1
|
Yin J, Zheng X, Zhao Y, Shen X, Cheng T, Shao X, Jing X, Huang S, Lin W. Investigating the Therapeutic Effects of Ferroptosis on Myocardial Ischemia-Reperfusion Injury Using a Dual-Locking Mitochondrial Targeting Strategy. Angew Chem Int Ed Engl 2024; 63:e202402537. [PMID: 38509827 DOI: 10.1002/anie.202402537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
Research on ferroptosis in myocardial ischemia/reperfusion injury (MIRI) using mitochondrial viscosity as a nexus holds great promise for MIRI therapy. However, high-precision visualisation of mitochondrial viscosity remains a formidable task owing to the debilitating electrostatic interactions caused by damaged mitochondrial membrane potential. Herein, we propose a dual-locking mitochondria-targeting strategy that incorporates electrostatic forces and probe-protein molecular docking. Even in damaged mitochondria, stable and precise visualisation of mitochondrial viscosity in triggered and medicated MIRI was achieved owing to the sustained driving forces (e.g., pi-cation, pi-alkyl interactions, etc.) between the developed probe, CBS, and the mitochondrial membrane protein. Moreover, complemented by a western blot, we confirmed that ferrostatin-1 exerts its therapeutic effect on MIRI by improving the system xc-/GSH/GPX4 antioxidant system, confirming the therapeutic value of ferroptosis in MIRI. This study presents a novel strategy for developing robust mitochondrial probes, thereby advancing MIRI treatment.
Collapse
Affiliation(s)
- Junling Yin
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Xueying Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Yuxi Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Xiaotong Shen
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Tian Cheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Xinyu Shao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Xinying Jing
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Shuhong Huang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| |
Collapse
|
2
|
Shen Y, Zhang L, Yang M, Shi T, Li Y, Li L, Yu Y, Deng H, Lin HW, Zhou Y. Switching Prenyl Donor Specificities in Squalene Synthase-Like Aromatic Prenyltransferases from Bacterial Carbazole Alkaloid Biosynthesis. ACS Chem Biol 2023; 18:123-133. [PMID: 36608315 DOI: 10.1021/acschembio.2c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lavanduquinocin (LDQ) is a potent neuroprotective carbazole alkaloid from Streptomyces species that features a rare cyclic monoterpene/cyclolavandulyl moiety attached to the tricyclic carbazole nucleus. We elucidated the biosynthetic logic of LDQ by enzymatically reconstituting the total biosynthetic pathway and identified the genes required for generating the cyclolavandulyl moiety in LDQ based on mutagenetic analysis, including a cyclolavandulyl diphosphate synthase gene ldqA and a squalene synthase-like aromatic prenyltransferase gene ldqG. LdqG is homologous to carbazole prenyltransferases, NzsG and CqsB4, discovered from the biosynthetic pathways of two bacterial carbazoles, neocarazostatin and carquinostatin. Based on analysis of the sequences and modeled protein structures, further in vitro and in vivo site-directed mutagenetic analyses led to identification of two residue sites, F53 and C57 in NzsG vs I54 and A58 in LdqG, which play crucial roles in governing the prenyl donor specificities toward cyclolavandulyl, dimethylallyl, and geranyl diphosphates. By applying this knowledge in strain engineering, prenyl donor delivery was rationally switched to produce the desired prenylated carbazoles. The study provides an opportunity to rationally manipulate the prenylation modification to carbazole alkaloids, which could influence the biological activities by increasing the affinity for membranes as well as the interactions with cellular targets.
