1
|
Li P, Zhang Y, Liu Z, Kong Q, Fu L, Huo X. Pd/Cu-Cocatalyzed Asymmetric Cascade Heck/Tsuji-Trost Reaction to Access Non-natural Tryptophans. Org Lett 2024; 26:10356-10363. [PMID: 39568192 DOI: 10.1021/acs.orglett.4c03981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
A Pd-catalyzed asymmetric Heck cascade reaction involving the intramolecular carbopalladation of unsaturated hydrocarbons, followed by nucleophilic trapping of the resulting palladium species, is a powerful approach for constructing chiral N-heterocycles. However, the use of prochiral nucleophiles in these reactions remains significantly underexplored. Herein, we report a novel Pd/Cu catalytic system for the asymmetric cascade Heck/Tsuji-Trost reaction of allenamides and aldimine esters. This robust method allows for the rapid synthesis of a wide range of enantiopure non-natural α-substituted tryptophans in high yields (up to 99% yield) with excellent enantioselectivities (up to 98% ee). Additionally, the synthetic utility of this protocol is demonstrated through scale-up experiments and diverse valuable transformations.
Collapse
Affiliation(s)
- Panpan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yang Zhang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, 111 Renai Road, Suzhou 215123, P. R. China
| | - Zijiao Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qi Kong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Lei Fu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, 111 Renai Road, Suzhou 215123, P. R. China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
2
|
Li H, Sheng W, Chen J. Visible light-induced cascade sulfonylation/annulation of ortho-allyloxy chalcones with sodium sulfinates for the synthesis of sulfonated chromane derivatives. Org Biomol Chem 2024; 22:8827-8831. [PMID: 39397714 DOI: 10.1039/d4ob01319k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A visible-light-induced radical cascade reaction for the synthesis of structurally diverse sulfonated chromanes is described. The protocol involves the addition of sulfonyl radicals to ortho-allyloxy chalcones and intramolecular Michael addition reactions in the presence of eosin Y as a photocatalyst. Additionally, this protocol shows that it is also an effective method to construct seven-membered oxygen-containing heterocycles. The method features a wide substrate scope, the use of easily accessible materials and excellent functional group tolerance with high to excellent yields. Control experiments and mechanistic studies indicate that a visible light-induced radical cascade process is involved in the transformation.
Collapse
Affiliation(s)
- Huimin Li
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wenli Sheng
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Junmin Chen
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
3
|
Xu B, Ji D, Zhang Z, Zhang J. Remote C─H Bond Activation via Enantioselective Carbopalladation and 1,4-Pd Migration Cascade Process. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406443. [PMID: 39225313 PMCID: PMC11516156 DOI: 10.1002/advs.202406443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Carbopalladation-initiated cascade reaction involving 1,4-Pd migration is a straightforward and powerful approach to activate remote C─H bond, forging versatile fused polycyclic compounds containing fluorene fragment which are highly valuable synthetic targets. However, its asymmetric variants pose considerable challenges and have not been explored. Here the first asymmetric palladium-catalyzed tandem carbopalladation is reported, 1,4-Pd migration reaction of ortho-iodophenol-derived allyl ether under mild conditions, allowing the transformation of a wide range of substrates in good to excellent enantioselectivities, and providing a facile and straight forward access to tetracyclic dihydroindeno[1,2,3-de]chromene bearing a chiral fluorene skeleton. A good functional group tolerance, high stereoselectivity, as well as the good chiroptical properties (high fluorescence quantum yields, circular dichroism) of the products make this approach highly attractive. Moreover, density functional theory (DFT) calculations indicate that the protonation of five-membered palladacycle intermediate is more favorable rather than its direct reductive elimination process.
Collapse
Affiliation(s)
- Bing Xu
- Department of ChemistryFudan University2005 Songhu RoadShanghai200438China
- Zhuhai Fudan Innovation InstituteHengqing DistrictZhuhai519000China
| | - Danting Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University3663 N. Zhongshan RoadShanghai200062China
| | - Zhan‐Ming Zhang
- Department of ChemistryFudan University2005 Songhu RoadShanghai200438China
- Fudan Zhangjiang InstituteShanghai201203China
| | - Junliang Zhang
- Department of ChemistryFudan University2005 Songhu RoadShanghai200438China
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University3663 N. Zhongshan RoadShanghai200062China
- School of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| |
Collapse
|
4
|
Zhao G, Li W, Zhang J. Recent Advances in Palladium-Catalyzed Asymmetric Heck/Tsuji-Trost Reactions of 1,n-Dienes. Chemistry 2024; 30:e202400076. [PMID: 38349344 DOI: 10.1002/chem.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Indexed: 03/01/2024]
Abstract
Transition-metal catalyzed tandem asymmetric reactions were powerful tools to access various chiral compounds. Many strategies have been developed for the coupling of 1,n-dienes with aryl halides via a tandem Heck/Tsuji-Trost process. However, the control of regio- and stereo-chemistry remains a challenging task. This minireview details the recent advances in the field of asymmetric Heck/Tsuji-Trost reactions catalyzed by palladium complex, which have opened new opportunities and expanded our understanding in this area of research in recent years.
Collapse
Affiliation(s)
- Guofeng Zhao
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471023, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| |
Collapse
|
5
|
Fang C, Wang QP, Xu B, Zhang ZM, Zhang J. Palladium/XuPhos-catalyzed enantioselective cascade Heck/intermolecular C(sp 2)-H alkylation reaction. Chem Sci 2024; 15:5573-5580. [PMID: 38638207 PMCID: PMC11023025 DOI: 10.1039/d4sc00262h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
Palladium-catalyzed enantioselective domino Heck/intramolecular C-H functionalization reaction, as a valuable strategy for creating molecular diversity, has remained a prominent challenge. Here, we describe a Pd/XuPhos catalyst for asymmetric domino Heck/intermolecular C-H alkylation of unactivated alkenes with diverse polyfluoro- and heteroarenes in a highly chemo- and enantioselective manner. This process enables efficient synthesis of various dihydrobenzofurans, indolines and indanes, which are of interest in pharmaceutical research and other areas. Late-stage modifications of the core structures of natural products are also well showcased. Moreover, synthetic transformations create a valuable platform for preparing a series of functionalized molecules. Several control experiments for mechanistic study are conducted to pursue a further understanding of the reaction.
