
- College of Life Science, China Jiliang University, Hangzhou 310018, China;
| | - Biao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| |
Collapse
|
16
|
Su Y, Wang X, Zhang M, Guo H, Sun H, Huang G, Liu D, Zhu G. Porous Cyclodextrin Polymer Enables Dendrite-Free and Ultra-Long Life Solid-State Zn-I 2 Batteries. Angew Chem Int Ed Engl 2023; 62:e202308182. [PMID: 37750328 DOI: 10.1002/anie.202308182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
Zn-I2 batteries have attracted attention due to their low cost, safety, and environmental friendliness. However, their performance is still limited by the irreversible growth of Zn dendrites, hydrogen evolution reactions, corrosion, and shuttle effect of polyiodide. In this work, we have prepared a new porous polymer (CD-Si) by nucleophilic reaction of β-cyclodextrin with SiCl4 , and CD-Si is applied to the solid polymer electrolyte (denoted PEO/PVDF/CD-Si) to solve above-mentioned problems. Through the anchoring of the CD-Si, a conductive network with dual transmission channels was successfully constructed. Due to the non-covalent anchoring effect, the ionic conductivity of the solid polymer electrolytes (SPE) can reach 1.64×10-3 S cm-1 at 25 °C. The assembled symmetrical batteries can achieve highly reversible dendrite-free galvanizing/stripping (stable cycling for 7500 h at 5 mA cm-2 and 1200 h at 20 mA cm-2 ). The solid-state Zn-I2 battery shows an ultra-long life of over 35,000 cycles at 2 A g-1 . Molecular dynamics simulations are performed to elucidate the working mechanism of CD-Si in the polymer matrix. This work provides a novel strategy towards solid electrolytes for Zn-I2 batteries.
Collapse
Affiliation(s)
- Yang Su
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Xinlu Wang
- Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, P. R. China
| | - Minghang Zhang
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Huimin Guo
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Haizhu Sun
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Dongtao Liu
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Guangshan Zhu
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| |
Collapse
|
17
|
Glöckler D, Harir M, Schmitt-Kopplin P, Elsner M, Bakkour R. Selectivity of β-Cyclodextrin Polymer toward Aquatic Contaminants: Insights from Ultrahigh-Resolution Mass Spectrometry of Dissolved Organic Matter. Anal Chem 2023; 95:15505-15513. [PMID: 37831967 DOI: 10.1021/acs.analchem.3c01394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Selectivity in solid-phase extraction (SPE) materials has become increasingly important for analyte enrichment in sensitive analytical workflows to alleviate detrimental matrix effects. Molecular-level investigation of matrix constituents, which are preferentially extracted or excluded, can provide the analytical chemist with valuable information to learn about their control on sorbent selectivity. In this work, we employ nontargeted Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to elucidate the molecular chemodiversity of freshwater-derived dissolved organic matter (DOM) extracted by the selective model sorbent β-cyclodextrin polymer (β-CDP) in comparison to conventional, universal SPE sorbents (i.e., Oasis HLB, Supel-Select HLB, and LiChrolut EN). Statistical analysis of MS data corroborated the highly selective nature of β-CDP by revealing the extracted DOM spectra that are most dissimilar to original compositions. We found that its selectivity was characterized by pronounced discrimination against highly oxygenated and unsaturated DOM compounds, which were associated with the classes of lignin-like, tannin-like, and carboxylic-rich alicyclic molecules. In contrast, conventional sorbents excluded less highly oxygenated compounds and showed a more universal extraction behavior for a wide range of DOM compositional space. We lay these findings in a larger context that aids the analyst in obtaining an a priori estimate of sorbent selectivity toward any target analyte of interest serving thereby an optimization of sample preparation. This study highlights the great value of nontargeted ultrahigh-resolution MS for better understanding of targeted analytics and provides new insights into the selective sorption behavior of novel sorbents.
Collapse
Affiliation(s)
- David Glöckler
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748 , Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany
- TUM School of Life Sciences, Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany
- TUM School of Life Sciences, Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| | - Martin Elsner
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748 , Germany
| | - Rani Bakkour
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748 , Germany
| |
Collapse
|
18
|
Xie Z, Hu Y, Lin J, Li G, Zhong Q. Calix[4]arene-based covalent organic frameworks with host-guest recognition for selective adsorption of six per- and polyfluoroalkyl substances in food followed by UHPLC-MS/MS detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132198. [PMID: 37541121 DOI: 10.1016/j.jhazmat.2023.132198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Long-term ingestion or exposure to food contaminated with per- and polyfluoroalkyl substances (PFASs) may cause potential harm to human health. Due to the low contents of PFASs in complex food matrices, it is of great significance to develop adsorbents with excellent properties to enrich PFASs before analysis. Herein, calix[4]arene (CX4) was used as building block to prepare ordered crystalline covalent organic frameworks (COFs). The perfect combination of the host-guest recognition ability of CX4 and the porosity of COFs makes the CX4-COFs selective and high adsorption capacity for linear molecular PFASs (261-1055 mg/g). The adsorption behavior and mechanism were verified by isotherm adsorption experiments and simulation calculations. The CX4-COFs were then used as adsorbents for membrane solid-phase extraction (M-SPE), combined with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) to determine PFASs in food. The method has low detection limits (0.11-0.28 ng/kg) and good precision (1.3%-9.8%), and has been successfully applied to the simultaneous enrichment and determination of six PFASs in fish, shrimp and shellfish. Satisfactory recoveries (79.9%-118%) were obtained. This study provides a new strategy for preparing CX4-COFs containing macrocyclic molecules with different morphologies and expands the application of COFs as attractive enrichment media for sample pretreatment.
