1
|
Tian D, Lin J, Mesbah A, Zhou J, Yang M, Gautier R, Chen X. A core-shell model of polymetallic hybrid metal halides. Chem Commun (Camb) 2024; 60:12924-12927. [PMID: 39421877 DOI: 10.1039/d4cc04454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Most polymetallic hybrid metal halides are assumed to show a homogenous distribution of the metal ions in the bulk. Herein, we demonstrate a core-shell model for the hybrid lead halide [(C6H18N3)2·Pb2Br10] (C6H18N3 = 2-(piperazin-1-yl)ethan-1-aminium) coated with a manganese bromide layer. This model can explain the different photoemission of this composite material, and provides new insights on the investigation of polymetallic low-dimensional organic metal halides.
Collapse
Affiliation(s)
- Dongjie Tian
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
- College of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jie Lin
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Adel Mesbah
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - Jiajing Zhou
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Mianji Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Romain Gautier
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes F-44000, France.
| | - Xi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
2
|
Khan NZ, Khan SA, Chen W, Padhiar MA, Abbas MT, Ullah Z, Runowski M, Xu X, Zheng RK. The developments of cyan emitting phosphors to fulfill the cyan emission gap of white-LEDs. Front Chem 2023; 11:1274410. [PMID: 37915542 PMCID: PMC10616965 DOI: 10.3389/fchem.2023.1274410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/03/2023] Open
Abstract
Future generations of solid-state lighting (SSL) will prioritize the development of innovative luminescent materials with superior characteristics. The phosphors converted into white light-emitting diodes (white LEDs) often have a blue-green cavity. Cyan-emitting phosphor fills the spectral gap and produces "full-visible-spectrum lighting." Full-visible spectrum lighting is beneficial for several purposes, such as light therapy, plant growth, and promoting an active and healthy lifestyle. The design of cyan garnet-type phosphors, like Ca2LuHf2Al3O12 (CLHAO), has recently been the subject of interest. This review study reports a useful cyan-emitting phosphor based on CLHAO composition with a garnet structure to have a cyan-to-green emitting color with good energy transfer. It could be employed as cyan filler in warm-white LED manufacturing. Due to its stability, ability to dope with various ions suitable for their desired qualities, and ease of synthesis, this garnet-like compound is a great host material for rare-earth ions. The development of CLHAO cyan-emitting phosphors has exceptionally high luminescence, resulting in high CRI and warm-white LEDs, making them a viable desire for LED manufacturing. The development of CLHAO cyan-emitting phosphors with diverse synthesis techniques, along with their properties and applications in white LEDs, are extensively covered in this review paper.
Collapse
Affiliation(s)
- Noor Zamin Khan
- School of Physics and Material Sciences, Guangzhou University, Guangzhou, China
| | - Sayed Ali Khan
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, China
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, United States
| | - Weilong Chen
- School of Physics and Material Sciences, Guangzhou University, Guangzhou, China
| | | | - Muhammad Tahir Abbas
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, China
| | - Zakir Ullah
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing, China
| | - Marcin Runowski
- Departamento de Física, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Xin Xu
- CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Ren-Kui Zheng
- School of Physics and Material Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
3
|
Zhou B, Du A, Ding D, Liu Z, Wang Y, Zhong H, Li H, Hu H, Shi Y. Achieving Tunable Cold/Warm White-Light Emission in a Single Perovskite Material with Near-Unity Photoluminescence Quantum Yield. NANO-MICRO LETTERS 2023; 15:207. [PMID: 37651000 PMCID: PMC10471562 DOI: 10.1007/s40820-023-01168-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/15/2023] [Indexed: 09/01/2023]
Abstract
Single materials that exhibit efficient and stable white-light emission are highly desirable for lighting applications. This paper reports a novel zero-dimensional perovskite, Rb4CdCl6:Sn2+, Mn2+, which demonstrates exceptional white-light properties including adjustable correlated color temperature, high color rendering index of up to 85, and near-unity photoluminescence quantum yield of 99%. Using a co-doping strategy involving Sn2+ and Mn2+, cyan-orange dual-band emission with complementary spectral ranges is activated by the self-trapped excitons and d-d transitions of the Sn2+ and Mn2+ centers in the Rb4CdCl6 host, respectively. Intriguingly, although Mn2+ ions doped in Rb4CdCl6 are difficult to excite, efficient Mn2+ emission can be realized through an ultra-high-efficient energy transfer between Sn2+ and Mn2+ via the formation of adjacent exchange-coupled Sn-Mn pairs. Benefiting from this efficient Dexter energy transfer process, the dual emission shares the same optimal excitation wavelengths of the Sn2+ centers and suppresses the non-radiative vibration relaxation significantly. Moreover, the relative intensities of the dual-emission components can be modulated flexibly by adjusting the fraction of the Sn2+ ions to the Sn-Mn pairs. This co-doping approach involving short-range energy transfer represents a promising avenue for achieving high-quality white light within a single material.