Collapse
Affiliation(s)
- Chao Fang
- Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| | - Quan-Pu Wang
- Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| | - Bing Xu
- Department of Chemistry, Fudan University Shanghai 200438 P. R. China
- Zhuhai Fudan Innovation Institute Zhuhai Guangdong 519000 P. R. China
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University Shanghai 200438 P. R. China
- Fudan Zhangjiang Institute Shanghai 201203 P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University Shanghai 200438 P. R. China
- Zhuhai Fudan Innovation Institute Zhuhai Guangdong 519000 P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
6
|
Yu S, Jin Z, Tong X, Qi L. Palladium-Catalyzed Heck/Suzuki Tandem Reaction of ( Z)-1-Iodo-1,6-dienes and Organoboronic Acids. Org Lett 2024; 26:2175-2179. [PMID: 38451537 DOI: 10.1021/acs.orglett.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The Heck/Suzuki tandem reaction has emerged as an essential strategy for the synthesis of complex molecules. Herein, an efficient palladium-catalyzed Heck/Suzuki tandem reaction of (Z)-1-iodo-1,6-dienes with organoboronic acids is described, providing various tetrahydropyridines in good to excellent yields under mild reaction conditions. The key to the success of this approach is the avoidance of the intramolecular second Heck insertion occurring prior to the transmetalation step. In addition, the asymmetric version of this reaction is investigated to deliver chiral tetrahydropyridine in excellent yield with promising enantioselectivity.
Collapse
Affiliation(s)
- Shuling Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
| | - Zhengneng Jin
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
| | - Linjun Qi
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
| |
Collapse
|
7
|
Abstract
ConspectusPalladium catalysis, as one of the most important strategies in asymmetric synthesis, has continuously attracted the attention of organic chemists. With the development of chiral ligands, increasingly challenging reactions and substantial progress in asymmetric catalysis are being realized.Since 2014, we have focused on exploiting a series of sulfinamide phosphine ligands called "Sadphos," including Ming-Phos, Xu-Phos, Xiao-Phos, Xiang-Phos, TY-Phos, PC-Phos, GF-Phos, and WJ-Phos. These ligands can be easily prepared in two to four steps using commercial materials. These new types of ligands have shown remarkable performance in transition-metal-catalyzed reactions, especially in Pd-catalyzed transformations. X-ray diffraction analysis, mechanistic studies, and density functional theory calculations have revealed that Sadphos ligands can coordinate with the Pd0 and PdII species in the Pd0/P, Pd0/P,S, or PdII/P,O modes.This Account summarizes our recent efforts toward palladium-catalyzed enantioselective reactions using Sadphos ligands. These ligands were found to be privileged and very crucial to promote the reactions by increasing the reactivity and enantioselectivity. Ming-Phos is an effective ligand in Pd-catalyzed asymmetric coupling and intramolecular Heck reactions, providing highly enantioselective trisubstituted allenes, axially chiral anilides, gem-diarylmethine silanes, and disubstituted dihydroisoquinolinones. Incorporation of an electron-rich cyclohexyl group in the phosphine moiety afforded Xu-Phos, which showed a unique effect in a series of asymmetric transformations, including reductive Heck, dearomative Mizoroki-Heck, tandem Heck/Suzuki coupling, carboiodination, carboamination, and cross-coupling reactions. Using a similar strategy, our group synthesized more electron-rich TY-Phos and Xiang-Phos ligands bearing t-butyl and 1-adamantyl group at P atoms, respectively. Regarding stereoelectronic features, these two characteristic ligands were the best choice to satisfy the requirements of the palladium-catalyzed fluoroarylation of gem-difluoroalkenes, intermolecular α-arylation of aldehydes, carboetherification of alkenyl oximes, and carboheterofunctionalization of 2,3-dihydrofurans. Compared with the aforementioned Sadphos ligands, the attractive features of Xiao-Phos, including high nucleophilicity originating from the CH2PPh2 group and the ortho-substituent effect at the side of the aryl ring, are presumably responsible for its efficiency. The Pd/Xiao-Phos catalyst system shows good performance in a series of cross-coupling reactions of secondary phosphine oxides, affording P-stereogenic products bearing multiple types of molecular skeletons. The modification of the basic Sadphos backbone by introducing a xanthene skeleton motivated us to design and synthesize monophosphines, named PC-Phos and GF-Phos. PC-Phos is effective in various reactions, including arylation of sulfenate anions, denitrogenative cyclization of benzotriazoles, and dearomatization of indoles. The practicability of GF-Phos was validated in the Pd-catalyzed asymmetric three-component coupling of N-tosylhydrazones, aryl halides, and terminal alkynes, as well as in the cross-coupling of N-tosylhydrazones and vinyl iodides with pendent amines. In addition, ferrocene-derived WJ-Phos was employed in the palladium-catalyzed Suzuki-Miyaura cross-coupling reaction, affording axially chiral biaryl monophosphine oxides in excellent enantiomeric excesses.
Collapse
Affiliation(s)
- Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
8
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
9
|
Qu HY, Zheng WH. Synthesis of Chiral Biphenyl Monophosphines as Ligands in Enantioselective Suzuki-Miyaura Coupling. Org Lett 2023; 25:9119-9123. [PMID: 38112557 DOI: 10.1021/acs.orglett.3c03487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, we describe our design and synthesis of novel chiral monophosphine ligands by the short-step addition of chiral lactates as side chains to the well-known ligand SPhos/RuPhos. The new chiral ligands were shown to be highly efficient in palladium-catalyzed Suzuki-Miyaura coupling, providing a series of axially chiral biphenyl products in high yield and high enantioselectivity. Furthermore, the gram-scale reaction and the diverse conversions of the products demonstrated the potential utility of the approach.
Collapse
Affiliation(s)
- Hong-Yu Qu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
10
|
Gao Y, Gao L, Zhu E, Yang Y, Jie M, Zhang J, Pan Z, Xia C. Nickel/photoredox dual catalyzed arylalkylation of nonactivated alkenes. Nat Commun 2023; 14:7917. [PMID: 38036527 PMCID: PMC10689762 DOI: 10.1038/s41467-023-43748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Alkene dicarbofunctionalization is an efficient strategy and operation-economic fashion for introducing complexity in molecules. A nickel/photoredox dual catalyzed arylalkylation of nonactivated alkenes for the simultaneous construction of one C(sp3)-C(sp3) bond and one C(sp3)-C(sp2) bond has been developed. The mild catalytic method provided valuable indanethylamine derivatives with wide substrate scope and good functional group compatibility. An enantioselective dicarbofunctionalization was also achieved with pyridine-oxazoline as a ligand. The efficiency of metallaphotoredox dicarbofunctionalization was demonstrated for the concise synthesis of pharmaceutically active compounds.
Collapse
Affiliation(s)
- Yuxi Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Lijuan Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Endiao Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Yunhong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Mi Jie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Jiaqian Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China.