Collapse
Affiliation(s)
- Zenghui Xie
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jiana Lin
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qisheng Zhong
- Analytical Applications Center, Shimadzu (China) Co., LTD, Guangzhou 510656, China
| |
Collapse
|
19
|
Glöckler D, Harir M, Schmitt-Kopplin P, Elsner M, Bakkour R. Discriminative Behavior of Cyclodextrin Polymers against Dissolved Organic Matter: Role of Cavity Size and Sorbate Properties. Anal Chem 2023; 95:14582-14591. [PMID: 37721868 DOI: 10.1021/acs.analchem.3c01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Cyclodextrin polymers (CDPs) are promising next-generation adsorbents in water purification technologies. The selectivity of the polymer derivate cross-linked with tetrafluoroterephthalonitrile (TFN-CDP) for nonionic and cationic micropollutants (MPs) over dissolved organic matter (DOM) renders the adsorbent also attractive for many analytical applications. The molecular drivers of the observed selectivity are, nonetheless, not yet fully understood. To provide new insights into the sorption mechanism, we (i) synthesized TFN-CDPs with different cavity sizes (α-, β-, γ-CDP); (ii) assessed their extraction efficiencies for selected nonionic MPs in competition with different DOM size fractions (<1, 1-3, 3-10, >10 kDa) to test for size-selectivity; and (iii) performed nontargeted, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry analysis on CDP-extracted DOM compounds (<1 kDa) to probe for molecular sorbate properties governing their selective sorption. First, no evidence of size-selectivity was obtained through either the different CD cavity sizes (i) or the two independent approaches (ii) and (iii). Second, we found a dominant impact of sorbate oxygenation and polarity on the extraction of DOM and MPs, respectively, with relatively oxygen-poor/nonpolar molecules favorably retained on all α-, β-, and γ-CDP. Third, our data indicates exclusion of an anionic matrix, such as carboxylic acids, but preferential sorption of cationic nitrogen-bearing DOM, pointing at repulsive and attractive forces with the negatively charged cross-linker as a likely reason. Therefore, we ascribe TFN-CDP's selectivity to nonpolar and electrostatic interactions between MPs/DOM and the polymer building blocks. These molecular insights can further aid in the optimization of efficient and selective sorbent design for environmental and analytical applications.
Collapse
Affiliation(s)
- David Glöckler
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany
- TUM School of Life Sciences, Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany
- TUM School of Life Sciences, Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| | - Martin Elsner
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Rani Bakkour
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
20
|
Fajal S, Dutta S, Ghosh SK. Porous organic polymers (POPs) for environmental remediation. MATERIALS HORIZONS 2023; 10:4083-4138. [PMID: 37575072 DOI: 10.1039/d3mh00672g] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Modern global industrialization along with the ever-increasing growth of the population has resulted in continuous enhancement in the discharge and accumulation of various toxic and hazardous chemicals in the environment. These harmful pollutants, including toxic gases, inorganic heavy metal ions, anthropogenic waste, persistent organic pollutants, toxic dyes, pharmaceuticals, volatile organic compounds, etc., are destroying the ecological balance of the environment. Therefore, systematic monitoring and effective remediation of these toxic pollutants either by adsorptive removal or by catalytic degradation are of great significance. From this viewpoint, porous organic polymers (POPs), being two- or three-dimensional polymeric materials, constructed from small organic molecules connected with rigid covalent bonds have come forth as a promising platform toward various leading applications, especially for efficient environmental remediation. Their unique chemical and structural features including high stability, tunable pore functionalization, and large surface area have boosted the transformation of POPs into various macro-physical forms such as thick and thin-film membranes, which led to a new direction in advanced level pollutant removal, separation and catalytic degradation. In this review, our focus is to highlight the recent progress and achievements in the strategic design, synthesis, architectural-engineering and applications of POPs and their composite materials toward environmental remediation. Several strategies to improve the adsorption efficiency and catalytic degradation performance along with the in-depth interaction mechanism of POP-based materials have been systematically summarized. In addition, evolution of POPs from regular powder form application to rapid and more efficient size and chemo-selective, "real-time" applicable membrane-based application has been further highlighted. Finally, we put forward our perspective on the challenges and opportunities of these materials toward real-world implementation and future prospects in next generation remediation technology.
Collapse
Affiliation(s)
- Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
21
|
Lu Z, Hu Y, Xie Z, Li G. One-pot synthesis of pillar[5]quinone-amine polymer coated silica as stationary phase for high-performance liquid chromatography. J Sep Sci 2023; 46:e2300269. [PMID: 37439001 DOI: 10.1002/jssc.202300269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
To expand the application of pillararene in chromatographic separation, we designed and fabricated a pillar[5]quinone-amine polymer coated silica through quinone-amine reaction by facile one-pot synthesis method, which was applied as a stationary phase for high-performance liquid chromatography. Separation of hydrophobic compounds, hydrophilic compounds, halogenated aromatic compounds, and 11 aromatic positional isomers was achieved successfully in this stationary phase. Reverse-phase separation mode and hydrophilic-interaction separation mode were proved to exist, indicating the potential application of the mix-mode stationary phase. Studies of chromatographic retention behavior and molecular simulation showed that multiple interactions might play an important role in the separation process, including hydrophobic interaction, hydrogen-bonding interaction, aromatic π-π interaction, electron donor-acceptor interaction, and host-guest interaction. Column repeatability and stability were tested, which showed relative standard deviations of retention time less than 0.2% for continuous 11 injections, and the durability relative standard deviations of retention time were less than 0.91% after 90 days. This novel design strategy would broaden the application of pillararene-based covalent organic polymer in chromatography and separation science.
Collapse
Affiliation(s)
- Zicheng Lu
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zenghui Xie
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
22
|
Chen Z, Zhang S, Wang X, Mi N, Zhang M, Zeng G, Dong H, Liu J, Wu B, Wei S, Gu C. Amine-Functionalized A-Center Sphalerite for Selective and Efficient Destruction of Perfluorooctanoic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37406161 DOI: 10.1021/acs.est.3c01266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Perfluorochemicals (PFCs), especially perfluorooctanoic acid (PFOA), have contaminated the ground and surface waters throughout the world. Efficient removal of PFCs from contaminated waters has been a major challenge. This study developed a novel UV-based reaction system to achieve fast PFOA adsorption and decomposition without addition of sacrificial chemicals by using synthetic photocatalyst sphalerite (ZnS-[N]) with sufficient surface amination and defects. The obtained ZnS-[N] has the capability of both reduction and oxidation due to the suitable band gap and photo-generated hole-trapping properties created by surface defects. The cooperated organic amine functional groups on the surface of ZnS-[N] play a crucial role in the selective adsorption of PFOA, which guarantee the efficient destruction of PFOA subsequently, and 1 μg L-1 PFOA could be degraded to <70 ng L-1 after 3 h in the presence of 0.75 g L-1 ZnS-[N] under 500 W UV irradiation. In this process, the photogenerated electrons (reduction) and holes (oxidation) on the ZnS-[N] surface work in a synergistic manner to achieve complete defluorination of PFOA. This study not only provides promising green technology for PFC-pollution remediation but also highlights the significance of developing a target system capable of both reduction and oxidation for PFC degradation.