Collapse
Affiliation(s)
- Bo Zhou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, People's Republic of China
| | - Aixuan Du
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Dong Ding
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, People's Republic of China
| | - Zexiang Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ye Wang
- Key Laboratory of Material Physics, School of Physics and Microelectronics, Zhengzhou University, Ministry of Education, Zhengzhou, 450052, People's Republic of China
| | - Haizhe Zhong
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Henan Li
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518060, People's Republic of China.
| | - Yumeng Shi
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
4
|
Xu G, Wang C, Li Y, Meng W, Luo G, Peng M, Xu B, Deng Z. Solid-state synthesis of cesium manganese halide nanocrystals in glass with bright and broad red emission for white LEDs. Chem Sci 2023; 14:5309-5315. [PMID: 37234884 PMCID: PMC10207884 DOI: 10.1039/d3sc01084h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, lead halide perovskite nanocrystals (NCs) have attracted extensive attention due to their unique optical properties. However, the toxicity of lead and the instability to moisture obstruct their further commercial development. Herein, a series of lead-free CsMnX3 (X = Cl, Br, and I) NCs embedded in glasses were synthesized by a high temperature solid-state chemistry method. These NCs embedded in glass can remain stable after soaking in water for 90 days. It is found that increasing the amount of cesium carbonate in the synthesis process can not only prevent the oxidation of Mn2+ to Mn3+ and promote the transparency of glass in the 450-700 nm region, but also significantly increase its photoluminescence quantum yield (PLQY) from 2.9% to 65.1%, which is the highest reported value of the red CsMnX3 NCs so far. Using CsMnBr3 NCs with a red emission peak at 649 nm and full-width-at-half-maximum (FWHM) of 130 nm as the red light source, a white light-emitting diode (LED) device with International Commission on illumination (CIE) coordinates of (0.33, 0.36) and a color rendering index (CRI) of 94 was obtained. These findings, together with future research, are likely to yield stable and bright lead-free NCs for the next generation of solid-state lighting.
Collapse
Affiliation(s)
- Guangyong Xu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Chuying Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Yacong Li
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Wen Meng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Guigen Luo
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Min Peng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Bin Xu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Zhengtao Deng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
5
|
Wang H, Wang C, Sun M, Zhang Z, Zhao G. Insight into efficient photoluminescence regulation mechanism by lattice distortion and Mn 2+ doping in organic-inorganic hybrid perovskites. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122821. [PMID: 37167741 DOI: 10.1016/j.saa.2023.122821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
The space configurations of organic ammonium cations play a vital role in indirectly revealing the relationship between the structures and photoluminescence properties. Structural transformation induced tunability of the photophysical properties has rarely been reported. In this work, two organic-inorganic halide perovskites with different octahedral distortions were synthesized to explore the relationships between "steric effect" of organic cations and photoluminescence properties. The broadband emission of (DETA)PbBr5·H2O with high octahedral distortion is attributed to self-trapped excitons and trap states, whereas smaller steric hindrance ammonium cation 1,4-butanediamine form a 2D layered perovskite with narrowband emission due to free excitons. More importantly, the photoactive metal ions Mn2+ doping strategy gives rise to tunable broadband light emission from weak to strong orange emission with higher PLQY up to 20.96 % and 12.90% in 0D (DETA)Pb0.2Mn0.8Br5·H2O and 2D (BDA)Pb0.8Mn0.2Br4 respectively. Combined with time-correlated single photon counting and photoluminescence spectra, Mn-doped perovskites reveal energy transfer from host to Mn2+ characteristic energy level (4T1-6A1). Importantly, defect states are reduced by doping manganese ions in (DETA)PbBr5·H2O to enhance photoluminescence intensity. This work sheds light on the mechanism of defect-related emission and provides a successful strategy for designing novel and adjustable materials.
Collapse
Affiliation(s)
- Hui Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Chao Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Mengjiao Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China.
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
6
|
Huang M, Liang Z, Huang J, Wen Y, Zhu QL, Wu X. Introduction of Multicomponent Dyes into 2D MOFs: A Strategy to Fabricate White Light-Emitting MOF Composite Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11131-11140. [PMID: 36799618 DOI: 10.1021/acsami.2c22568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) have been extensively studied in host-guest chemistry by means of ultrahigh porosities, tunable channels, and component diversities. As the host matrix, MOFs exhibit immense potential in the preparation of single-phase white light-emitting (SPWLE) materials. Nonetheless, it is a great challenge that the size of the introduced guest molecules is limited by MOF pores, which affects the WLE optimization. In this work, two-dimensional (2D) MOFs are first utilized as the host matrices to simultaneously encapsulate red-green-blue fluorescent dyes for SPWLE. Various dyes@2D MOF composites with high-quality WLE performances and ultrathin nanosheet morphologies are directly assembled from 2D MOF precursors and dyes in high yields. Owing to the flexible interlamellar space of 2D MOFs, different types and sizes of guests can be easily introduced, which greatly expands the range of available MOF hosts and guests, making the WLE much more tunable. The strategy of employing 2D MOFs as the host matrices to introduce multicomponent dyes for SPWLE nanosheets resolves the restriction of MOF pores on the guest molecule size and opens a new avenue to rationally design and prepare SPWLE nanosheets that are highly solution-processable.