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
11
|
Ma Y, Liu QH, Han YP. Palladium-Catalyzed Enantioselective Intramolecular Heck Dearomative Annulation of Indoles with N-Tosylhydrazones. J Org Chem 2023; 88:15881-15893. [PMID: 37922202 DOI: 10.1021/acs.joc.3c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
An elegant Pd(dba)2-catalyzed enantioselective Heck dearomative annulation of indoles and N-tosylhydrazones for the straightforward assembly of structurally diverse optically active indoline scaffolds containing the quaternary carbon centers at the C2 position has been developed. The tandem protocol, which utilized a Pd(dba)2/BINOL-based phosphoramidite ligand as the catalytic system, proceeded smoothly through successive oxidative addition, intramolecular carbon palladation, migratory insertion, and β-elimination sequences, leading to the chiral indoline derivatives in moderate to excellent yields, with excellent enantioselectivities and diastereoselectivities. In addition, the synthetic practicability of the catalytic system was underlined by a scaled-up experiment and the late-stage derivatization of the products, thus highlighting the potential applications in synthetic chemistry, medicinal chemistry, and material science.
Collapse
Affiliation(s)
- Yue Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Qing-Hui Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| |
Collapse
|
12
|
Yang L, Liang X, Ding Y, Li X, Li X, Zeng Q. Transition Metal-Catalyzed Enantioselective Synthesis of Chiral Five- and Six-Membered Benzo O-heterocycles. CHEM REC 2023; 23:e202300173. [PMID: 37401804 DOI: 10.1002/tcr.202300173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Enantiomerically enriched five- and six-membered benzo oxygen heterocycles are privileged architectures in functional organic molecules. Over the last several years, many effective methods have been established to access these compounds. However, comprehensive documents cover updated methodologies still in highly demand. In this review, recent transition metal catalyzed transformations lead to chiral five- and six-membered benzo oxygen heterocycles are presented. The mechanism and chirality transfer or control processes are also discussed in details.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xiayu Liang
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| | - Yuyang Ding
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xinran Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| |
Collapse
|
13
|
Ma X, Feng A, Zhang D. Origin of Enantio- and Chemoselectivity in the Synthesis of Spirocycles via Palladium/Xu-Phos-Catalyzed Cascade Heck/Remote C(sp 2)-H Alkylation: A Computational Mechanistic Study. J Phys Chem A 2023; 127:8882-8891. [PMID: 37830770 DOI: 10.1021/acs.jpca.3c05161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Density functional theory (DFT) calculations were performed to study the mechanism and factors affecting the enantio-, regio-, and chemoselectivities in the palladium/Xu-Phos-catalyzed cascade Heck/remote C(sp2)-H alkylation reaction. The active catalyst is found to be able to sustain coordination with P and S atoms and can adapt its coordination mode to accommodate the significant steric hindrance between the ligand and substrate, unlike previous findings that showed coordination with P and O atoms. The reaction is established to occur in sequence through the oxidative addition of the aryl iodide to Pd(0), intramolecular alkene insertion, C(sp2)-H bond activation, and C(sp2)-C(sp3) bond reductive elimination. The C(sp2)-C(sp3) bond reductive elimination is identified as the rate-determining step, and the intramolecular alkene insertion as the enantioselectivity-determining step. The high enantioselectivity originates from the stronger electronic interaction between the catalyst and substrate; the exclusive 5-exo-regioselectivity is due to the stronger nucleophilicity of the terminal alkene carbon atom, and the chemoselectivity of C-H activation over carboiodination is driven by thermodynamics.
Collapse
Affiliation(s)
- Xuexiang Ma
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Aili Feng
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
14
|
Zou L, Gao Y, Zhang Q, Ye XY, Xie T, Wang LW, Ye Y. Recent Progress in Asymmetric Domino Intramolecular Cyclization/Cascade Reactions of Substituted Olefins. Chem Asian J 2023; 18:e202300617. [PMID: 37462417 DOI: 10.1002/asia.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The domino cyclization/coupling strategy is one of the most effective methods to produce cyclized and multi-functionalized compounds from olefins, which has attracted huge attention from chemists and biochemists especially for its considerable potential of enantiocontrol. Nowadays, more and more studies are developed to achieve difunctionalization of substituted olefins through an asymmetric domino intramolecular cyclization/cascade reaction, which is still an elegant choice to accomplish several synthetic ideas such as complex natural products and drugs. This review surveys the recent advances in this field through reaction type classification. It might serve as useful knowledge desktop for the community and accelerate their research.
Collapse
Affiliation(s)
- Liang Zou
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, P. R. China
| | - Qiaoman Zhang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
15
|
Chen C, Liu L, Liu JP, Ding J, Ni C, Ni C, Zhu B. Palladium-catalyzed Heck-carbonylation of alkene-tethered carbamoyl chlorides with aryl formates. Org Biomol Chem 2023; 21:7129-7135. [PMID: 37602718 DOI: 10.1039/d3ob01149f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
We report a palladium-catalyzed Heck-carbonylation of alkene-tethered carbamoyl chlorides by utilizing aryl formates as convenient CO surrogates. One C-O and two C-C bonds are constructed to give diversiform esterified oxindoles/γ-lactams bearing an all-carbon quaternary stereocenter under gas-free conditions. This transformation features a wide substrate scope and good functional group tolerance and can be easily applied to late-stage functionalization.
Collapse
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Liying Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Jin-Ping Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Jie Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Chang Ni
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Chunjie Ni
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, P. R. China.
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| |
Collapse
|
16
|
Zhu X, Liu F, Ba X, Wu Y. Tandem Suzuki Polymerization/Heck Cyclization Reaction to Form Ladder-Type 9,9'-Bifluorenylidene-Based Conjugated Polymer. Polymers (Basel) 2023; 15:3360. [PMID: 37631417 PMCID: PMC10458247 DOI: 10.3390/polym15163360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The synthesis of ladder-type 9,9'-bifluorenylidene-based conjugated polymer is reported. Unlike the typical synthetic strategy, the new designed ladder-type conjugated polymer is achieved via tandem Suzuki polymerization/Heck cyclization reaction in one-pot. In the preparation process, Suzuki polymerization reaction occurred first and then the intramolecular Heck cyclization followed smoothly under the same catalyst Pd(PPh3)4. The model reaction proved that the introduction of iodine (I) for this tandem reaction can effectively control the sequential bond-forming process and inhibit the additional competitive side reactions. Thus, small-molecule model compounds could be obtained in high yields. The successes of the synthesized small molecule and polymer compounds indicate that the Pd-catalyzed tandem reaction may be an effective strategy for improving extended π-conjugated materials.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (X.Z.); (X.B.)
| | - Feng Liu
- College of Basic Medicine, Hebei University, Baoding 071002, China
| | - Xinwu Ba
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (X.Z.); (X.B.)
| | - Yonggang Wu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (X.Z.); (X.B.)
| |
Collapse
|
17
|
Maejima S, Yamaguchi E, Itoh A. Visible-Light-Induced Regioselective Functionalization of α-Olefin: Development of One-Pot Photo-Synthesis of C 3-Substituted Dihydrobenzofurans. Org Lett 2023; 25:1856-1861. [PMID: 36866934 DOI: 10.1021/acs.orglett.3c00335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A method for the catalytic regioselective synthesis of C3-substituted dihydrobenzofurans (DHBs) via [2 + 2] photocycloaddition of alkene and p-benzoquinone is developed. This method realizes the rapid synthesis of DHBs with readily available substrates and simple reaction conditions by using Lewis acid B(C6F5)3 and Lewis base P(o-tol)3 as a catalyst in combination with the classical Paternò-Büchi reaction.