Collapse
Affiliation(s)
- Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Shuoqi Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Na Mi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing 210042, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Guixiang Zeng
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Jinyong Liu
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
23
|
Shi Y, Mu H, You J, Han C, Cheng H, Wang J, Hu H, Ren H. Confined water-encapsulated activated carbon for capturing short-chain perfluoroalkyl and polyfluoroalkyl substances from drinking water. Proc Natl Acad Sci U S A 2023; 120:e2219179120. [PMID: 37364117 PMCID: PMC10318985 DOI: 10.1073/pnas.2219179120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/18/2023] [Indexed: 06/28/2023] Open
Abstract
The global ecological crisis of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water has gradually shifted from long-chain to short-chain PFASs; however, the widespread established PFAS adsorption technology cannot cope with the impact of such hydrophilic pollutants given the inherent defects of solid-liquid mass transfer. Herein, we describe a reagent-free and low-cost strategy to reduce the energy state of short-chain PFASs in hydrophobic nanopores by employing an in situ constructed confined water structure in activated carbon (AC). Through direct (driving force) and indirect (assisted slip) effects, the confined water introduced a dual-drive mode in the confined water-encapsulated activated carbon (CW-AC) and completely eliminated the mass transfer barrier (3.27 to 5.66 kcal/mol), which caused the CW-AC to exhibit the highest adsorption capacity for various short-chain PFASs (C-F number: 3-6) among parent AC and other adsorbents reported. Meanwhile, benefiting from the chain length- and functional group-dependent confined water-binding pattern, the affinity of the CW-AC surpassed the traditional hydrophobicity dominance and shifted toward hydrophilic short-chain PFASs that easily escaped treatment. Importantly, the ability of CW-AC functionality to directly transfer to existing adsorption devices was verified, which could treat 21,000 bed volumes of environment-related high-load (~350 ng/L short-chain PFAS each) real drinking water to below the World Health Organization's standard. Overall, our results provide a green and cost-effective in situ upgrade scheme for existing adsorption devices to address the short-chain PFAS crisis.
Collapse
Affiliation(s)
- Yuanji Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Jiaqian You
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Chenglong Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Huazai Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| |
Collapse
|
24
|
Ghorbani Gorji S, Hawker DW, Mackie R, Higgins CP, Bowles K, Li Y, Kaserzon S. Sorption affinity and mechanisms of per-and polyfluoroalkyl substances (PFASs) with commercial sorbents: Implications for passive sampling. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131688. [PMID: 37257384 DOI: 10.1016/j.jhazmat.2023.131688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Effective monitoring tools, including passive samplers, are essential for the wide range of per- and polyfluoroalkyl substances (PFASs) in aquatic matrices. However, knowledge of the extent and mechanisms of PFASs sorption with sorbents in a passive sampling context is limited. To address this, sorption behavior of 45 anionic, neutral and zwitterionic PFASs ranging in perfluorocarbon chain length (C3-C16) and functional groups with 11 different commercial sorbents (cross-linked β-cyclodextrin polymers, activated carbon, anion exchange (AE), cation exchange, hydrophilic-lipophilic balanced (HLB) and non-polar) was investigated. A broad range of equilibrium sorbent-MilliQ water (MQ) distribution coefficients (Kd) were observed (10-1.95 to 108.30 mL g-1). Similar sorbent types (e.g., various AE and HLB sorbents) exhibited very different sorption behavior, likely due to their different polymeric structures and relative importance of sorbate/sorbent interactions other than coulombic interactions. HLB and AE with hydroxyl functionalities are most effective for sampling of the full suite of PFASs. Reduced sorptive affinity was observed in the presence of matrix co-constituents in wastewater influent for most PFASs. HLB had the smallest reduction in log Kd in wastewater suggesting that these sorbents are appropriate for applications in complex matrices. Sufficient sorbent capacity was observed for linear uptake of many target analytes which facilitates passive sampling.
Collapse
Affiliation(s)
- Sara Ghorbani Gorji
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia.
| | - Darryl W Hawker
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia; School of Environment and Science, Griffith University, Brisbane, Australia
| | - Rachel Mackie
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, CO, United States
| | - Karl Bowles
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia; Jacobs, North Sydney, Australia
| | - Yan Li
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Sarit Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| |
Collapse
|
25
|
Glöckler D, Wabnitz C, Elsner M, Bakkour R. Avoiding Interferences in Advance: Cyclodextrin Polymers to Enhance Selectivity in Extraction of Organic Micropollutants for Carbon Isotope Analysis. Anal Chem 2023; 95:7839-7848. [PMID: 37167407 DOI: 10.1021/acs.analchem.2c05465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Compound-specific isotope analysis (CSIA) of organic water contaminants can provide important information about their sources and fate in the environment. Analyte enrichment from water remains nonetheless a critical yet inevitable step before measurement. Commercially available solid-phase extraction (SPE) sorbents are inherently nonselective leading to co-extraction of concurrent dissolved organic matter (DOM) and in turn to analytical interferences, especially for low-occurring contaminants. Here, we (i) increased extraction selectivity by synthesizing cyclodextrin polymers (α-, β-, γ-CDP) as SPE sorbents, (ii) assessed their applicability to carbon isotope analysis for a selection of pesticides, and (iii) compared them with commonly used commercial sorbents. Extraction with β-CDP significantly reduced backgrounds in gas chromatography-isotope ratio mass spectrometry (GC-IRMS) and enhanced sensitivity by a factor of 7.5, which was further confirmed by lower carbon-normalized CDOM/Canalyte ratios in corresponding extracts as derived from dissolved organic carbon (DOC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Gibbs free energies of adsorption demonstrated weak competition between DOM and analyte on the three CDPs. No isotopic fractionation (Δδ13C within ± 0.3‰) was observed for the investigated pesticides after using β-CDP as an SPE sorbent covering a range of concentrations (5-500 μg L-1), flow velocities (5-40 cm min-1), and sorbent regeneration (up to six times). The present study highlights the benefit of selecting innovative extraction sorbents to avoid interferences in advance. This strategy in combination with existing cleanup approaches offers new prospects for CSIA at field concentrations of tens to hundreds of nanograms per liter.