Collapse
Affiliation(s)
- Yaoyao Shen
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liu Zhang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ming Yang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongzhen Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Li
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Yu
- Institute of TCM and Natural Products, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, U.K
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yongjun Zhou
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
3
|
Chemoenzymatic Synthesis of Indole-Containing Acyloin Derivatives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010354. [PMID: 36615552 PMCID: PMC9822442 DOI: 10.3390/molecules28010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Indole-containing acyloins are either key intermediates of many antimicrobial/antiviral natural products or building blocks in the synthesis of biologically active molecules. As such, access to structurally diverse indole-containing acyloins has attracted considerable attention. In this report, we present a pilot study of using biotransformation to provide acyloins that contain various indole substituents. The biotransformation system contains the tryptophan synthase standalone β-subunit variant, PfTrpB6, generated from directed evolution in the literature; a commercially available L-amino acid oxidase (LAAO); and the thiamine-diphosphate (ThDP)-dependent enzyme NzsH, encoded in the biosynthetic gene cluster (nzs) of the bacterial carbazole alkaloid natural product named neocarazostatin A. The utilization of the first two enzymes, the PfTrpB variant and LAAO, is designed to provide structurally diverse indole 3-pyruvate derivatives as donor substrates for NzsH-catalysed biotransformation to provide acyloin derivatives. Our results demonstrate that NzsH displays a considerable substrate profile toward donor substrates for production of acyloins with different indole ring systems, suggesting that NzsH could be further explored as a potential biocatalyst via directed evolution to improve the catalytic efficiency in the future.
Collapse
|
4
|
Zhu Y, Shiraishi T, Lin J, Inaba K, Ito A, Ogura Y, Nishiyama M, Kuzuyama T. Complete Biosynthetic Pathway of the Phosphonate Phosphonothrixin: Two Distinct Thiamine Diphosphate-Dependent Enzymes Divide the Work to Form a C-C Bond. J Am Chem Soc 2022; 144:16715-16719. [PMID: 36067081 DOI: 10.1021/jacs.2c06546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphonates often exhibit biological activities by mimicking the phosphates and carboxylates of biological molecules. The phosphonate phosphonothrixin (PTX), produced by the soil-dwelling bacterium Saccharothrix sp. ST-888, exhibits herbicidal activity. In this study, we propose a complete biosynthetic pathway for PTX by reconstituting its biosynthesis in vitro. Our intensive analysis demonstrated that two dehydrogenases together reduce phosphonopyruvate (PnPy) to 2-hydroxy-3-phosphonopropanoic acid (HPPA) to accelerate the thermodynamically unfavorable rearrangement of phosphoenolpyruvate (PEP) to PnPy. The next four enzymes convert HPPA to (3-hydroxy-2-oxopropyl)phosphonic acid (HOPA). In the final stage of PTX biosynthesis, the "split-gene" transketolase homologue, PtxB5/6, catalyzes the transfer of a two-carbon unit attached to the thiamine diphosphate (TPP) cofactor (provided by the acetohydroxyacid synthase homologue, PtxB7) to HOPA to produce PTX. This study reveals a unique C-C bond formation in which two distinct TPP-dependent enzymes, PtxB5/6 and PtxB7, divide the work to transfer an acetyl group, highlighting an unprecedented biosynthetic strategy for natural products.
Collapse
Affiliation(s)
- Yuxun Zhu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taro Shiraishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jianwen Lin
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keito Inaba
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Atsuro Ito
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yusuke Ogura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Nagata R, Suemune H, Kobayashi M, Shinada T, Shin‐ya K, Nishiyama M, Hino T, Sato Y, Kuzuyama T, Nagano S. Structural Basis for the Prenylation Reaction of Carbazole‐Containing Natural Products Catalyzed by Squalene Synthase‐Like Enzymes. Angew Chem Int Ed Engl 2022; 61:e202117430. [DOI: 10.1002/anie.202117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ryuhei Nagata
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Hironori Suemune
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Masaya Kobayashi
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tetsuro Shinada
- Graduate School of Science Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Kazuo Shin‐ya
- National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ku Tokyo 135-0064 Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tomoya Hino
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Yusuke Sato
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Shingo Nagano
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| |
Collapse
|
6
|
