1
|
Ning L, Li J, Xie Q, Hu J, Liu J, Xu C, Peng J, Chen C, Ji W. Plasmonic Coacervate as a Droplet-Based SERS Platform for Rapid Enrichment and Microanalysis of Hydrophobic Payloads. Anal Chem 2024. [PMID: 39376158 DOI: 10.1021/acs.analchem.4c04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A novel and simple coacervate microdroplet-based detection platform for the quantification of trace hydrophobic analytes is presented. Herein, taking advantage of the effective encapsulation and enrichment performance of the condensed coacervates, plasmonic metallic silver nanoparticles (AgNPs) and target hydrophobic analytes are simultaneously concentrated into a single microdroplet. The coencapsulation of AgNPs within coacervates promotes the formation of aggregates with a lot of "hot spots" for surface-enhanced Raman scattering (SERS) enhancement, facilitating the sensitive analysis of hydrophobic analytes by SERS technology. Such plasmonic coacervates are easily prepared and exhibit good reproducibility and signal uniformity. Optimized SERS performance by modulating the volume of encapsulated AgNPs enables quantitative determination of hydrophobic analytes of Nile Red, chlorpyrifos, benzo[e]pyrene, 20 and 50 nm polystyrene nanoplastics with low detection limits of 10-12 M, 10-9 M, 10-10 M, 0.05 ppb, and 0.5 ppb, and an approximately linear correlation between SERS signals and the analytical concentrations. This study opens a new convenient SERS platform for the ultrasensitive detection of hydrophobic hazardous substances, potentially becoming a rapid analysis method for extensive applications ranging from food safety to environment monitoring.
Collapse
Affiliation(s)
- Lichun Ning
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Junbo Li
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Qinhui Xie
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jianing Hu
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jian Liu
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Cheng Xu
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jinsong Peng
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chunxia Chen
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Wei Ji
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
2
|
Xiao Y, Chen G, Shi B, Chang Q, Zhang L, Wu H. Multi-Interface Electromagnetic Wave Absorbing Material Based on Liquid Marble Microstructures Anchored to SEBS. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400756. [PMID: 38709225 DOI: 10.1002/smll.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Indexed: 05/07/2024]
Abstract
The direct application of liquid marbles in electromagnetic wave (EMW) absorption is challenging due to their poor stability, susceptibility to gravitational collapse, and shaping difficulties. To address this issue, a novel strategy is proposed to incorporate liquid marble microstructures (NaCl/nano-SiO2) encapsulated in organic phases (Octadecane) into the rubber-matrix (SEBS) using the ultrasound-assisted emulsion blending method. The resulting NaCl/SiO2/Octadecane microstructures anchored to SEBS offer a substantial solid-liquid interface consisting of NaCl solution and SiO2. When subjected to an alternating electromagnetic (EM) field, the water molecules and polysorbate within SiO2 exhibit heightened responsiveness to the EM field, and the movement of Na+ and Cl- within these microstructures leads to their accumulation at the solid-liquid interface, creating an asymmetric ion distribution. This phenomenon facilitates enhanced interfacial polarization, thereby contributing to the material's EMW absorption properties. Notably, the latex with 16 wt% SEBS (E-3), exhibiting a surface morphology similar to human cell tissues, achieves complete absorption of X-band (fE = 4.20 GHz, RLmin = -33.87 dB). Moreover, the latex demonstrates light density (0.78 g cm-3) and environmental stability. This study not only highlights the predominant loss mechanism in rubber-based wave-absorbing materials but also provides valuable insights into the design of multifunctional wave-absorbing materials.