Collapse
Affiliation(s)
- David Glöckler
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Christopher Wabnitz
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Martin Elsner
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Rani Bakkour
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
26
|
Song C, Zheng J, Zhang Q, Yuan H, Yu A, Zhang W, Zhang S, Ouyang G. Multifunctionalized Covalent Organic Frameworks for Broad-Spectrum Extraction and Ultrasensitive Analysis of Per- and Polyfluoroalkyl Substances. Anal Chem 2023; 95:7770-7778. [PMID: 37154520 DOI: 10.1021/acs.analchem.3c01137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The contamination of surface and ground water by per- and polyfluoroalkyl substances (PFASs) has become a growing concern, and the structural diversity of PFASs is the major challenge for their ubiquitous applications. Strategies for monitoring coexistent anionic, cationic, and zwitterionic PFASs even at trace levels in aquatic environments are urgently demanded for effective pollution control. Herein, novel amide group and perfluoroalkyl chain-functionalized covalent organic frameworks (COFs) named COF-NH-CO-F9 are successfully synthesized and used for highly efficient extraction of broad-spectrum PFASs, attributing to their unique structure and the multifunctional groups. Under the optimal conditions, a simple and high-sensitivity method is established to quantify 14 PFASs including anionic, cationic, and zwitterionic species by coupling solid-phase microextraction (SPME) with ultrahigh-performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-MS/MS) for the first time. The established method displays high enrichment factors (EFs) of 66-160, ultrahigh sensitivity with low limits of detection (LODs) of 0.0035-0.18 ng L-1, a wide linearity of 0.1-2000 ng L-1 with correlation coefficient (R2) ≥0.9925, and satisfactory precision with relative standard deviations (RSDs) ≤11.2%. The excellent performance is validated in real water samples with recoveries of 77.1-108% and RSDs ≤11.4%. This work highlights the potential of rational design of COFs with the desired structure and functionality for the broad-spectrum enrichment and ultrasensitive determination of PFASs in real applications.
Collapse
Affiliation(s)
- Chenchen Song
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Qidong Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, Henan 450001, P. R. China
| | - Hang Yuan
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Gangfeng Ouyang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
27
|
Lagiewka J, Nowik-Zajac A, Pajdak A, Zawierucha I. A novel multifunctional β-cyclodextrin polymer as a promising sorbent for rapid removal of methylene blue from aqueous solutions. Carbohydr Polym 2023; 307:120615. [PMID: 36781275 DOI: 10.1016/j.carbpol.2023.120615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Production wastewater has evolved with dye and printing technology to become one of the major sources of soil and water contamination. The majority of dyes are carcinogenic, teratogenic, and mutagenic compounds. As a result, dealing with the dye in the wastewater is a critical issue. Insoluble polymers of β-cyclodextrin (β-CD), an inexpensive, sustainably produced macrocycle of glucose, have potential to remove dyes from water/wastewater via sorption due to formation of well-defined host-guest complexes. A novel polymeric sorbent based on cyclodextrin was successfully synthesized in a one-step reaction with few reagents. The polymer is characterized by multifunctionality and cross-linked network structure. The sorption studies aimed at the removal of methylene blue (MB) from aqueous solutions. The dominant model was Langmuir isotherm which indicated a sorption capacity of 96.15 mg/g. The rapid removal has already been obtained after 1 min, around 84 % of efficiency. The molecular mechanism of MB sorption by poly(β-CD-BPDA) network is found mostly on the electrostatic interactions and partially on the inclusion of complexation inside supramolecular pores based on cyclodextrins' cavities, hydrogen bonding and slightly π-stacking. The presented polymer seems to be a promising sorbent for the removal of hazardous organic pollutants from water/wastewater.
Collapse
Affiliation(s)
- Jakub Lagiewka
- Institute of Chemistry, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Czestochowa 42-200, Poland.
| | - Anna Nowik-Zajac
- Institute of Chemistry, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Czestochowa 42-200, Poland
| | - Anna Pajdak
- Strata Mechanics Research Institute, Polish Academy of Sciences, 30-059 Krakow, Poland
| | - Iwona Zawierucha
- Institute of Chemistry, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Czestochowa 42-200, Poland
| |
Collapse
|
28
|
Ozelcaglayan ED, Parker WJ. β-Cyclodextrin functionalized adsorbents for removal of organic micropollutants from water. CHEMOSPHERE 2023; 320:137964. [PMID: 36736473 DOI: 10.1016/j.chemosphere.2023.137964] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The presence of organic micropollutants in water is an ongoing concern due to the potential risks to living organisms. β-Cyclodextrin-based adsorbents have been developed to remove organic micropollutants from water as they are deemed to be efficient, selective and reusable. This literature review establishes the current state of the knowledge on the application of β-Cyclodextrin adsorbents for the removal of organic micropollutants from water and determines knowledge gaps and recommendations for future studies. An inventory of organic micropollutants that have been studied was developed and it revealed that bisphenol-A has been the most commonly studied. Adsorbent configurations were reviewed and modifications to the adsorbent structures that have provided enhanced adsorption properties were identified. The size and shape of the organic micropollutants was found to affect the adsorption behavior. The surface charge of β-Cyclodextrin adsorbents influence adsorption when repulsive forces are present and the extent of repulsion can depend on the pH of the solution. Common competitors such as natural organic matter and inorganic ions do not significantly impact the adsorption of organic micropollutants however relatively small fulvic acids may compete for the β-Cyclodextrin cavity depending on the adsorbent type. Desorption of organic micropollutants from these adsorbents has been accomplished with alcohols and most adsorbents have been recovered and reused in adsorption/desorption cycles. The need for enhanced recovery processes that maintain water quality and adsorbent integrity was identified. The use of quantitative structure-activity relationships and molecular computational tools could potentially guide future environmental applications of β-Cyclodextrin adsorbents.