Collapse
Affiliation(s)
- Saki Maejima
- Laboratory of Pharmaceuticals Synthetic Chemistry, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceuticals Synthetic Chemistry, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceuticals Synthetic Chemistry, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
18
|
Dong Z, Tang Q, Xu C, Chen L, Ji H, Zhou S, Song L, Chen LA. Directed Asymmetric Nickel-Catalyzed Reductive 1,2-Diarylation of Electronically Unactivated Alkenes. Angew Chem Int Ed Engl 2023; 62:e202218286. [PMID: 36719253 DOI: 10.1002/anie.202218286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/01/2023]
Abstract
Transition-metal catalyzed intermolecular 1,2-diarylation of electronically unactivated alkenes has emerged as an extensive research topic in organic synthesis. However, most examples are mainly limited to terminal alkenes. Furthermore, transition-metal catalyzed asymmetric 1,2-diarylation of unactivated alkenes still remains unsolved and is a formidable challenge. Herein, we describe a highly efficient directed nickel-catalyzed reductive 1,2-diarylation of unactivated internal alkenes with high diastereoselectivities. More importantly, our further effort towards enantioselective 1,2-diarylation of the unactivated terminal and challenging internal alkenes is achieved, furnishing various polyarylalkanes featuring benzylic stereocenters in high yields and with good to high enantioselectivities and high diastereoselectivities. Interestingly, the generation of cationic Ni-catalyst by adding alkali metal fluoride is the key to increased efficiency of this enantioselective reaction.
Collapse
Affiliation(s)
- Zhan Dong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qiongyao Tang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Changyu Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Li Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Haiting Ji
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Sitian Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Liangliang Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Liang-An Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
19
|
Pan Q, Ping Y, Kong W. Nickel-Catalyzed Ligand-Controlled Selective Reductive Cyclization/Cross-Couplings. Acc Chem Res 2023; 56:515-535. [PMID: 36688822 DOI: 10.1021/acs.accounts.2c00771] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ConspectusThe use of quaternary stereocenters during lead candidate optimization continues to grow because of improved physiochemical and pharmacokinetic profiles of compounds with higher sp3 fraction. Pd-catalyzed redox-neutral alkene difunctionalization involving carbopalladation of alkenes followed by nucleophilic-trapping σ-alkyl-palladium intermediates has been developed as an efficient method to construct quaternary stereocenters. However, the low chemoselectivity and air sensitivity of organometallic nucleophiles, as well as their low availability and accessibility, limit the scope of application of this elegant strategy. Recently, Ni-catalyzed reductive cross-coupling has evolved into a privileged strategy to easily construct valuable C(sp3)-C bonds. Despite great progress, the enantioselective coupling of C(sp3) electrophiles still relies on activated or functionalized alkyl precursors, which are often unstable and require multiple steps to prepare. Therefore, Ni-catalyzed reductive difunctionalization of alkenes via selective cyclization/cross-coupling was developed. This strategy not only offers a robust and practical alternative for traditional redox-neutral alkene difunctionalization but also provides strategic complementarity for reductive cross-coupling of activated alkyl electrophiles. In this Account, we summarize the latest results from our laboratory on this topic. These findings mainly include our explorations in modulating the enantioselectivity and cyclization mode of reductive cyclization/cross-couplings.We will first discuss Ni-catalyzed enantioselective reductive cyclization/cross-coupling to construct valuable chiral heterocycles with quaternary stereocenters and focus on the effects of ligands, reductants, and additives and their roles in reductive cross-coupling. A wide range of electrophiles have been explored, including aryl halides, vinyl halides, alkynyl halides, gem-difluoroalkenes, CO2, trifluoromethyl alkenes, and cyano electrophiles. The synthetic potential of this approach has also been demonstrated in the synthesis of biologically active natural products and drug molecules. Second, we will detail how to tune the steric effects of nickel catalysts by modifying bipyridine ligands for regiodivergent cyclization/cross-couplings. Specifically, the use of bidentate ligands favors exo-selective cyclization/cross-coupling, while the use of a carboxylic acid-modified bipyridine ligand permits endo-selective cyclization/cross-coupling. We will also show how to activate the amide substrate by altering the electronic and steric properties of substituents on the nitrogen, thereby enabling the nucleophilic addition of aryl halides to amide carbonyls. Further investigation of ligand properties has led to tunable cyclization/cross-couplings (addition to the amide carbonyl vs 7-endo-cyclization) for the divergent synthesis of pharmacologically important 2-benzazepine frameworks. Finally, we serendipitously discover that modifying the ligands of nickel catalysts and changing the oxidation state of nickel can control the migratory aptitude of different groups, thus providing a switchable skeletal rearrangement strategy. This transformation is of high synthetic value because it represents a conceptually unprecedented new approach to C-C bond activation. Thus, this Account not only summarizes synthetic methods that allow the formation of valuable chiral heterocycles with quaternary stereocenters using a wide variety of electrophiles but also provides insight into the relationship between ligand structure, substrate, and cyclization selectivity.
Collapse
Affiliation(s)
- Qi Pan
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Yuanyuan Ping
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
20
|
Feng J, Shi J, Wei L, Liu M, Li Z, Xiao Y, Zhang J. Palladium/PC-Phos-Catalyzed Asymmetric Heck/Tsuji-Trost Reactions of Amino-Tethered 1,3-Cyclohexadiene with Aryl and Alkenyl Halides. Angew Chem Int Ed Engl 2023; 62:e202215407. [PMID: 36317934 DOI: 10.1002/anie.202215407] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 12/04/2022]
Abstract
Chiral perhydroindoles are found in a number of natural products and biologically active compounds. Therefore, the development of new asymmetric methodology for rapid access to this core is of high importance. Herein, we reported a highly regio- and diastereo-selective palladium/PC-Phos-catalyzed asymmetric Heck/Tsuji-Trost reactions of readily available amino tethered 1,3-cyclohexadienes with aryl and alkenyl halides, delivering various functionalized chiral hexahydroindoles in good yields with high enantioselectivity. The application of this reaction to the concise synthesis of (-)-α-Lycorane was demonstrated. DFT computation results indicate that the difference in ΔEdis of two migration insertion transition states determines the enantioselectivity of the reaction.