Collapse
Affiliation(s)
- Mengyi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhenxin Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jinling Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yuehong Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xintao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Sun N, Lin J, He S, Cao J, Guo Z, Zhao J, Liu Q, Yuan W. High-Efficiency Intrinsic Yellow-Orange Emission in Hybrid Indium Bromide with Double Octahedral Configuration. Inorg Chem 2023; 62:3018-3025. [PMID: 36752343 DOI: 10.1021/acs.inorgchem.2c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Zero-dimensional (0D) In-based organic-inorganic metal halides (OIMHs) have received growing interest in recent years as promising luminescent materials. However, the high efficiencies of 0D In-based OIMHs are all dependent on Sb doping in the existing literature. Here, we report a novel 0D In-based OIMH (C10H22N2)2In2Br10, which exhibits intrinsic broadband emission (610 nm), and the photoluminescence quantum yield (PLQY) can reach 70% without Sb doping. (C10H22N2)2In2Br10 shows a typical 0D structure with three different In-Br polyhedra (two octahedra and one tetrahedron) separated by large organic cations. Based on the optical property measurements and theoretical calculations, we demonstrate that (C10H22N2)2In2Br10 is an indirect semiconductor with a band gap of 3.74 eV, and the In-Br inorganic moiety is primarily responsible for the intense emission of (C10H22N2)2In2Br10. Interestingly, the unique double octahedral configuration in (C10H22N2)2In2Br10 may enhance the structural distortion and stimulate the self-trapped excitons (STEs), leading to the related high PLQY. Our work provides a novel 0D In-based OIMH with high-efficiency intrinsic emission, which is helpful for understanding the structure-PL relationships of hybrid halides.
Collapse
Affiliation(s)
- Niu Sun
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiawei Lin
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shihui He
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jindong Cao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxia Yuan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
8
|
Tan J, Li D, Zhu J, Han N, Gong Y, Zhang Y. Self-trapped excitons in soft semiconductors. NANOSCALE 2022; 14:16394-16414. [PMID: 36317508 DOI: 10.1039/d2nr03935d] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Self-trapped excitons (STEs) have attracted tremendous attention due to their intriguing properties and potential optoelectronic applications. STEs are formed from the lattice distortion induced by the strong electron (exciton)-phonon coupling in soft semiconductors upon photoexcitation, which features in broadband photoluminescence (PL) emission spectra with a large Stokes shift. Recently, significant progress has been achieved in this field but many remain challenges that need to be solved, including the understanding of the underlying physical mechanism, tuning of the performance, and device applications. Along these lines, for the first time, systematic experimental characterizations and advanced theoretical calculations are presented in this review to shed light on the physical mechanism. The possibility of tuning the STEs through multiple degrees of freedom is also presented, along with an overview of the STE-based emerged applications and future research perspectives.
Collapse
Affiliation(s)
- Jianbin Tan
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, P.R. China.
| | - Delong Li
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, P.R. China.
| | - Jiaqi Zhu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, P.R. China.
| | - Na Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, P.R. China.
| | - Youning Gong
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, P.R. China.
| | - Yupeng Zhang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, P.R. China.
| |
Collapse
|
9
|
Electronic structures and optical properties of (Ph4P)MX2 (M = Cu, Ag; X = Cl, Br). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Wei JH, Ou WT, Luo JB, Kuang DB. Zero-Dimensional Zn-Based Halides with Ultra-Long Room-Temperature Phosphorescence for Time-Resolved Anti-Counterfeiting. Angew Chem Int Ed Engl 2022; 61:e202207985. [PMID: 35703341 DOI: 10.1002/anie.202207985] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/10/2022]
Abstract
Though fluorescence-tag-based anti-counterfeiting technology has distinguished itself with cost-effective features and huge information loading capacity, the clonable decryption process of spatial-resolved anti-counterfeiting cannot meet the requirements for high-security-level anti-counterfeiting. Herein, we demonstrate a spatial-time-dual-resolved anti-counterfeiting system based on new organic-inorganic hybrid halides BAPPZn2 (Cly Br1-y )8 (BAPP=1,4-bis(3-ammoniopropyl)piperazinium, y=0-1) with ultra-long room-temperature phosphorescence (RTP). Remarkably, the afterglow lifetime can be facilely tuned by regulating the halide-induced heavy-atom effect and can be identified by the naked eyes or with the help of a simple machine vision system. Therefore, the short-lived unicolor fluorescence and lasting-time-tunable RTP provide the prerequisites for unicolor-time-resolved anti-counterfeiting, which lowers the decryption-device requirements and further provides the design strategy of advanced portable anti-counterfeiting technology.