Collapse
Affiliation(s)
- Ezgi Demircan Ozelcaglayan
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Ontario, Canada.
| | - Wayne J Parker
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Ontario, Canada
| |
Collapse
|
29
|
Song Y, Phipps J, Zhu C, Ma S. Porous Materials for Water Purification. Angew Chem Int Ed Engl 2023; 62:e202216724. [PMID: 36538551 DOI: 10.1002/anie.202216724] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Water pollution is a growing threat to humanity due to the pervasiveness of contaminants in water bodies. Significant efforts have been made to separate these hazardous components to purify polluted water through various methods. However, conventional remediation methods suffer from limitations such as low uptake capacity or selectivity, and current water quality standards cannot be met. Recently, advanced porous materials (APMs) have shown promise in improved segregation of contaminants compared to traditional porous materials in uptake capacity and selectivity. These materials feature merits of high surface area and versatile functionality, rendering them ideal platforms for the design of novel adsorbents. This Review summarizes the development and employment of APMs in a variety of water treatments accompanied by assessments of task-specific adsorption performance. Finally, we discuss our perspectives on future opportunities for APMs in water purification.
Collapse
Affiliation(s)
- Yanpei Song
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Joshua Phipps
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Changjia Zhu
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| |
Collapse
|
30
|
Chen Z, Lu YL, Wang L, Xu J, Zhang J, Xu X, Cheng P, Yang S, Shi W. Efficient Recognition and Removal of Persistent Organic Pollutants by a Bifunctional Molecular Material. J Am Chem Soc 2023; 145:260-267. [PMID: 36538618 DOI: 10.1021/jacs.2c09866] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Persistent organic pollutants (POPs) exist widely in the environment and place significant impact on human health by bioaccumulation. Efficient recognition of POPs and their removal are highly challenging tasks because their specific structures interact often very weakly with the capture materials. Herein, a molecular nanocage (1) is studied as an efficient sensing and sorbent material for POPs, which is demonstrated by a representative and stable perfluorooctane sulfonate (PFOS) substrate containing a hydrophilic sulfonic group and a hydrophobic fluoroalkyl chain. A highly sensitive and unusual turn-on fluorescence response within 10 s and a 97% total removal of PFOS from water in 20 min have been achieved owing to the strong host-guest interactions between 1 and PFOS. The binding constant of 1 to PFOS is 2 orders of magnitude higher than state-of-the-art adsorbents for PFOS and thus represents a new benchmark material for the recognition and removal of PFOS. The host-guest interaction has been elucidated by solid-state NMR spectroscopy and single-crystal X-ray diffraction, which provide key insights at a molecular level for the design of new advanced sensing/sorbent materials for POPs.
Collapse
Affiliation(s)
- Zhonghang Chen
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Lin Lu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jun Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350 China
| | - Jing Zhang
- Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China
| | - Xiufang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Wei Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
31
|
Xie Z, Hu Y, Chen Y, Wu G, Li G, Zhong Q. Effective enrichment and detection of bisphenol diglycidyl ether, novolac glycerol ether and their derivatives in canned food using a novel magnetic sulfonatocalix[6]arene covalent cross-linked polymer as the adsorbent. Food Chem 2023; 399:133918. [DOI: 10.1016/j.foodchem.2022.133918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
|
32
|
Zhang X, Ma J, Zou B, Ran L, Zhu L, Zhang H, Ye Z, Zhou L. Synthesis of a novel bis Schiff base chelating resin for adsorption of heavy metal ions and catalytic reduction of 4-NP. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Jin X, Wang Z, Hong R, Chen Z, Wu B, Ding S, Zhu W, Lin Y, Gu C. Supramolecular assemblies of a newly developed indole derivative for selective adsorption and photo-destruction of perfluoroalkyl substances. WATER RESEARCH 2022; 225:119147. [PMID: 36206684 DOI: 10.1016/j.watres.2022.119147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Per-/polyfluoroalkyl substances (PFASs) contamination has caused worldwide health concerns, and increased demand for effective elimination strategies. Herein, we developed a new indole derivative decorated with a hexadecane chain and a tertiary amine center (named di-indole hexadecyl ammonium, DIHA), which can form stable nanospheres (100-200 nm) in water via supramolecular assembly. As the DIHA nanospheres can induce electrostatic, hydrophobic and van der Waals interactions (all are long-ranged) that operative cooperatively, in addition to the nano-sized particles with large surface area, the DIHA nanocomposite exhibited extremely fast adsorption rates (in seconds), high adsorption capacities (0.764-0.857 g g-1) and selective adsorption for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), outperformed the previous reported high-end PFASs adsorbents. Simultaneously, the DIHA nanospheres can produce hydrated electron (eaq-) when subjected to UV irradiation, with the virtue of constraining the photo-generated eaq- and the adsorbed PFOA/PFOS molecules entirely inside the nanocomposite. As such, the UV/DIHA system exhibits extremely high degradation/defluorination efficiency for PFOA/PFOS, even under ambient conditions, especially with the advantages of low chemical dosage requirement (μM level) and robust performance against environmental variables. Therefore, it is a new attempt of using supramolecular approach to construct an indole-based nanocomposite, which can elegantly combine adsorption and degradation functions. The novel DIHA nanoemulsion system would shed light on the treatment of PFAS-contaminated wastewater.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China
| | - Zhe Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China.
| |
Collapse
|
34
|
Manning IM, Guan Pin Chew N, Macdonald HP, Miller KE, Strynar MJ, Coronell O, Leibfarth FA. Hydrolytically Stable Ionic Fluorogels for High-Performance Remediation of Per- and Polyfluoroalkyl Substances (PFAS) from Natural Water. Angew Chem Int Ed Engl 2022; 61:e202208150. [PMID: 35945652 PMCID: PMC9711936 DOI: 10.1002/anie.202208150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 01/11/2023]
Abstract
PFAS are known bioaccumulative and persistent chemicals which pollute natural waters globally. There exists a lack of granular sorbents to efficiently remove both legacy and emerging PFAS at environmentally relevant concentrations. Herein, we report a class of polymer networks with a synergistic combination of ionic and fluorous components that serve as granular materials for the removal of anionic PFAS from water. A library of Ionic Fluorogels (IFs) with systematic variation in charge density and polymer network architecture was synthesized from hydrolytically stable fluorous building blocks. The IFs were demonstrated as effective sorbents for the removal of 21 legacy and emerging PFAS from a natural water and were regenerable over multiple cycles of reuse. Comparison of one IF to a commercial ion exchange resin in mini-rapid small-scale column tests demonstrated superior performance for the removal of short-chain PFAS from natural water under operationally relevant conditions.