Collapse
Affiliation(s)
- Juan Feng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Rd, 200241, Shanghai, P. R. China
| | - Jiayi Shi
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Lan Wei
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Rd, 200241, Shanghai, P. R. China
| | - Mingqing Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Rd, 200241, Shanghai, P. R. China
| | - Zhiming Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yuanjing Xiao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Rd, 200241, Shanghai, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
21
|
Feng J, Shi J, Wei L, Liu M, Li Z, Xiao Y, Zhang J. Palladium/PC‐Phos‐Catalyzed Asymmetric Heck/Tsuji–Trost Reactions of Amino‐Tethered 1,3‐Cyclohexadiene with Aryl and Alkenyl Halides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202215407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Juan Feng
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Rd 200241 Shanghai P. R. China
| | - Jiayi Shi
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Lan Wei
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Rd 200241 Shanghai P. R. China
| | - Mingqing Liu
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Rd 200241 Shanghai P. R. China
| | - Zhiming Li
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Yuanjing Xiao
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Rd 200241 Shanghai P. R. China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
22
|
Synthesis of Novel Key Chromophoric Intermediates via C-C Coupling Reactions. Catalysts 2022. [DOI: 10.3390/catal12101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The fundamentals of Pd-catalyzed Csp2−Csp2 Miyaura borylation, Suzuki cross-coupling, and Stille cross-coupling reactions for a variety of borylated precursors based on phenothiazine (PTZ), phenoxazine (POZ), carbazole (Cz), and quinoxaline (QX) units have been explored. Three palladium-based catalysts were chosen for this study: Pd(PPh3)4, Pd(PPh3)2Cl2, and Pd(dppf)Cl2, applying different reaction conditions. Around 16 desired chromophores were successfully designed and synthesized using C-C cross-coupling reactions in moderate to excellent yields, including PTZ, POZ, and Cz units coupled with QX, indolinium iodide, thienyl, phenyl, or triphenylamine moieties. Additionally, PTZ, POZ, and Cz have been employed in synthesizing various pinacol boronate ester derivatives in good to moderate yields. Interestingly, Pd(dppf)Cl2 was found to be the best catalyst for borylation, and C-C cross-coupling reactions occurred in as little as 30 min, with an excellent yield exceeding 98%. Pd(PPh3)4 and Pd(PPh3)2Cl2 catalyzed the reaction to obtain the desired products in moderate to good yields after a long time (20–24 h). On the other hand, the Suzuki-Miyaura cross-coupling between N-(2-methyl)hexyl carbazole pinacol boronate ester derivative 10c and three halogenated quinoxaline derivatives—4-(3-(5-bromothiophen-2-yl)quinoxalin-2-yl)benzaldehyde (27), 4-(5-(3-(5-bromothiophen-2-yl)quinoxalin-2-yl)thiophen-2-yl)benzaldehyde (30), and 4-(3-chloroquinoxalin-2-yl)benzaldehyde (25) catalyzed by Pd(PPh3)4—afforded three carbazole-quinoxaline chromophores (28, 30, and 31, respectively) in 2–3 h, with good to excellent yields reaching 86%. The electron-deficient QX couplers proved to be coupled efficiently using the Stille coupling reaction, which involves the coupling between electron-rich orgaostannane and electron-deficient halide. The synthesized precursors and desired chromophores were characterized by FTIR, 1H-NMR, 13C-NMR, and HRMS.
Collapse
|
23
|
Sun Y, Ma C, Li Z, Zhang J. Palladium/GF-Phos-catalyzed asymmetric carbenylative amination to access chiral pyrrolidines and piperidines. Chem Sci 2022; 13:11150-11155. [PMID: 36320471 PMCID: PMC9517724 DOI: 10.1039/d2sc03999k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
The cross-coupling of N-tosylhydrazones has emerged as a powerful method for the construction of structurally diverse molecules, but the development of catalytic enantioselective versions still poses considerable challenges and only very limited examples have been reported. We herein report an asymmetric palladium/GF-Phos-catalyzed carbenylative amination reaction of N-tosylhydrazones and (E)-vinyl iodides pendent with amine, which allows facile access to a range of chiral pyrrolidines and piperidines in good yields (45-93%) with up to 96.5 : 3.5 er. Moreover, mild conditions, general substrate scope, scaled-up preparation, as well as the efficient synthesis of natural product (-)-norruspoline are practical features of this method.
Collapse
Affiliation(s)
- Yue Sun
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Chun Ma
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Zhiming Li
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junliang Zhang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
- Zhuhai Fudan Innovation Institute Hengqing District Zhuhai 519000 China
| |
Collapse
|
24
|
Ni S, Vaillant FL, Mateos-Calbet A, Martin R, Cornella J. Ni-Catalyzed Oxygen Transfer from N 2O onto sp 3-Hybridized Carbons. J Am Chem Soc 2022; 144:18223-18228. [PMID: 36162124 PMCID: PMC9562464 DOI: 10.1021/jacs.2c06227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Herein we disclose a catalytic synthesis of cycloalkanols
that
harnesses the potential of N2O as an oxygen transfer agent
onto sp3-hybridized carbons. The protocol is distinguished
by its mild conditions and wide substrate scope, thus offering an
opportunity to access carbocyclic compounds from simple precursors
even in an enantioselective manner. Preliminary mechanistic studies
suggest that the oxygen insertion event occurs at an alkylnickel species
and that N2O is the O transfer reagent.
Collapse
Affiliation(s)
- Shengyang Ni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Franck Le Vaillant
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ana Mateos-Calbet
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
25
|
Fang S, Ling H, Zeng C, Li M, Jiang H, Wu W. Palladium-Catalyzed Sequential Three-Component Cross-Coupling to 1,3-Dienes: Employing Alkenes as Hydride and Alkenyl Donors. J Org Chem 2022; 87:12816-12830. [PMID: 36099344 DOI: 10.1021/acs.joc.2c01406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report discloses a novel Pd-catalyzed sequential three-component multiple reaction of alkenes, bromoalkynes, and boronic acids using alkenes as hydride and alkenyl donors, leading to highly stereoselective assembly of (Z,E)-1,3-diene derivatives. Mechanistic studies demonstrate that the generation and reutilization of palladium hydride species are critical to the success of this transformation. In addition, the good functional group compatibility, late-stage modification, and investigation of photophysical properties of 1,3-diene products illustrate the synthetic value of this strategy.
Collapse
Affiliation(s)
- Songjia Fang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Hongling Ling
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Caijin Zeng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Meng Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wanqing Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
26
|
Guo JM, Mao ZY, Liu CH, Yang SY, Wei BG. Palladium-Catalyzed Sequential Heck Reactions of Olefin-Tethered Aryl Iodides with Alkenes. J Org Chem 2022; 87:11838-11845. [PMID: 35981349 DOI: 10.1021/acs.joc.2c01694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient approach to functionalized (E)-3-cinnamyl-3-methyl-2,3-dihydrobenzofurans and (E)-(3-methyl-2,3-dihydrobenzofuran-3-yl)but-2-enones has been developed through a Pd-catalyzed one-pot cascade process involving two sequential Heck reactions, that is, an intramolecular Heck reaction of olefin-tethered aryl iodides and an intermolecular Heck reaction with substituted styrenes and α,β-unsaturated ketones. As a result, a series of desired products were obtained in moderate to good yields and with exclusive E-form selectivities.