Nagata R, Suemune H, Kobayashi M, Shinada T, Shin‐ya K, Nishiyama M, Hino T, Sato Y, Kuzuyama T, Nagano S. Structural Basis for the Prenylation Reaction of Carbazole‐Containing Natural Products Catalyzed by Squalene Synthase‐Like Enzymes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryuhei Nagata
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Hironori Suemune
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Masaya Kobayashi
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tetsuro Shinada
- Graduate School of Science Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Kazuo Shin‐ya
- National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ku Tokyo 135-0064 Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tomoya Hino
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Yusuke Sato
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Shingo Nagano
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| |
Collapse
|
7
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
8
|
Cheng Y, Chen N, Li J, Su J, Yang J, Zhang C, Lin H, Zhou Y. Antimicrobial Chlorinated Carbazole Alkaloids from the
Sponge‐Associated
Actinomycete
Streptomyces diacarni
LHW51701. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yijia Cheng
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou Guangdong 510006 China
| | - Nannan Chen
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Jing Li
- College of Food Science and Technology, Shanghai Ocean University Shanghai 201306 China
| | - Jun‐Cheng Su
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Jingya Yang
- College of Food Science and Technology, Shanghai Ocean University Shanghai 201306 China
| | - Cui‐Xian Zhang
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou Guangdong 510006 China
| | - Hou‐Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Yongjun Zhou
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
9
|
Kim GS, Jang JP, Kwon M, Oh TH, Heo KT, Lee B, Lee JS, Ko SK, Hong YS, Ahn JS, Jang JH. Jejucarbazoles A–C, carbazole glycosides with indoleamine 2,3-dioxygenase 1 inhibitory activity from Streptomyces sp. KCB15JA151. RSC Adv 2021; 11:19805-19812. [PMID: 35479225 PMCID: PMC9033820 DOI: 10.1039/d1ra02895b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
A bioassay-guided investigation led to the isolation of three new carbazole glycosides, jejucarbazoles A–C (1–3), from Streptomyces sp. KCB15JA151. Their planar structures were elucidated by detailed NMR and MS spectroscopic analysis with a literature study. Their relative and absolute configurations were established by ROESY correlations, coupling constants, LC-MS analysis of thiocarbamoyl-thiazolidine carboxylate derivatives, and ECD calculation. Compounds 1–3 showed indoleamine 2,3-dioxygenase 1 (IDO1) inhibitory activity with IC50 values of 18.38, 9.17, and 8.81 μM. The molecular docking analysis suggested that all compounds act as heme-displacing inhibitors against IDO1 enzyme. This study presents the isolation and structure elucidation of jejucarbazoles A–C, isolated from Streptomyces sp. KCB15JA15 and their inhibitory effect and molecular docking analysis against the IDO1 enzyme.![]()
Collapse
|
10
|
Kobayashi M, Kuzuyama T. Recent Advances in the Biosynthesis of Carbazoles Produced by Actinomycetes. Biomolecules 2020; 10:biom10081147. [PMID: 32764478 PMCID: PMC7466098 DOI: 10.3390/biom10081147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Structurally diverse carbazole alkaloids are valuable due to their pharmaceutical properties and have been isolated from nature. Experimental knowledge on carbazole biosynthesis is limited. The latest development of in silico analysis of the biosynthetic gene clusters for bacterial carbazoles has allowed studies on the biosynthesis of a carbazole skeleton, which was established by sequential enzyme-coupling reactions associated with an unprecedented carbazole synthase, a thiamine-dependent enzyme, and a ketosynthase-like enzyme. This review describes the carbazole biosynthetic mechanism, which includes a key step in enzymatic formation of a tricyclic carbazole skeleton, followed by modifications such as prenylation and hydroxylation in the skeleton.
Collapse
Affiliation(s)
- Masaya Kobayashi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence: ; Fax: +81-3-5841-3080
| |
Collapse
|
11
|
Zhang SY, Zhan ZJ, Zhang H, Qi H, Zhang LQ, Chen SX, Gan LS, Wang JD, Ma LF. Morindolestatin, Naturally Occurring Dehydromorpholinocarbazole Alkaloid from Soil-Derived Bacterium of the Genus Streptomyces. Org Lett 2020; 22:1113-1116. [PMID: 31977234 DOI: 10.1021/acs.orglett.9b04609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Novel antilipid peroxidative carbazole alkaloids, antiostatin A5 (1), antiostatin A6 (2), and (±)-morindolestatin (3), were isolated from a new soil-derived Streptomyces sp. Compound 2 possesses an unusual cyclohexene side chain. Compound 3 was a pair of enantiomers featuring an unprecedented [1,4]oxazino[2,3-c]carbazole ring system. The absolute configuration of 3 was determined by online HPLC-ECD and ECD calculation. A racemization mechanism and putative biosynthetic pathway are discussed.