Collapse
Affiliation(s)
- Irene M. Manning
- Department of ChemistryUniversity of North Carolina at Chapel Hill131 South RdChapel HillNC 27599USA
| | - Nick Guan Pin Chew
- Department of Environmental Sciences and EngineeringGillings School of Global Public HealthUniversity of North Carolina at Chapel Hill135 Dauer DrChapel HillNC 27599USA
| | - Haley P. Macdonald
- Department of Environmental Sciences and EngineeringGillings School of Global Public HealthUniversity of North Carolina at Chapel Hill135 Dauer DrChapel HillNC 27599USA
| | - Kelsey E. Miller
- Office of Research and DevelopmentCenter for Environmental Measurement and ModelingU.S. Environmental Protection AgencyResearch Triangle ParkNC 27709USA
| | - Mark J. Strynar
- Office of Research and DevelopmentCenter for Environmental Measurement and ModelingU.S. Environmental Protection AgencyResearch Triangle ParkNC 27709USA
| | - Orlando Coronell
- Department of Environmental Sciences and EngineeringGillings School of Global Public HealthUniversity of North Carolina at Chapel Hill135 Dauer DrChapel HillNC 27599USA
| | - Frank A. Leibfarth
- Department of ChemistryUniversity of North Carolina at Chapel Hill131 South RdChapel HillNC 27599USA
| |
Collapse
|
35
|
Ma J, Wang D, Zhang W, Wang X, Ma X, Liu M, Zhao Q, Zhou L, Sun S, Ye Z. Development of β-cyclodextrin-modified poly(chloromethyl styrene) resin for efficient adsorption of Cu(Ⅱ) and tetracycline. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
He Y, Luo D, Lynch VM, Ahmed M, Sessler JL, Chi X. Porous adaptive luminescent metallacage for the detection and removal of perfluoroalkyl carboxylic acids. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Highly magnetically responsive porous nanoparticles based on tris(β-keto-hydrazo)-cyclohexane subunit: Fast removal of dyes from water with convenient recyclability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Manning IM, Chew NGP, Macdonald HP, Miller KE, Strynar MJ, Coronell O, Leibfarth F. Hydrolytically Stable Ionic Fluorogels for High‐Performance Remediation of Per‐ and Polyfluoroalkyl Substances (PFAS) from Natural Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Irene M Manning
- University of North Carolina at Chapel Hill Kenan Science Library: The University of North Carolina at Chapel Hill Chemistry 27599 Chapel Hill UNITED STATES
| | - Nick Guan Pin Chew
- University of North Carolina at Chapel Hill Kenan Science Library: The University of North Carolina at Chapel Hill Environmental Sciences and Engineering UNITED STATES
| | - Haley P Macdonald
- University of North Carolina at Chapel Hill Kenan Science Library: The University of North Carolina at Chapel Hill Environmental Sciences and Engineering UNITED STATES
| | - Kelsey E Miller
- Environmental Protection Agency Office of Research and Development, Center for Environmental Measurement and Modeling UNITED STATES
| | - Mark J Strynar
- Environmental Protection Agency Office of Research and Development, Center for Environmental Measurement and Modeling UNITED STATES
| | - Orlando Coronell
- University of North Carolina at Chapel Hill Kenan Science Library: The University of North Carolina at Chapel Hill Environmental Sciences and Engineering UNITED STATES
| | - Frank Leibfarth
- University of North Carolina Chemistry University of North CarolinaKenan Labs A500 27599 Chapel Hill UNITED STATES
| |
Collapse
|
39
|
Duan Z, Bian H, Zhu L, Xia D. Efficient removal of thiophenic sulfides from fuel by micro-mesoporous 2-hydroxypropyl-β-cyclodextrin polymers through synergistic effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
40
|
Huang J, Shi Y, Huang G, Huang S, Zheng J, Xu J, Zhu F, Ouyang G. Facile Synthesis of a Fluorinated‐Squaramide Covalent Organic Framework for the Highly Efficient and Broad‐Spectrum Removal of Per‐ and Polyfluoroalkyl Pollutants. Angew Chem Int Ed Engl 2022; 61:e202206749. [DOI: 10.1002/anie.202206749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Junlong Huang
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Yueru Shi
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Guo‐zhang Huang
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Shuyao Huang
- Instrumental Analysis and Research Center (IARC) Sun Yat-Sen University Guangzhou 510275 China
| | - Juan Zheng
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jianqiao Xu
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Fang Zhu
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Gangfeng Ouyang
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
- Institute of Analysis Guangdong Academy of Sciences (China National Analytical Center Guangzhou) Guangzhou 510070 China
- Chemistry College Center of Advanced Analysis and Gene Sequencing Zhengzhou University Kexue Avenue 100 Zhengzhou 450001 China
| |
Collapse
|
41
|
Huang J, Shi Y, Huang G, Huang S, Zheng J, Xu J, Zhu F, Ouyang G. Facile Synthesis of a Fluorinated‐Squaramide Covalent Organic Framework for the Highly Efficient and Board‐Spectrum Removal of Per‐ and Polyfluoroalkyl Pollutants. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junlong Huang
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Yueru Shi
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Guo‐zhang Huang
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Shuyao Huang
- Instrumental Analysis and Research Center (IARC) Sun Yat-Sen University Guangzhou 510275 China
| | - Juan Zheng
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jianqiao Xu
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Fang Zhu
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Gangfeng Ouyang