Collapse
Affiliation(s)
- Jia-Ming Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhuo-Ya Mao
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chang-Hong Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Shang-Ye Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
27
|
Xia T, Xi Y, Ding H, Zhang Y, Fang K, Wu X, Qu J, Chen Y. Palladium(II)-catalyzed enantioselective intermolecular oxidative diarylation of internal enamides. Chem Commun (Camb) 2022; 58:9282-9285. [PMID: 35904065 DOI: 10.1039/d2cc03202c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of vicinal stereogenic centers via the simultaneous formation of two C-C bonds across alkenes under oxidative conditions is a stubborn challenge. Herein, we report a Pd(II)-catalyzed highly enantioselective intermolecular oxidative 1,2-diarylation reaction of internal enamides with aryl boronic acids, enabling the expedient construction of two vicinal stereocenters with excellent diastereo-, and enantioselectivities.
Collapse
Affiliation(s)
- Tingting Xia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yang Xi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Haojie Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yetong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Ke Fang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
28
|
Wu X, Luan B, Zhao W, He F, Wu XY, Qu J, Chen Y. Catalytic Desymmetric Dicarbofunctionalization of Unactivated Alkenes. Angew Chem Int Ed Engl 2022; 61:e202111598. [PMID: 35286744 DOI: 10.1002/anie.202111598] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 12/16/2022]
Abstract
The construction of multi-stereocenters by a transition metal-catalyzed cross-coupling reaction is a major challenge. The catalytic desymmetric functionalization of unactivated alkenes remains largely unexplored. Herein, we disclose -a desymmetric dicarbofunctionalization of 1,6-dienes via a nickel-catalyzed reductive cross-coupling reaction. The leverage of the underdeveloped chiral 8-Quinox enables the Ni-catalyzed desymmetric carbamoylalkylation of both unactivated mono- and disubstituted alkenes to form pyrrolidinone bearing two nonadjacent stereogenic centers in high enantio- and stereoselectivitives with broad functional-group tolerance. The synthetic application of pyrrolidinones allows the rapid access to complex chiral fused-heterocycles.
Collapse
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Baixue Luan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenyu Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
29
|
Sun L, Zhao Y, Liu B, Chang J, Li X. Rhodium III-catalyzed remote difunctionalization of arenes assisted by a relay directing group. Chem Sci 2022; 13:7347-7354. [PMID: 35799802 PMCID: PMC9214915 DOI: 10.1039/d2sc02205b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022] Open
Abstract
Rhodium-catalyzed diverse tandem twofold C-H bond activation reactions of para-olefin-tethered arenes have been realized, with unsaturated reagents such as internal alkynes, dioxazolones, and isocyanates being the coupling partner as well as a relay directing group which triggers cyclization of the para-olefin group under oxidative or redox-neutral conditions. The reaction proceeded via initial ortho-C-H activation assisted by a built-in directing group in the arene, and the ortho-incorporation of the unsaturated coupling partner simultaneously generated a relay directing group that allows sequential C-H activation at the meta-position and subsequent cyclization of the para-olefins. The overall reaction represents C-C or N-C difunctionalization of the arene with the generation of diverse 2,3-dihydrobenzofuran platforms. The catalytic system proceeded with good efficiency, simple reaction conditions, and broad substrate scope. The diverse transformations of the products demonstrated the synthetic utility of this tandem reaction.
Collapse
Affiliation(s)
- Lincong Sun
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Yuyao Zhao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Xingwei Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 250100 China
| |
Collapse
|
30
|
Li Y, Jin X, Liu P, Zhang H, Yu X, Liu Y, Liu B, Yang W. Copper‐Catalyzed Dynamic Kinetic C−P Cross‐Coupling/Cyclization for the Concise Asymmetric Synthesis of Six‐, Seven‐ and Eight‐Membered
P
‐Stereogenic Phosphorus Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202117093. [DOI: 10.1002/anie.202117093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Yanli Li
- College of Pharmacy Linyi University Shuangling Road Linyi 276000 (P.R. of China
| | - Xiao Jin
- College of Pharmacy Linyi University Shuangling Road Linyi 276000 (P.R. of China
| | - Peng Liu
- Guangzhou Institutes of Biomedicine and Health (GIBH) China Academy of Sciences No. 190 Kaiyuan Avenue, Guangzhou Science Park Guangzhou 510530 China
| | - Haijuan Zhang
- College of Pharmacy Linyi University Shuangling Road Linyi 276000 (P.R. of China
| | - Xiuling Yu
- College of Pharmacy Linyi University Shuangling Road Linyi 276000 (P.R. of China
| | - Yanjuan Liu
- College of Pharmacy Linyi University Shuangling Road Linyi 276000 (P.R. of China
| | - Baixue Liu
- College of Pharmacy Linyi University Shuangling Road Linyi 276000 (P.R. of China
| | - Wenqiang Yang
- College of Pharmacy Linyi University Shuangling Road Linyi 276000 (P.R. of China
| |
Collapse
|
31
|
Li S, Chen Q, Yang J, Zhang J. Palladium‐Catalyzed Enantioselective γ‐Arylation of β,γ‐Unsaturated Butenolides. Angew Chem Int Ed Engl 2022; 61:e202202046. [DOI: 10.1002/anie.202202046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Sanliang Li
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Qiaoyu Chen
- Academy for Engineering and Technology Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junfeng Yang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
32
|
Wu X, Luan B, Zhao W, He F, Wu X, Qu J, Chen Y. Catalytic Desymmetric Dicarbofunctionalization of Unactivated Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Baixue Luan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Wenyu Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xin‐Yan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
33
|
An Approach toward 17-Arylsubstituted Marginatafuran-Type Isospongian Diterpenoids via a Palladium-Catalyzed Heck-Suzuki Cascade Reaction of 16-Bromolambertianic Acid. Molecules 2022; 27:molecules27092643. [PMID: 35565994 PMCID: PMC9102694 DOI: 10.3390/molecules27092643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Isospongian diterpenes are a small but growing family of natural tetracyclic secondary metabolites isolated from marine organisms, primarily sponges and nudibranchs. A palladium-catalyzed domino Heck–Suzuki reaction sequence for the synthesis of the tetracyclic skeleton of marginatafuran-type isospongian diterpenoids with a wide variety of substituents in the C-17 position is reported. The proposed approach was based on selective transformations of the accessible plant diterpenoid lambertianic acid and includes an intramolecular Heck reaction of 16-bromolambertianic and arylation of the palladium intermediate with arylboronic acid. The influence of the nature of the substituent both in arylboronic acids and in the furan ring of 16-bromolambertianic acid on the direction and chemoselectivity of the reaction has been studied. The described derivatization of natural furanolabdanoid lambertianic acid produced new functionalized molecules for biological study and gave novel insights into the reactivity of complex molecular structures.