Collapse
Affiliation(s)
- Jun-Hua Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wei-Tao Ou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jian-Bin Luo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
11
|
Li DY, Sun YM, Wang XY, Wang NN, Zhang XY, Yue CY, Lei XW. Zero-Dimensional Hybrid Indium Halides with Efficient and Tunable White-Light Emissions. J Phys Chem Lett 2022; 13:6635-6643. [PMID: 35838645 DOI: 10.1021/acs.jpclett.2c01549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional hybrid lead perovskites have attracted a great deal of attention in white-light-emitting diodes, but the serious toxicity of Pb2+ and the limited photoluminescence quantum yield (PLQY) still restrict further optoelectronic application. To address these issues, a new combining photon strategy was proposed to achieve highly efficient broadband white-light emission in a new family of zero-dimensional (0D) indium halides based on an [InCl6]3- octahedron. Remarkably, these 0D halides display dual-band white-light emission derived from the synergistic work of blue- and yellow-light-emitting bands, which can be ascribed to the radiative recombination of bound excitons in organic cations and self-trapped excitons in inorganic anions, respectively, based on spectroscopy and theoretical studies. In-depth first-principles calculation demonstrates that the increased structural deformability effectively improves the PLQY from 7.01% to 18.56%. As a proof of concept, this work provides a profound understanding for advancing the rational design of novel single-component 0D lead-free halides as high-performance white-light emitters.
Collapse
Affiliation(s)
- Dong-Yang Li
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Yu-Ming Sun
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xing-Yu Wang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Nan-Nan Wang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiao-Yang Zhang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Cheng-Yang Yue
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| |
Collapse
|
12
|
Pipitone C, Ursi F, Giannici F, Longo A, Guagliardi A, Masciocchi N, Martorana A. Modeling bismuth insertion in 1D hybrid lead halide TMSO(Pb xBi y)I 3pseudo-perovskites. NANOTECHNOLOGY 2022; 33:425703. [PMID: 35820371 DOI: 10.1088/1361-6528/ac805c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The structures of the disordered 1D (pseudo-)perovskites of general TMSO(PbxBiy)I3formulation [TMSO = (CH3)3SO+], obtained by doping the TMSOPbI3species with Bi3+ions, are investigated through the formulation of a statistical model of correlated disorder, which addresses the sequences of differently occupied BI6face-sharing octahedra (B = Pb, Bi or vacant site) within ideally infinite [(BI3)-]nchains. The x-ray diffraction patterns simulated on the basis of the model are matched to the experimental traces, which show many broad peaks with awkward (nearly trapezoidal) shapes, under the assumption that the charge balance is fully accomplished within each chain. The analysis allowed to establish a definite tendency of the metal species to cluster as pure Pb and Bi sequences. The application of the model is discussed critically, in particular as what concerns the possibility that further B-site neighbors beyond the second may influence the overall B-site occupancies.