Collapse
Affiliation(s)
- Shao-Yong Zhang
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province , Huzhou University , Huzhou 313000 , P.R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P.R. China
| | - Hui Zhang
- Zhejiang Key Laboratory of Antifungal Drugs , Zhejiang Hisun Pharmaceutical Co., Ltd. , Taizhou 318000 , P.R. China
| | - Huan Qi
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province , Huzhou University , Huzhou 313000 , P.R. China
| | - Li-Qin Zhang
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province , Huzhou University , Huzhou 313000 , P.R. China
| | - Shi-Xin Chen
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , P.R. China
| | - Li-She Gan
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , P.R. China
| | - Ji-Dong Wang
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province , Huzhou University , Huzhou 313000 , P.R. China
| | - Lie-Feng Ma
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P.R. China.,Zhejiang Xinguang Pharmaceutical Limited Liability Company , Shaoxing , 312400 , P.R. China
| |
Collapse
|
12
|
Liu Y, Su L, Fang Q, Tabudravu J, Yang X, Rickaby K, Trembleau L, Kyeremeh K, Deng Z, Deng H, Yu Y. Enzymatic Reconstitution and Biosynthetic Investigation of the Bacterial Carbazole Neocarazostatin A. J Org Chem 2019; 84:16323-16328. [PMID: 31729221 DOI: 10.1021/acs.joc.9b02688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tricyclic carbazole is an important scaffold in many naturally occurring metabolites, as well as valuable building blocks. Here we report the reconstitution of the ring A formation of the bacterial neocarazostatin A carbazole metabolite. We provide evidence of the involvement of two unusual aromatic polyketide proteins. This finding suggests how new enzymatic activities can be recruited to specific pathways to expand biosynthetic capacities. Finally, we leveraged our bioinformatics survey to identify the untapped capacity of carbazole biosynthesis.
Collapse
Affiliation(s)
- Yating Liu
- Institute of TCM and Natural Products, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences , Wuhan University , 185 East Lake Road , Wuhan 430071 , People's Republic of China
| | - Li Su
- Institute of TCM and Natural Products, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences , Wuhan University , 185 East Lake Road , Wuhan 430071 , People's Republic of China
| | - Qing Fang
- Marine Biodiscovery Centre, Department of Chemistry , University of Aberdeen , Aberdeen , Scotland AB24 3UE , United Kingdom
| | - Jioji Tabudravu
- School of Forensic & Applied Sciences, Faculty of Science & Technology , University of Central Lancashire , Preston , Lancashire , England PR1 2HE , United Kingdom
| | - Xiaohui Yang
- School of Chemistry , Xiamen University , Xiamen 361005 , People's Republic of China
| | - Kirstie Rickaby
- Marine Biodiscovery Centre, Department of Chemistry , University of Aberdeen , Aberdeen , Scotland AB24 3UE , United Kingdom
| | - Laurent Trembleau
- Marine Biodiscovery Centre, Department of Chemistry , University of Aberdeen , Aberdeen , Scotland AB24 3UE , United Kingdom
| | - Kwaku Kyeremeh
- Department of Chemistry , University of Ghana , P.O. Box LG56, Legon-Accra , Ghana
| | - Zixin Deng
- Institute of TCM and Natural Products, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences , Wuhan University , 185 East Lake Road , Wuhan 430071 , People's Republic of China
| | - Hai Deng
- Marine Biodiscovery Centre, Department of Chemistry , University of Aberdeen , Aberdeen , Scotland AB24 3UE , United Kingdom
| | - Yi Yu
- Institute of TCM and Natural Products, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences , Wuhan University , 185 East Lake Road , Wuhan 430071 , People's Republic of China
| |
Collapse
|
13
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2019. [DOI: 10.1039/c9np90045d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as burlemarxione A from Clusia burle-marxii.
Collapse
|