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
- Institute of Analysis Guangdong Academy of Sciences (China National Analytical Center Guangzhou) Guangzhou 510070 China
- Chemistry College Center of Advanced Analysis and Gene Sequencing Zhengzhou University Kexue Avenue 100 Zhengzhou 450001 China
| |
Collapse
|
42
|
Liu X, Zhu C, Yin J, Li J, Zhang Z, Li J, Shui F, You Z, Shi Z, Li B, Bu XH, Nafady A, Ma S. Installation of synergistic binding sites onto porous organic polymers for efficient removal of perfluorooctanoic acid. Nat Commun 2022; 13:2132. [PMID: 35440580 PMCID: PMC9019033 DOI: 10.1038/s41467-022-29816-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
Herein, we report a strategy to construct highly efficient perfluorooctanoic acid (PFOA) adsorbents by installing synergistic electrostatic/hydrophobic sites onto porous organic polymers (POPs). The constructed model material of PAF-1-NDMB (NDMB = N,N-dimethyl-butylamine) demonstrates an exceptionally high PFOA uptake capacity over 2000 mg g-1, which is 14.8 times enhancement compared with its parent material of PAF-1. And it is 32.0 and 24.1 times higher than benchmark materials of DFB-CDP (β-cyclodextrin (β-CD)-based polymer network) and activated carbon under the same conditions. Furthermore, PAF-1-NDMB exhibits the highest k2 value of 24,000 g mg-1 h-1 among all reported PFOA sorbents. And it can remove 99.99% PFOA from 1000 ppb to <70 ppt within 2 min, which is lower than the advisory level of Environmental Protection Agency of United States. This work thus not only provides a generic approach for constructing PFOA adsorbents, but also develops POPs as a platform for PFOA capture.
Collapse
Affiliation(s)
- Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Changjia Zhu
- Department of Chemistry, University of North Texas 1508W Mulberry St, Denton, TX, 76201, USA
| | - Jun Yin
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Advanced Membranes and Porous Materials Center, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Kingdom of Saudi Arabia; KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jixin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhiyuan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Jinli Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Feng Shui
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Zifeng You
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China.
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China.
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas 1508W Mulberry St, Denton, TX, 76201, USA.
| |
Collapse
|
43
|
Novel Fluorinated Nitrogen-Rich Porous Organic Polymer for Efficient Removal of Perfluorooctanoic Acid from Water. WATER 2022. [DOI: 10.3390/w14071010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mobility, durability, and widespread use of perfluorinated and polyfluoroalkyl substances (PFAS), notably perfluorooctanoic acid (PFOA), bring about serious contamination of many ground and surface waters. In this study, fluorine and amine-functionalized porous organic polymer (POP-4F) was designed and successfully synthesized as an adsorbent for PFOA removal in water. The characterization results showed that the synthesized material had an amorphous microporous structure, and the BET surface area was up to 479 m2 g−1. Its versatile adsorption property was evaluated by batch adsorption experiments using PFOA as a probe. The experiments show that the polymer was able to remove 98% of the PFOA in 5 min from water and then desorb within 3 min in methanol ([PFOA]0 = 1 mg L−1; [POP-4F] = 200 mg L−1). Specifically, the adsorption capacity of POP-4F is up to 107 mg g−1, according to the Langmuir fit. The rapid adsorption and desorption of PFOA by POP-4F offers the possibility of economical, environmentally friendly, and efficient treatment of real wastewater.
Collapse
|
44
|
Lei SN, Cong H. Fluorescence detection of perfluorooctane sulfonate in water employing a tetraphenylethylene-derived dual macrocycle BowtieCyclophane. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Haque FM, Ishibashi JSA, Lidston CAL, Shao H, Bates FS, Chang AB, Coates GW, Cramer CJ, Dauenhauer PJ, Dichtel WR, Ellison CJ, Gormong EA, Hamachi LS, Hoye TR, Jin M, Kalow JA, Kim HJ, Kumar G, LaSalle CJ, Liffland S, Lipinski BM, Pang Y, Parveen R, Peng X, Popowski Y, Prebihalo EA, Reddi Y, Reineke TM, Sheppard DT, Swartz JL, Tolman WB, Vlaisavljevich B, Wissinger J, Xu S, Hillmyer MA. Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chem Rev 2022; 122:6322-6373. [PMID: 35133803 DOI: 10.1021/acs.chemrev.1c00173] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transforming how plastics are made, unmade, and remade through innovative research and diverse partnerships that together foster environmental stewardship is critically important to a sustainable future. Designing, preparing, and implementing polymers derived from renewable resources for a wide range of advanced applications that promote future economic development, energy efficiency, and environmental sustainability are all central to these efforts. In this Chemical Reviews contribution, we take a comprehensive, integrated approach to summarize important and impactful contributions to this broad research arena. The Review highlights signature accomplishments across a broad research portfolio and is organized into four wide-ranging research themes that address the topic in a comprehensive manner: Feedstocks, Polymerization Processes and Techniques, Intended Use, and End of Use. We emphasize those successes that benefitted from collaborative engagements across disciplinary lines.