Collapse
Affiliation(s)
- Candida Pipitone
- Dipartimento di Fisica e Chimica 'Emilio Segrè', Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy
| | - Federica Ursi
- Dipartimento di Fisica e Chimica 'Emilio Segrè', Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy
| | - Francesco Giannici
- Dipartimento di Fisica e Chimica 'Emilio Segrè', Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy
| | - Alessandro Longo
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, I-90146 Palermo, Italy
- European Synchrotron Radiation Facility, Avenue des Martyrs, F-38043 Grenoble, France
| | - Antonietta Guagliardi
- Istituto di Cristallografia e To.Sca.Lab., Consiglio Nazionale delle Ricerche, Via Valleggio 11, I-22100 Como, Italy
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia e To.Sca.Lab., Università dell'Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Antonino Martorana
- Dipartimento di Fisica e Chimica 'Emilio Segrè', Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy
| |
Collapse
|
13
|
Wei JH, Ou WT, Luo JB, Kuang DB. Zero‐Dimensional Zn‐based Halides with Ultra‐Long Room‐Temperature Phosphorescence for Time‐Resolved Anti‐Counterfeiting. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun-Hua Wei
- Sun Yat-Sen University School of Chemistry CHINA
| | - Wei-Tao Ou
- Sun Yat-Sen University School of Chemistry CHINA
| | - Jian-Bin Luo
- Sun Yat-Sen University School of Chemistry CHINA
| | - Dai-Bin Kuang
- Sun Yat-Sen University School of Chemistry Xingang west road, No. 135 Guangzhou CHINA
| |
Collapse
|
14
|
Yu M, Liu C, Zhao Y, Li S, Yu Y, Lv J, Chen L, Jiang F, Hong M. White‐Light Emission and Circularly Polarized Luminescence from a Chiral Copper(I) Coordination Polymer through Symmetry‐Breaking Crystallization. Angew Chem Int Ed Engl 2022; 61:e202201590. [DOI: 10.1002/anie.202201590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Mu‐Xin Yu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Organic Optoelectronics Engineering Research Center of Fujian's Universities College of Electronics and Information Science Fujian Jiangxia University Fuzhou Fujian 350108 China
| | - Cai‐Ping Liu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yun‐Fang Zhao
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Sheng‐Chang Li
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yun‐Long Yu
- Organic Optoelectronics Engineering Research Center of Fujian's Universities College of Electronics and Information Science Fujian Jiangxia University Fuzhou Fujian 350108 China
| | - Jiang‐Quan Lv
- Organic Optoelectronics Engineering Research Center of Fujian's Universities College of Electronics and Information Science Fujian Jiangxia University Fuzhou Fujian 350108 China
| | - Lian Chen
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Fei‐Long Jiang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Mao‐Chun Hong
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
15
|
Ma YY, Pan HM, Li DY, Liu YH, Lu T, Lei XW, Jing Z. Two-dimensional hybrid halide perovskites composed of mixed corner- and edge-shared octahedron as broadband yellow-light emissions. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Meng X, Wei Q, Lin W, Huang T, Ge S, Yu Z, Zou B. Efficient Yellow Self-Trapped Exciton Emission in Sb 3+-Doped RbCdCl 3 Metal Halides. Inorg Chem 2022; 61:7143-7152. [PMID: 35485212 DOI: 10.1021/acs.inorgchem.2c00667] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metal halide perovskites have flexible crystal and electronic structures and adjustable emission characteristics, which have very broad applications in the optoelectronic field. Among them, all-inorganic perovskites have attracted more attention than others in recent years because of their characteristics of large diffusion length, high luminescence efficiency, and good stability. In this work, Sb3+-doped RbCdCl3 crystalline powder was synthesized by a simple hydrothermal method, and its luminescence properties were studied, which showed a broad emission band with a large Stokes shift and efficient yellow light emission at about 596 nm at room temperature with a photoluminescence quantum yield of 91.7%. The emission came from the transition of the self-trapped exciton 1 (STE1) out of 3Pn (n = 0, 1, and 2) to S0 due to strong electron-phonon coupling, which scaled with increasing temperature. Moreover, its emission color became white at low temperatures due to the occurrence of transition of other self-trapped exciton 0 (STE0) state emission out of the 1S states of Sb ions to S0 in the lattice. These emission color changes may be used for temperature sensing, and this Sb3+-doped RbCdCl3 material expands the knowledge of the efficient luminescent inorganic material family for further applications of all-inorganic perovskites.
Collapse
Affiliation(s)
- Xianfu Meng
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Qilin Wei
- School of Physics, Guangxi University, Nanning 530004, China
| | - Wenchao Lin
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Tao Huang
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Shuaigang Ge
- School of Physics, Guangxi University, Nanning 530004, China
| | - Zongmian Yu
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
17
|
Mn 2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor. Nat Commun 2022; 13:2166. [PMID: 35443755 PMCID: PMC9021195 DOI: 10.1038/s41467-022-29881-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/25/2022] [Indexed: 11/08/2022] Open
Abstract
Photothermal sensing is crucial for the creation of smart wearable devices. However, the discovery of luminescent materials with suitable dual-wavelength emissions is a great challenge for the construction of stable wearable optical fibre temperature sensors. Benefiting from the Mn2+-Mn2+ superexchange interactions, a dual-wavelength (530/650 nm)-emitting material Li2ZnSiO4:Mn2+ is presented via simple increasing the Mn2+ concentration, wherein the two emission bands have different temperature-dependent emission behaviours, but exhibit quite similar excitation spectra. Density functional theory calculations, coupled with extended X-ray absorption fine structure and electron-diffraction analyses reveal the origins of the two emission bands in this material. A wearable optical temperature sensor is fabricated by incorporating Li2ZnSiO4:Mn2+ in stretchable elastomer-based optical fibres, which can provide thermal-sensitive emissions at dual- wavelengths for stable ratiometric temperature sensing with good precision and repeatability. More importantly, a wearable mask integrated with this stretchable fibre sensor is demonstrated for the detection of physiological thermal changes, showing great potential for use as a wearable health monitor. This study also provides a framework for creating transition-metal-activated luminescence materials. Dual-wavelength emission materials can provide fluorescence intensity ratio technology with self-calibration features; their fabrication however, remains a challenge. Here, authors design a dual-wavelength emitting material Li2ZnSiO4:Mn2+ and present a wearable optical fibre temperature sensor, functioning in both contact and noncontact modes.