Collapse
Affiliation(s)
- Yuting Xiao
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Geng Chen
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Bin Shi
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qing Chang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
3
|
Ma Y, Li W, Zhang W, Kong L, Yu C, Tang C, Zhu Z, Chen Y, Jiang L. Bioinspired multi-scale interface design for wet gas sensing based on rational water management. MATERIALS HORIZONS 2024; 11:3996-4014. [PMID: 38938180 DOI: 10.1039/d4mh00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Natural organisms have evolved multi-scale wet gas sensing interfaces with optimized mass transport pathways in biological fluid environments, which sheds light on developing artificial counterparts with improved wet gas sensing abilities and practical applications. Herein, we highlighted current advances in wet gas sensing taking advantage of optimized mass transport pathways endowed by multi-scale interface design. Common moisture resistance (e.g., employing moisture resistant sensing materials, post-modifying moisture resistant coatings, physical heating for moisture resistance, and self-removing hydroxyl groups) and moisture absorption (e.g., employing moisture absorption sensing materials and post-modifying moisture absorption coatings) strategies for wet gas sensing were discussed. Then, the design principles of bioinspired multi-scale wet gas sensing interfaces were provided, including macro-level condensation mediation, micro/nano-level transport pathway adjustment and molecular level moisture-proof design. Finally, perspectives on constructing bioinspired multi-scale wet gas sensing interfaces were presented, which will not only deepen our understanding of the underlying principles, but also promote practical applications.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weifeng Li
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| | - Weifang Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fujian 350117, China
| | - Lei Kong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Chengyue Yu
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an 271018, China
| | - Cen Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongpeng Zhu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| |
Collapse
|
4
|
Yasui T, Fameau A, Park H, Pham TT, Pechmann S, Christiansen S, Yusa S, Hirai T, Nakamura Y, Fujii S. Stimulus-Responsive Gas Marbles as an Amphibious Carrier for Gaseous Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404728. [PMID: 38924310 PMCID: PMC11348068 DOI: 10.1002/advs.202404728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Gas marbles are a new family of particle-stabilized soft dispersed system with a soap bubble-like air-in-water-in-air structure. Herein, stimulus-responsive character is successfully introduced to a gas marble system for the first time using polymer particles carrying a poly(tertiary amine methacrylate) (pKa ≈7) steric stabilizer on their surfaces as a particulate stabilizer. The gas marbles exhibited long-term stability when transferred onto the planar surface of liquid water, provided that the solution pH of the subphase is basic and neutral. In contrast, the use of acidic solutions led to immediate disintegration of the gas marbles, resulting in release of the inner gas. The critical minimum solution pH required for long-term gas marble stability correlates closely with the known pKa value for the poly(tertiary amine methacrylate) stabilizer. It also demonstrates amphibious motions of the gas marbles.
Collapse
Affiliation(s)
- Takanori Yasui
- Graduate School of EngineeringOsaka Institute of Technology5‐16‐1, Omiya, Asahi‐kuOsaka535‐8585Japan
| | - Anne‐Laure Fameau
- Université LilleCNRSINRAECentrale LilleUMR 8207 – UMET – Unité Matériaux et TransformationsLilleF‐59000France
| | - Hyoungwon Park
- Department for Correlative Microscopy and Materials DataFraunhofer Institute for Ceramic Technologies and Systems (IKTS)91301ForchheimGermany
| | - Thu Thao Pham
- Department of Applied ChemistryGraduate School of EngineeringUniversity of Hyogo2167 ShoshaHimejiHyogo671‐2280Japan
| | - Sabrina Pechmann
- Department for Correlative Microscopy and Materials DataFraunhofer Institute for Ceramic Technologies and Systems (IKTS)91301ForchheimGermany
| | - Silke Christiansen
- Department for Correlative Microscopy and Materials DataFraunhofer Institute for Ceramic Technologies and Systems (IKTS)91301ForchheimGermany
- Institute for Nanotechnology and Correlative Microscopy gGmbH (INAM gGmbH)91301ForchheimGermany
- Fachbereich PhysikFreie Universität Berlin (FU Berlin)14195BerlinGermany
| | - Shin‐ichi Yusa
- Department of Applied ChemistryGraduate School of EngineeringUniversity of Hyogo2167 ShoshaHimejiHyogo671‐2280Japan
| | - Tomoyasu Hirai
- Department of Applied ChemistryFaculty of Engineering Osaka Institute of Technology5‐16‐1, Omiya, Asahi‐kuOsaka535‐8585Japan
- Nanomaterials Microdevices Research CenterOsaka Institute of Technology5‐16‐1 Omiya, Asahi‐kuOsaka535‐8585Japan
| | - Yoshinobu Nakamura
- Department of Applied ChemistryFaculty of Engineering Osaka Institute of Technology5‐16‐1, Omiya, Asahi‐kuOsaka535‐8585Japan
- Nanomaterials Microdevices Research CenterOsaka Institute of Technology5‐16‐1 Omiya, Asahi‐kuOsaka535‐8585Japan
| | - Syuji Fujii
- Department of Applied ChemistryFaculty of Engineering Osaka Institute of Technology5‐16‐1, Omiya, Asahi‐kuOsaka535‐8585Japan
- Nanomaterials Microdevices Research CenterOsaka Institute of Technology5‐16‐1 Omiya, Asahi‐kuOsaka535‐8585Japan
| |
Collapse
|
5
|