Collapse
Affiliation(s)
- Farihah M Haque
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacob S A Ishibashi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Claire A L Lidston
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Huiling Shao
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alice B Chang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Christopher J Cramer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Paul J Dauenhauer
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ethan A Gormong
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mengyuan Jin
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hee Joong Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gaurav Kumar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J LaSalle
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephanie Liffland
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bryce M Lipinski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Yutong Pang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Riffat Parveen
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Xiayu Peng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yanay Popowski
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Emily A Prebihalo
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yernaidu Reddi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daylan T Sheppard
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeremy L Swartz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Jane Wissinger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shu Xu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
46
|
Ching C, Ling Y, Trang B, Klemes M, Xiao L, Yang A, Barin G, Dichtel WR, Helbling DE. Identifying the physicochemical properties of β-cyclodextrin polymers that determine the adsorption of perfluoroalkyl acids. WATER RESEARCH 2022; 209:117938. [PMID: 34910992 DOI: 10.1016/j.watres.2021.117938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Cyclodextrin polymers (CDPs) are emerging adsorbents with demonstrated potential to remove perfluoroalkyl acids (PFAAs) from water. However, little is known about how the physicochemical properties of different types of CDPs determine PFAA adsorption on CDPs. In this study, we investigated the adsorption performance of 34 CDPs which consist of 14 different crosslinkers and exhibit a wide range of physicochemical properties. The performance metrics included adsorption kinetics, equilibrium adsorption density, and adsorption affinity for six PFAAs. We then used complementary bivariate and multivariate analyses to discover relationships between sixteen measurable physicochemical properties of the CDPs and their performance as adsorbents. We found that: (1) CDPs with a less negative or more positive surface charge will exhibit enhanced adsorption of all types of PFAAs; (2) CDPs with greater porosity and surface area will exhibit enhanced adsorption kinetics for all types of PFAAs; (3) CDPs with greater crosslinker content will exhibit enhanced adsorption of short-chain PFAAs; (4) CDPs containing more hydrophobic crosslinkers will exhibit enhanced equilibrium adsorption density and adsorption affinity for longer-chain PFAAs; and (5) CDPs with smaller particle sizes will exhibit enhanced adsorption kinetics and equilibrium adsorption density for all PFAAs. These insights will enable the further development of CDPs and other novel adsorbents to optimize their performance for removing PFAAs during water and wastewater treatment or groundwater remediation.
Collapse
Affiliation(s)
- Casey Ching
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yuhan Ling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA; Cyclopure, Inc., Skokie, IL 60077, USA
| | - Brittany Trang
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Max Klemes
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Leilei Xiao
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Anna Yang
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | | | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
47
|
Li Z, Yang YW. Macrocycle-Based Porous Organic Polymers for Separation, Sensing, and Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107401. [PMID: 34676932 DOI: 10.1002/adma.202107401] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of materials science, porous organic polymers (POPs) have received remarkable attentions because of their unique properties such as the exceptionally high surface area and flexible molecular design. The ability to incorporate specific functions in a precise manner makes POPs promising platforms for a myriad of applications in molecular adsorption, separation, and catalysis. Therefore, many different types of POPs have been rationally designed and synthesized to expand the scope of advanced materials, endowing them with distinct structures and properties. Recently, supramolecular macrocycles with excellent host-guest complexation abilities are emerging as powerful crosslinkers for developing novel POPs with hierarchical structures and improved performance, which can be well-organized at different spatial scales. Macrocycle-based POPs could have unusual porous, adsorptive, and optical properties when compared to their nonmacrocycle-incorporated counterparts. This cooperation provides valuable insights for the molecular-level understanding of skeletal complexity and diversity. Here, the research advances of macrocycle-based POPs are aptly summarized by showing their syntheses, properties, and applications in terms of separation, sensing, and catalysis. Finally, the current challenging issues in this exciting research field are delineated and a comprehensive outlook is offered for their future directions.
Collapse
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
48
|
Verma M, Lee I, Hong Y, Kumar V, Kim H. Multifunctional β-Cyclodextrin-EDTA-Chitosan polymer adsorbent synthesis for simultaneous removal of heavy metals and organic dyes from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118447. [PMID: 34742823 DOI: 10.1016/j.envpol.2021.118447] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 05/27/2023]
Abstract
Heavy metals and organic dyes are the major source of water pollution. Herein, a trifunctional β-cyclodextrin-ethylenediaminetetraacetic acid-chitosan (β-CD-EDTA-CS) polymer was synthesized using an easy and simple chemical route by the reaction of activated β-CD with CS through EDTA as a cross-linker (amidation reaction) for the removal of inorganic and organic pollutants from aqueous solution under different parameters such as pH, time effect, initial concentration, reusability, etc. The synthesized adsorbent was characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, field scanning electron microscopy, energy dispersive spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analyzer techniques to investigate their structural, functional, morphological, elemental compositions, surface area and thermal properties, respectively. Two types of heavy metals, i.e., mercury (Hg2+) and cadmium (Cd2+), and three organic dyes, i.e., methylene blue (MB), crystal violet (CV) and safranin O (SO) were chosen as inorganic and organic pollutants, respectively, to study the adsorption capacity of β-CD-EDTA-CS in aqueous solution. The β-CD-EDTA-CS shows monolayer adsorption capacity 346.30 ± 14.0 and 202.90 ± 13.90 mg g-1 for Hg2+ and Cd2+, respectively, and a heterogeneous adsorption capacity 107.20 ± 5.70, 77.40 ± 5.30 and 55.30 ± 3.60 mg g-1 for MB, CV and SO, respectively. Kinetics results followed pseudo-second order (PSO) kinetics behavior for both metal ions and dyes, and higher rate constants values (0.00161-0.00368 g mg-1 min-1) for dyes confirmed the cavitation of organic dyes (physisorption). In addition, we have also demonstrated the performance of β-CD-EDTA-CS for the of four heavy metals Hg2+, Cd2+, Ni2+, and Cu2+ and three dyes MB, CV, and SO in secondary treated wastewater. Findings of this study indicate that β-CD-EDTA-CS simple and essay to synthesize and can be use in wastewater treatment.
Collapse
Affiliation(s)
- Monu Verma
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Ingyu Lee
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Youngmin Hong
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea; Technical Research Center, Shimadzu Scientific Korea, 145 Gasan Digital 1-ro, Geumcheon-gu, Seoul 08506, Republic of Korea
| | - Vinod Kumar
- Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Hyunook Kim
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
49
|
Advances in cyclodextrin polymers adsorbents for separation and enrichment: Classification, mechanism and applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Liang R, Bu D, Su X, Wei X, Orentas E, Rebek J, Shi Q. Organic pollutants in water-soluble cavitands and capsules: contortions of molecules in nanospace. Org Chem Front 2022. [DOI: 10.1039/d2qo00139j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the binding properties of deep cavitand for various industrial pollutants in water. Depending on the guest type, monomeric cavitands, dimeric capsules or both acted as receptors and...
Collapse
|