Collapse
|
34
|
Bai X, Zheng W, Ge S, Lu Y. Enantioselective Palladium-Catalyzed Arylborylation/Cyclization of Alkenes to Access Boryl-Functionalized Heterocyclic Compounds Containing Quaternary Stereogenic Centers. Org Lett 2022; 24:3080-3085. [PMID: 35436402 DOI: 10.1021/acs.orglett.2c01082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Asymmetric palladium-catalyzed arylboration/cyclization of both nonactivated and activated alkenes with B2pin2 was developed. A wide range of N-allyl-o-iodobenzamides and o-iodoacryanilides reacted with B2pin2 to afford borylated 3,4-dihydroisoquinolinones and oxindoles, respectively, in high yields with high enantioselectivities. The synthetic utility of this enantioselective protocol was highlighted by synthesizing various chiral 3,4-dihydroisoquinolinone and oxindole derivatives containing quaternary stereogenic carbon centers, including enantioenriched Roche anticancer agent (S)-RO4999200.
Collapse
Affiliation(s)
- Xingfeng Bai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Wenrui Zheng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Yixin Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| |
Collapse
|
35
|
Li S, Chen Q, Yang J, Zhang J. Palladium‐Catalyzed Enantioselective γ‐Arylation of β,γ‐Unsaturated Butenolides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sanliang Li
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Qiaoyu Chen
- Academy for Engineering and Technology Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junfeng Yang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
36
|
Li Y, Jin X, Liu P, Zhang H, Yu X, Liu Y, Liu B, Yang W. Copper‐Catalyzed Dynamic Kinetic C–P Cross‐Coupling/ Cyclization for Concise Asymmetric Synthesis of Six‐, Seven‐ and Eight‐Membered P‐Stereogenic Phosphorus Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanli Li
- Linyi University College of Pharmacy CHINA
| | - Xiao Jin
- Linyi University College of Pharmacy CHINA
| | - Peng Liu
- Chinese Academy of Sciences Guangzhou Institutes of Biomedicine and Health guangzhou institutes of biomedicine of health CHINA
| | | | - Xiuling Yu
- Linyi University College of Pharmacy CHINA
| | | | - Baixue Liu
- Linyi University College of Pharmacy CHINA
| | - WenQiang Yang
- Linyi University College of Pharmacy ShuangLing Road 276000 Lin Yi CHINA
| |
Collapse
|
37
|
Yang J, Yang L, Gu J, Shuai L, Wang H, Ouyang Q, Li YL, Liu H, Gong L. Nickel-Catalyzed Reductive Cascade Arylalkylation of Alkenes with Alkylpyridinium Salts. Org Lett 2022; 24:2376-2380. [PMID: 35319219 DOI: 10.1021/acs.orglett.2c00599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we describe a nickel-catalyzed reductive deaminative arylalkylation of tethered alkenes with pyridinium salts as C(sp3) electrophiles. This two-component dicarbofunctionalization reaction enables the efficient synthesis of various benzene-fused cyclic compounds bearing all-carbon quaternary centers. The approach presented in this paper proceeds under mild conditions, tolerating a wide variety of functional groups and heterocycles. It has been used to functionalize complicated molecules at a late stage.
Collapse
Affiliation(s)
- Jun Yang
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Lina Yang
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Jing Gu
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Li Shuai
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Hui Wang
- School of Biological & Chemical Engineering, Chongqing University of Education, Nanan, Chongqing 400065, China
| | - Qin Ouyang
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Haibin Liu
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong'E E-Jiao Co. Ltd., Dong'E 252201, China
| | - Liang Gong
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
38
|
Xu W, Kato T, Liu Y, Matsumoto A, Maruoka K. Fe-Catalyzed Dicarbofunctionalization of Vinylarenes with Alkylsilyl Peroxides and β-Keto Carbonyl Substrates. Org Lett 2022; 24:2641-2645. [PMID: 35245078 DOI: 10.1021/acs.orglett.2c00656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The formation of two carbon-carbon bonds using vinylarenes with alkylsilyl peroxides and β-keto carbonyl substrates is effected by the presence of catalytic Fe(OTf)2 under mild reaction conditions. A variety of vinylarenes with different substituents can be utilized in combination with several different alkylsilyl peroxides and β-keto carbonyl substrates.
Collapse
Affiliation(s)
- Weiping Xu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| | - Terumasa Kato
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China.,Laboratory of Organocatalytic Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| | - Akira Matsumoto
- Laboratory of Organocatalytic Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China.,Laboratory of Organocatalytic Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
39
|
Yu W, Chen C, Feng L, Xia T, Shi C, Yang Y, Zhou B. Rhodium(III)-Catalyzed Asymmetric 1,2-Carboamidation of Alkenes Enables Access to Chiral 2,3-Dihydro-3-benzofuranmethanamides. Org Lett 2022; 24:1762-1767. [PMID: 35234476 DOI: 10.1021/acs.orglett.2c00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Through the initial screening and further rational design of chiral cyclopentadienyl ligands, a chiral rhodium-catalyzed enantioselective 1,2-carboamidation of aromatic tethered alkenes was developed, enabling the asymmetric preparation of various chiral 2,3-dihydro-3-benzofuranmethanamides with an enantioenriched all-carbon quaternary center at the β position of amide. This robust transformation has a broad functional group tolerance, excellent enantioselectivities (up to 98.5:1.5 er), and a mild reaction conditions, releasing CO2 as the single byproduct.
Collapse
Affiliation(s)
- Wenwen Yu
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Chen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lei Feng
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqi Xia
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Shi
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaxi Yang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Zhou
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Xu J, Ma X, Liu C, Zhang D. Density Functional Theory Study of Gold-Catalyzed 1,2-Diarylation of Alkenes: π-Activation versus Migratory Insertion Mechanisms. J Org Chem 2022; 87:4078-4087. [PMID: 35232016 DOI: 10.1021/acs.joc.1c02861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Density functional theory calculations are carried out to better understand the first gold-catalyzed 1,2-diarylation reactions of alkenes reported in the recent literature. The calculations on two representative reactions, aryl alkene/aryl iodide coupling pair (the aryl-I bond is located outside the aryl alkene) versus iodoaryl alkene/indole coupling pair (the aryl-I bond is located in the aryl alkene), confirm that the reaction involves a π-activation mechanism rather than the general migratory insertion mechanism in previously known metal catalysis by Pd, Ni, and Cu complexes. Theoretical results rationalize the regioselectivity of the reactions controlled by the aryl-I bond position (intermolecular or intramolecular) and also the ligand and substituent effects on the reactivity.