Niu J, Liu W, Li JX, Pang X, Liu Y, Zhang C, Yue K, Zhou Y, Xu F, Li X, Li F. Machining water through laser cutting of nanoparticle-encased water pancakes. Nat Commun 2023; 14:3853. [PMID: 37386038 DOI: 10.1038/s41467-023-39574-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Due to the inherent disorder and fluidity of water, precise machining of water through laser cutting are challenging. Herein we report a strategy that realizes the laser cutting machining of water through constructing hydrophobic silica nanoparticle-encased water pancakes with sub-millimeter depth. Through theoretical analysis, numerical simulation, and experimental studies, the developed process of nanoparticle-encased water pancake laser cutting and the parameters that affect cutting accuracy are verified and elucidated. We demonstrate that laser-fabricated water patterns can form diverse self-supporting chips (SSCs) with openness, transparency, breathability, liquid morphology, and liquid flow control properties. Applications of laser-fabricated SSCs to various fields, including chemical synthesis, biochemical sensing, liquid metal manipulation, patterned hydrogel synthesis, and drug screening, are also conceptually demonstrated. This work provides a strategy for precisely machining water using laser cutting, addressing existing laser machining challenges and holding significance for widespread fields involving fluid patterning and flow control in biological, chemical, materials and biomedical research.
Collapse
Affiliation(s)
- Jicheng Niu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Wenjing Liu
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China
| | - Jasmine Xinze Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xianglong Pang
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China
| | - Yulin Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Chao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Keyang Yue
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yulin Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xiaoguang Li
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China.
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| |
Collapse
|
6
|
Yang J, He Y, Jiao F, Wang M. Reciprocating Oscillation of a Floating Ferrofluid Marble Triggered by Magnetic Fields. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16024-16033. [PMID: 36516999 DOI: 10.1021/acs.langmuir.2c02531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Liquid marbles have the potential for microfluidic transport, medical diagnostics, and chemical analysis due to their negligible stickiness, environmental independence, and excellent mobility. Here, we report a non-contact manipulation strategy to arouse a reciprocating oscillation of ferrofluid marbles floating on the water surface, which can be used as microreactors. We experimentally investigated the quantitative relationship between the oscillation behavior, the applied magnetic field parameters, and the field regulation mechanism. The variables, including the magnetic field strength, marble volume, and switching period, are vital in determining the final state. The oscillation can be separated into three stages: transitional movement, compressive deformation, and rebound, before entering the next cycle. Accordingly, we created a manipulation technique for improving the mixing of inner reactants inside this marble container by remote-controlled shaking after optimizing with an oscillation model.
Collapse
Affiliation(s)
- Jianzhi Yang
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan650500, China
| | - Yongqing He
- Chongqing Key Laboratory of Micro-Nano System and Intelligent Sensing, Chongqing Technology and Business University, Chongqing400067, China
| | - Feng Jiao
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan650500, China
| | - Ming Wang
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan650500, China
| |
Collapse
|
7
|
Zhang Y, Cui H, Binks BP, Shum HC. Liquid Marbles under Electric Fields: New Capabilities for Non-wetting Droplet Manipulation and Beyond. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9721-9740. [PMID: 35918302 DOI: 10.1021/acs.langmuir.2c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of liquid marbles (LMs) composed of stabilizing liquid droplets with solid particles in a gaseous environment has matured into an established area in surface and colloid science. The minimized "solid-liquid-air" triphase interface enables LMs to drastically reduce adhesion to a solid substrate, making them unique non-wetting droplets transportable with limited energy. The small volume, enclosed environment, and simple preparation render them suitable microreactors in industrial applications and processes such as cell culture, material synthesis, and blood coagulation. Extensive application contexts request precise and highly efficient manipulations of these non-wetting droplets. Many external fields, including magnetic, acoustic, photothermal, and pH, have emerged to prepare, deform, actuate, coalesce, mix, and disrupt these non-wetting droplets. Electric fields are rising among these external stimuli as an efficient source for manipulating the LMs with high controllability and a significant ability to contribute further to proposed applications. This Feature Article attempts to outline the recent developments related to LMs with the aid of electric fields. The effects of electric fields on the preparation and manipulation of LMs with intricate interfacial processes are discussed in detail. We highlight a wealth of novel electric field-involved LM-based applications and beyond while also envisaging the challenges, opportunities, and new directions for future development in this emerging research area.