Collapse
|
18
|
Zhang WF, Pan HM, Ma YY, Li DY, Jing Z. One-dimensional corner-sharing perovskites: Syntheses, structural evolutions and tunable photoluminescence properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Yu M, Liu C, Zhao Y, Li S, Yu Y, Lv J, Chen L, Jiang F, Hong M. White‐Light Emission and Circularly Polarized Luminescence from a Chiral Copper(I) Coordination Polymer through Symmetry‐Breaking Crystallization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mu‐Xin Yu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Organic Optoelectronics Engineering Research Center of Fujian's Universities College of Electronics and Information Science Fujian Jiangxia University Fuzhou Fujian 350108 China
| | - Cai‐Ping Liu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yun‐Fang Zhao
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Sheng‐Chang Li
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yun‐Long Yu
- Organic Optoelectronics Engineering Research Center of Fujian's Universities College of Electronics and Information Science Fujian Jiangxia University Fuzhou Fujian 350108 China
| | - Jiang‐Quan Lv
- Organic Optoelectronics Engineering Research Center of Fujian's Universities College of Electronics and Information Science Fujian Jiangxia University Fuzhou Fujian 350108 China
| | - Lian Chen
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Fei‐Long Jiang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Mao‐Chun Hong
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
20
|
Zhou L, Ren M, He R, Li M. Tailoring Photophysical Dynamics in a Hybrid Gallium-Bismuth Heterometallic Halide by Transferring from an Indirect to a Direct Band Structure. Inorg Chem 2022; 61:5283-5291. [PMID: 35302735 DOI: 10.1021/acs.inorgchem.1c04000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Low-dimensional lead-free metal halides have emerged as novel luminous materials for solid-state lighting, remote thermal imaging, X-ray scintillation, and anticounterfeiting labeling applications. However, the influence of band structure on the intriguing optical property has rarely been explored, especially for low-dimensional hybrid heterometallic halides. In this study, we have developed a lead-free zero-dimensional gallium-bismuth hybrid heterometallic halide, A8(GaCl4)4(BiCl6)4 (A = C8H22N2), that is photoluminescence (PL)-inert because of its indirect-band-gap character. Upon rational composition engineering, parity-forbidden transitions associated with the indirect band gap have been broken by replacing partial Ga3+ with Sb3+, which contains an active outer-shell 5s2 lone pair, resulting in a transition from an indirect to a direct band gap. As a result, broadband yellow PL centered at 580 nm with a large Stokes shift over 200 nm is recorded. Such an emission is attributed to the radiative recombination of an allowed direct transition from triplet 3P1 states of Sb3+ based on experimental characterizations and theoretical calculations. This study provides not only important insights into the effect of the band structure on the photophysical properties but a guidance for the design of new hybrid heterometallic halides for optoelectronic applications.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Meixuan Ren
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
21
|
Ma YY, Pan HM, Li DY, Wu S, Jing Z. Structural Evolution and Photoluminescence Properties of Two‐dimensional Lead Halide Perovskites. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue-Yu Ma
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Hong-Mei Pan
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Dong-Yang Li
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Shuang Wu
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Zhihong Jing
- Qufu Normal University School of Chemistry and chemical engineeringengineealen l Qufu, Jingxuan Road 57, 273165, P. R. China 273165 Qufu, Shandong CHINA
| |
Collapse
|
22
|
Feng LJ, Zhao YY, Song RY, Yue CY. Organic‐Inorganic Hybrid Low‐dimensional Lead Iodides with Broadband Yellow to Red Light Emissions. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li-Juan Feng
- Jining University School of Chemistry, Chemical Engineering and Materials CHINA
| | - Yan-Yu Zhao
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China CHINA
| | - Ru-Yang Song
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China CHINA
| | - Cheng-Yang Yue
- Jining University Department of Chemistry and Chemical Engieneering Xingtan Road 273155 Qufu CHINA
| |
Collapse
|
23
|
Feng LJ, Zhao YY, Song RY, Lei XW. Three homologous 1D lead halide perovskites with broadband white-light emissions. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
McWhorter TM, Zhang Z, Creason TD, Thomas L, Du M, Saparov B. (C
7
H
11
N
2
)
2
MBr
4
(M=Cu, Zn): X‐Ray Sensitive 0D Hybrid Metal Halides with Tunable Broadband Emission. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Timothy M. McWhorter
- Department of Chemistry & Biochemistry University of Oklahoma Norman OK 73019-5251 USA
| | - Zheng Zhang
- Department of Chemistry & Biochemistry University of Oklahoma Norman OK 73019-5251 USA
| | - Tielyr D. Creason
- Department of Chemistry & Biochemistry University of Oklahoma Norman OK 73019-5251 USA
| | - Leonard Thomas
- Department of Chemistry & Biochemistry University of Oklahoma Norman OK 73019-5251 USA
| | - Mao‐Hua Du
- Materials Science & Technology Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Bayram Saparov
- Department of Chemistry & Biochemistry University of Oklahoma Norman OK 73019-5251 USA
| |
Collapse
|
25
|
Wu Y, Shi CM, Kang SR, Xu LJ. Antimony -doped indium-based halide single crystals enabling white-light emission. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01224c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal halides (TMPL)3InCl6·EtOH:xSb3+ with tunable colors were obtained by gradient Sb3+ doping. Interestingly, white emission was achieved when 0.1% of Sb3+ was employed, due to a combination of the cyan emission of organic moiety and orange emission from metal halides.