Collapse
Affiliation(s)
- Jihong Xu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xuexiang Ma
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chengbu Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
41
|
Wu Y, Wu L, Zhang ZM, Xu B, Liu Y, Zhang J. Enantioselective difunctionalization of alkenes by a palladium-catalyzed Heck/borylation sequence. Chem Sci 2022; 13:2021-2025. [PMID: 35308863 PMCID: PMC8848999 DOI: 10.1039/d1sc06229h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2022] [Indexed: 01/26/2023] Open
Abstract
A palladium catalyzed enantioselective Heck/borylation reaction of alkene-tethered aryl iodides was realized, delivering a variety of 2,3-dihydrobenzofuranyl boronic esters in high yield with excellent enantioselectivity. Asymmetric synthesis of chromane boronic ester, indane boronic ester and indoline boronic ester was also accomplished. The protocol offers an efficient access to the corresponding chiral benzocyclic boronic esters, which are notably important chemical motifs in synthetic transformations. A palladium catalyzed enantioselective Heck/borylation reaction of alkene-tethered aryl iodides was realized, delivering a variety of 2,3-dihydrobenzofuranyl boronic esters in high yield with excellent enantioselectivity.![]()
Collapse
Affiliation(s)
- Yuanqi Wu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology Changchun 130012 P. R. China
| | - Lizuo Wu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology Changchun 130012 P. R. China
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Bing Xu
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Yu Liu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology Changchun 130012 P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| |
Collapse
|
42
|
Chen M, Xu XX, Wang X, Ren ZH, Guan ZH. endo-5-Norbornene-2,3-dimethanol-promoted asymmetric Heck/Suzuki cascade reaction of N-(2-bromophenyl)acrylamides. Org Chem Front 2022. [DOI: 10.1039/d2qo00998f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An endo-5-norbornene-2,3-dimethanol-promoted highly enantioselective palladium-catalyzed Heck/Suzuki cascade reaction of N-(2-bromophenyl)acrylamides has been developed.
Collapse
Affiliation(s)
- Ming Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Xing-Xing Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Xucai Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
43
|
|
44
|
Wang M. Synthesis of Chiral Spirocycles by the Enantioselective Domino Heck/Remote C(sp 2)—H Alkylation Reaction Catalyzed by Palladium/Xu-Phos. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Zhou PX, Yang X, Du X, Zhao S, Wang H, Li X, Liu N, Tan X, Ren F, Liang YM. Palladium-catalyzed Heck cyclization/allylation with homoallyl alcohols via retro-allylation. Org Chem Front 2022. [DOI: 10.1039/d2qo00655c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed reaction of aryl iodide-tethered alkenes with homoallyl alcohols is reported, providing a convenient and efficient approach to C(sp3)–allylation products.
Collapse
Affiliation(s)
- Ping-Xin Zhou
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaozhe Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xueyan Du
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shujie Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Han Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xinguang Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ning Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xinqiang Tan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Feng Ren
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Immunity and Targeted Therapy for liver-intestinal Tumors, Xinxiang Medical University, Xinxiang, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|
46
|
Han XQ, Wang L, Yang P, Liu JY, Xu WY, Zheng C, Liang RX, You SL, Zhang J, Jia YX. Enantioselective Dearomative Mizoroki–Heck Reaction of Naphthalenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao-Qing Han
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Lei Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Ping Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Jing-Yuan Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Wei-Yan Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
47
|
Xiao X, Han P, Zhou H, Liu J. Palladium-Catalyzed Difunctionalization of Alkenes by Relay Coupling with Propargylic Pyridines: Synthesis of Indolizine and Indolizinone-Containing Bisheterocycles. J Org Chem 2021; 86:18179-18191. [PMID: 34860532 DOI: 10.1021/acs.joc.1c02438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Palladium-catalyzed arylation/heteroarylation of aryl halide-tethered alkenes with propargylic pyridines has been established, which provides direct and efficient access to various oxindole, azaoxindole, dihydrobenzopyran, indole, and benzofuran-linked indolizines in good yields with a broad substrate scope and high functional group tolerance. This process enables the formation of one C-N and two C-C bonds in a single operation through an intramolecular carbopalladation and cycloisomerization sequence. Furthermore, an indolizinone-linked bisheterocyclic framework containing indole and benzofuran could be synthesized conveniently from tertiary propargylic alcohols involving methyl or phenyl migration.
Collapse
Affiliation(s)
- Xiao Xiao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Puren Han
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Huiwen Zhou
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jianchao Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
48
|
Cao K, Zhang ZM, Zhang J, Chen F. Palladium-Catalyzed Asymmetric Cross-Coupling Reactions of Cyclobutanols and Unactivated Olefins. Org Lett 2021; 23:9520-9525. [PMID: 34851121 DOI: 10.1021/acs.orglett.1c03739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transition-metal-catalyzed activations of carbon-carbons bonds of small strained rings have widespread applications in synthetic and medicinal chemistry. However, coupling reactions of cyclobutanols involving β-carbon elimination to construct C(sp3)-C(sp3) bonds have scarcely been developed. Here, we demonstrate a highly enantioselective Pd-catalyzed intermolecular C(sp3)-C(sp3) coupling reaction of a broad range of cyclobutanol derivatives and unactivated alkenes, allowing convenient access to a series of chiral benzene-fused cyclic compounds in a highly regio-, chemo-, and enantioselective manner.
Collapse
Affiliation(s)
- Kangning Cao
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Fener Chen
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
49
|
Zhao G, Wu Y, Wu HH, Yang J, Zhang J. Pd/GF-Phos-Catalyzed Asymmetric Three-Component Coupling Reaction to Access Chiral Diarylmethyl Alkynes. J Am Chem Soc 2021; 143:17983-17988. [PMID: 34699199 DOI: 10.1021/jacs.1c09742] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Significant attention has been given in the past few years to the selective transformations of N-tosylhydrazones to various useful compounds. However, the development of enantioselective versions poses considerable challenges. Herein we report a Pd-catalyzed enantioselective three-component coupling of N-tosylhydrazone, aryl halide, and terminal alkyne under mild conditions utilizing a novel chiral sulfinamide phosphine ligand (GF-Phos), which provides a facile access to chiral diarylmethyl alkynes, which are useful synthons in organic synthesis as well as exist as the skeleton in many bioactive molecules. A pair of enantiomers of the product could be easily prepared using the same chiral ligand by simply changing the aryl substituents of the N-tosylhydrazone and aryl halide. The salient features of this reaction include the readily available starting materials, general substrate scope, high enantioselectivity, ease of scale-up, mild reaction conditions, and versatile transformations.
Collapse
Affiliation(s)
- Guofeng Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Yi Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Hai-Hong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China.,Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| |
Collapse
|
50
|
Li S, Chen Q, Zhang ZM, Zhang J. Pd-catalyzed enantioselective intramolecular Heck reaction to access disubstituted dihydroisoquinolinone with a terminal olefin. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|