Collapse
Affiliation(s)
- Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin 999077, Hong Kong, China
| | - Huanqing Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin 999077, Hong Kong, China
| |
Collapse
|
8
|
Gas marbles: ultra-long-lasting and ultra-robust bubbles formed by particle stabilization. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Nguyen NK, Singha P, Dai Y, Rajan Sreejith K, Tran DT, Phan HP, Nguyen NT, Ooi CH. Controllable high-performance liquid marble micromixer. LAB ON A CHIP 2022; 22:1508-1518. [PMID: 35344578 DOI: 10.1039/d2lc00017b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A liquid marble is a liquid droplet coated with a shell of microparticles. Liquid marbles have served as a unique microreactor for chemical reactions and cell culture. Mixing is an essential task for liquid marbles as a microreactor. However, the potential of liquid marble-based microreactors is significantly limited due to the lack of effective mixing strategies. Most mixing strategies used manual and contact-based actuation schemes. This paper reports the development of a manipulation scheme that induces fluid motion into a liquid marble, leading to enhanced mixing. By inducing rotation on a horizontal axis, we significantly increased the mixing rate by 27.6 times compared to a non-actuated liquid marble and reduced the reaction time by more than 10 times. The proposed method provides a simple, continuous, precise, and controllable high-performance mixing strategy on a liquid marble platform.
Collapse
Affiliation(s)
- Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Du Tuan Tran
- R&D Department, Bestmix Corporation, Binh Duong 820000, Vietnam
| | - Hoang-Phuong Phan
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| |
Collapse
|
10
|
Wen M, Yao B, Yuan S, Zhang W, Zhang Y, Yang G, Lei H. Optically controlled coalescence and splitting of femtoliter/picoliter droplets for microreactors. RSC Adv 2022; 12:18311-18320. [PMID: 35799922 PMCID: PMC9215165 DOI: 10.1039/d2ra02230c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Microreactor technology has attracted tremendous interest due to its features of a large specific surface area, low consumption of reagents and energy, and flexible control of the reaction process. As most of the current microreactors have volumes of microliters or even larger, effective methods to reduce the microreactors' sizes and improve their flexibility and controllability have become highly demanded. Here we propose an optical method of coalescence and splitting of femto-/pico-liter droplets for application in microreactors. Firstly, two different schemes are adopted to stably trap and directionally transport the microdroplets (oil and water) by a scanning optical tweezing system. Then, optically controlled coalescence and splitting of the microdroplets are achieved on this basis, and the mechanism and conditions are explored. Finally, the microdroplets are used as microreactors to conduct the microreactions. Such microreactors combine the advantages of miniaturization and the multi-functions of microdroplets, as well as the precision, flexibility, and non-invasiveness of optical tweezers, holding great potential for applications in materials synthesis and biosensing. Optical trapping, transportation, coalescence and splitting of femto-/pico-liter microdroplets are realized based on a scanning optical tweezing system. On this basis, the microdroplets are used as microreactors to conduct the microreactions.![]()
Collapse
Affiliation(s)
- Mingcong Wen
- School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Benjun Yao
- School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Shun Yuan
- School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Weina Zhang
- School of Information Engineering, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangzhou 510006, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Guowei Yang
- School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongxiang Lei
- School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Tenjimbayashi M, Fujii S. How Liquid Marbles Break Down: Direct Evidence for Two Breakage Scenarios. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102438. [PMID: 34346161 DOI: 10.1002/smll.202102438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Liquid marbles are nonsticking droplets wrapped with hydrophobic nano- to micrometer particles and are expected to be useful for various applications, especially in industrial and biomedical fields. However, the practical use of liquid marbles is limited by their fragility. In this study, the dynamics of particle monolayer-stabilized liquid marble breakage upon impacting a solid surface are monitored in situ by high-speed interfacial microscopy. The experiments show that the breakage of liquid marbles can be induced by either i) cracking or ii) water penetration depending on the impact energy. The applicable scenario is determined by whether a jamming transition of the wrapping particles occurs during impact. The breakage mechanisms provide insights on how to improve the robustness of liquid marbles in accordance with these scenarios.