Collapse
Affiliation(s)
- Yue Wu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Cui-Mi Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shi-Rong Kang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Liang-Jin Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
26
|
Luo JB, Wei JH, Zhang ZZ, Kuang DB. Water-Molecule-Induced Emission Transformation of Zero-Dimension Antimony-Based Metal Halide. Inorg Chem 2021; 61:338-345. [PMID: 34927416 DOI: 10.1021/acs.inorgchem.1c02871] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Low-dimensional organic-inorganic metal halides have recently emerged as a class of promising luminescent materials. However, the intrinsic toxicity of lead would strongly hamper future application. Herein, we synthesized a new type of lead-free zero-dimensional (0D) antimony-based organic-inorganic metal halide single crystals, (PPZ)2SbCl7·5H2O (PPZ = 1-phenylpiperazine), which features a broadband emission at 720 nm. Ultrafast transient absorption and temperature-dependent photoluminescence (PL) spectra are combined to investigate the PL mechanism, revealing that self-trapped exciton recombination was involved. Furthermore, it is interesting that (PPZ)2SbCl7·5H2O material shows reversible PL emission transformation between red light (720 nm) and yellow light (590 nm) as water molecules are inserted or removed from the lattice. Such reversible emission transformation phenomenon renders the (PPZ)2SbCl7·5H2O as a potential low-cost water sensing material.
Collapse
Affiliation(s)
- Jian-Bin Luo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jun-Hua Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhi-Zhong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.,School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| |
Collapse
|
27
|
Shi R, Zhang X, Qiu Z, Zhang J, Liao S, Zhou W, Xu X, Yu L, Lian S. Composition and Antithermal Quenching of Noninteger Stoichiometric Eu 2+-Doped Na-β-Alumina with Cyan Emission for Near-UV WLEDs. Inorg Chem 2021; 60:19393-19401. [PMID: 34879194 DOI: 10.1021/acs.inorgchem.1c03220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphors with high quantum efficiency and thermal stability play a key role in improving the performance of phosphor-converted white light-emitting diodes (pc-WLEDs). A near-UV-pumped LED shows a great advantage due to its reduction of the negative effect of blue light on human health. In this work, we propose a series of near-UV excitable cyan-emitting Eu2+-activated phosphors with a nominal composition of Na2-2xAl11O17+a:xEu2+ (x = 0.01-0.40), which crystallize in a sodium β-alumina phase with a composition close to Na1.22Al11O17.11. An excess amount of the sodium carbonate raw material makes up the volatile Na during the high-temperature process. The noninteger stoichiometric composition promotes the rigidity of the crystal structure with a slight excess of Na insertion into layers between spinel blocks of the NaAl11O17 matrix. The nonequivalent substitution of Na+ by Eu2+ generates intrinsic defects acting as carrier traps. As a result, the phosphor with an optimal nominal composition Na1.6Al11O17+a:0.20Eu2+, under the excitation at 365 nm, shows an asymmetric cyan emission band at 468 nm with internal and external quantum efficiencies of 81.3 and 56.9%, respectively. Remarkably, the phosphor exhibits antithermal quenching within 200 °C. A pc-WLED with a high color rendering index (87.2) suggests great potential of the phosphor in pc-WLEDs. Therefore, a combination of a rigid structure and deep trap level is an effective way in exploring new phosphors with high quantum efficiency and thermal stability.