Collapse
Affiliation(s)
- Mizuki Tenjimbayashi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| |
Collapse
|
12
|
Sulfur liquid marbles submerged in biphasic systems as microreactors for interfacial synthesis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Ooi CH, Vadivelu R, Jin J, Sreejith KR, Singha P, Nguyen NK, Nguyen NT. Liquid marble-based digital microfluidics - fundamentals and applications. LAB ON A CHIP 2021; 21:1199-1216. [PMID: 33656019 DOI: 10.1039/d0lc01290d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid marbles are droplets with volume typically on the order of microliters coated with hydrophobic powder. Their versatility, ease of use and low cost make liquid marbles an attractive platform for digital microfluidics. This paper provides the state of the art of discoveries in the physics of liquid marbles and their practical applications. The paper first discusses the fundamental properties of liquid marbles, followed by the summary of different techniques for the synthesis of liquid marbles. Next, manipulation techniques for handling liquid marbles are discussed. Applications of liquid marbles are categorised according to their use as chemical and biological reactors. The paper concludes with perspectives on the future development of liquid marble-based digital microfluidics.
Collapse
Affiliation(s)
- Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Roy PK, Shoval S, Sharabi M, Bormashenko E. Soft lithography with liquid marbles. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Li R, Gui B, Mao H, Yang Y, Chen D, Xiong J. Self-Concentrated Surface-Enhanced Raman Scattering-Active Droplet Sensor with Three-Dimensional Hot Spots for Highly Sensitive Molecular Detection in Complex Liquid Environments. ACS Sens 2020; 5:3420-3431. [PMID: 32929960 DOI: 10.1021/acssensors.0c01276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, a surface-enhanced Raman scattering (SERS)-active droplet with three-dimensional (3D) hot spots prepared from a superhydrophobic SERS substrate, which is inspired by the nut wizard strategy, was developed for ultrasensitive detection in complex liquid environments. The SERS substrate was composed of silver-capped parylene C-coated carbon nanoparticles (Ag-PC@CNPs). Such a SERS substrate was prepared by candle-soot deposition to provide a porous carbon nanoparticle layer followed by deposition of a parylene C film to protect the CNPs and then sputtering of silver nanoparticles. Similar to a nut wizard, a droplet rolling on the Ag-PC@CNP-coated substrate picked up the Ag-PC@CNPs. In this way, a self-concentrated and extremely sensitive SERS-active droplet sensor with 3D hot spots was formed. The sensor did not require precise laser focusing and showed relatively high repeatability and much higher sensitivity than those of a corresponding SERS substrate with two-dimensional hot spots. The sensor also achieved high sensitivity and specificity in complex liquid environments; in addition, bovine serum albumin with a concentration as low as 1 pM can be achieved. Consequently, an extremely simple, flexible, and highly sensitive SERS detection technique applicable to liquid biopsy analysis is anticipated.
Collapse
Affiliation(s)
- Ruirui Li
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P.R. China
- National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, P.R. China
| | - Bo Gui
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P.R. China
| | - Haiyang Mao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P.R. China
- Advanced Sensing Department, Wuxi Internet of Things Innovation Center Co. Ltd., Wuxi 214001, P.R. China
| | - Yudong Yang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P.R. China
| | - Dapeng Chen
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P.R. China
- Advanced Sensing Department, Wuxi Internet of Things Innovation Center Co. Ltd., Wuxi 214001, P.R. China
| | - Jijun Xiong
- National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, P.R. China
| |
Collapse
|
16
|
Salehabad SM, Azizian S. Elemental Sulfur-Stabilized Liquid Marbles: Properties and Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43201-43211. [PMID: 32852186 DOI: 10.1021/acsami.0c09846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sulfur-stabilized liquid marbles were readily prepared by rolling water droplets on a sulfur (S8) powder bed. Because of the construction of a gel layer on the surface of liquid marbles, the resulting liquid marbles have shape-designable characteristics. The effects of rolling time and volume of droplets on the deformability of sulfur-stabilized liquid marbles were investigated along with their mechanical stability and lifetime. The capability of sulfur-stabilized liquid marbles to be deformed at different pH values enables these liquid marbles to act as microreservoirs with desired shapes for aqueous solutions. Immersing the sulfur-stabilized liquid marbles into organic liquids leads to an increase in the liquid marbles' lifetime, and thereby they can survive at the interface of aqueous-organic two-phased systems for a long time. Finally, the applications of sulfur-stabilized liquid marbles as photocatalytic microreactors, electrochemical microcells, and monodisperse Pickering-like emulsions were demonstrated.
Collapse
Affiliation(s)
| | - Saeid Azizian
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| |
Collapse
|
17
|
Abstract
The need for miniaturised reaction systems has led to the development of various microreactor platforms, such as droplet-based microreactors. However, these microreactors possess inherent drawbacks, such as rapid evaporation and difficult handling, that limit their use in practical applications. Liquid marbles are droplets covered with hydrophobic particles and are a potential platform that can overcome the weaknesses of bare droplets. The coating particles completely isolate the interior liquids from the surrounding environment, thus conveniently encapsulating the reactions. Great efforts have been made over the past decade to demonstrate the feasibility of liquid marble-based microreactors for chemical and biological applications. This review systemically summarises state-of-the-art implementations of liquid marbles as microreactors. This paper also discusses the various aspects of liquid marble-based microreactors, such as the formation, manipulation, and future perspectives.
Collapse
|
18
|
All-aqueous emulsions as miniaturized chemical reactors in the food and bioprocess technology. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Das A, Maji K, Naskar S, Manna U. Facile optimization of hierarchical topography and chemistry on magnetically active graphene oxide nanosheets. Chem Sci 2020; 11:6556-6566. [PMID: 34094121 PMCID: PMC8152583 DOI: 10.1039/d0sc00517g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/20/2020] [Indexed: 12/02/2022] Open
Abstract
Highly flexible and two-dimensional (2D) graphene oxide (GO) nanosheets have remained instrumental for developing different functional materials for practically relevant applications. In general, 2D GO is routinely assembled into different structures (i.e. layered, porous, etc.) for achieving desired properties. However, a facile approach for modifying GO nanosheets with (1) hierarchical topography and (2) desired chemistry is rare in the literature. In this report, adequate optimization of both hierarchical topography and low surface energy chemistry in a confined space (in the order of μm dimensions) of GO nanosheets is unprecedentedly carried out for achieving magnetically active and 2D 'confined-super-water-repellence'. A chemically reactive polymeric complex was covalently deposited on the GO-nanosheets through a facile 1,4-conjugate addition reaction for adopting a chemically reactive and hierarchically featured polymeric interface. Simultaneously, the deposition of iron oxide nanoparticles on the 2D-nanosheets rendered the entire material magnetically active. The post-covalent modification of these chemically/magnetically active and hierarchically featured GO-nanosheets with octadecylamine (ODA) yielded magnetically active and 2D 'confined-superhydrophobicity'. Further, this synthesized material was extended for addressing highly relevant and severe global challenges of 'oil-in-water' and 'water-in-oil' emulsion separation by either selective collection (with an efficiency of above 1000 wt%) of tiny oil-droplets from bulk water or forming magnetically active 'Pickering-type' aqueous droplets, respectively, under various practically relevant harsh conditions, including extremes of pH, salinity, surfactant contamination, etc. Further, appropriate functionalization of this chemically/magnetically active 2D nano-interface could be useful in developing functional interfaces for various applications related to energy, catalysis and healthcare.
Collapse
Affiliation(s)
- Avijit Das
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Kousik Maji
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Sarajit Naskar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| |
Collapse
|