Collapse
Affiliation(s)
- Rou Shi
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, P. R. China
| | - Xujian Zhang
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, P. R. China
| | - Zhongxian Qiu
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, P. R. China
| | - Jilin Zhang
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, P. R. China
| | - Shuzhen Liao
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, P. R. China
| | - Wenli Zhou
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, P. R. China
| | - Xuhui Xu
- College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Liping Yu
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, P. R. China
| | - Shixun Lian
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
28
|
Jing CQ, Yin X, Xiao PC, Gao YJ, Wu XM, Yue CY, Lei XW. Bulk Mn 2+ Doped 1D Hybrid Lead Halide Perovskite with Highly Efficient, Tunable and Stable Broadband Light Emissions. Chemistry 2021; 28:e202103043. [PMID: 34873758 DOI: 10.1002/chem.202103043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 11/07/2022]
Abstract
Mn2+ doped colloidal three-dimensional (3D) lead halide perovskite nanocrystal (PNC) has attracted intensive research attention; however, the low exciton binding energy and fatal optical instability of 3D PNC seriously hinder the optoelectronic application. Therefore, it remains significant to explore new stable host perovskite with strongly bound exciton to realize more desirable luminescent property. In this work, we utilized bulk one-dimensional (1D) hybrid perovskite of [AEP]PbBr5 ⋅ H2 O (AEP=N-aminoethylpiperazine) as structural platform to rationally optimize the luminescent property by a controllable Mn2+ doping strategy. Significantly, the series of Mn2+ -doped 1D [AEP]PbBr5 ⋅ H2 O show enhanced energy transfer efficiency from the strongly bound excitons of host material to 3d electrons of Mn2+ ions, resulting in tunable broadband light emissions from weak yellow to strong red spectral range with highest photoluminescence quantum yield up to 28.41 %. More importantly, these Mn2+ -doped 1D perovskites display ultrahigh structural and optical stabilities in humid atmosphere, water and high temperature exceeding the conventional 3D PNC. Combined highly efficient, tunable and stable broadband light emissions enable Mn2+ -doped 1D perovskite as excellent down-converting phosphor showcasing the potential application in white light emitting diode. This work not only provides a profound understanding of low-dimensional perovskites but also opens a new way to rationally design high-performance broadband light emitting perovskites for solid-state lighting and displaying devices.
Collapse
Affiliation(s)
- Chang-Qing Jing
- School of Chemistry, Chemical Engineering and Materials, Jining University, 273155 Qufu, Shandong, P. R. China.,School of Chemistry and Chemical Engineering, Qufu Normal University, 273165Qufu, Shandong, P. R. China
| | - Xu Yin
- School of Chemistry, Chemical Engineering and Materials, Jining University, 273155 Qufu, Shandong, P. R. China
| | - Pan-Chao Xiao
- School of Chemistry, Chemical Engineering and Materials, Jining University, 273155 Qufu, Shandong, P. R. China
| | - Yu-Jia Gao
- School of Chemistry, Chemical Engineering and Materials, Jining University, 273155 Qufu, Shandong, P. R. China
| | - Xiao-Min Wu
- School of Chemistry, Chemical Engineering and Materials, Jining University, 273155 Qufu, Shandong, P. R. China
| | - Cheng-Yang Yue
- School of Chemistry, Chemical Engineering and Materials, Jining University, 273155 Qufu, Shandong, P. R. China
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineering and Materials, Jining University, 273155 Qufu, Shandong, P. R. China
| |
Collapse
|
29
|
Chen B, Guo Y, Wang Y, Liu Z, Wei Q, Wang S, Rogach AL, Xing G, Shi P, Wang F. Multiexcitonic Emission in Zero-Dimensional Cs 2ZrCl 6:Sb 3+ Perovskite Crystals. J Am Chem Soc 2021; 143:17599-17606. [PMID: 34643388 DOI: 10.1021/jacs.1c07537] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal halide perovskites are highly attractive for lighting applications, but the multiexcitonic emission processes in these crystals are largely unexplored. This study presents an investigation of Sb3+-doped Cs2ZrCl6 perovskite crystals that display double luminescence due to the intrinsic host self-trapped excitons (denoted as host STEs) and dopant-induced extrinsic self-trapped excitons (denoted as dopant STEs), respectively. Steady-state and transient-state spectroscopy reveal that the host and dopant STEs can be independently charged at specific energies. Density functional theory calculations confirm that the multiexcitonic emission stems from minimal interactions between the host and dopant STEs in the zero-dimensional crystal lattice. By selective excitation of different STEs through precise control of excitation wavelength, we further demonstrate dynamic color tuning in the Cs2ZrCl6:Sb3+ crystals. The color kinetic feature offers exciting opportunities for constructing multicolor light-emitting devices and encrypting multilevel optical codes.
Collapse
Affiliation(s)
- Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yang Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Zhen Liu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Qi Wei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macao SAR, China
| | - Shixun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macao SAR, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
30
|
Qi Z, Gao H, Yang X, Chen Y, Zhang FQ, Qu M, Li SL, Zhang XM. A One-Dimensional Broadband Emissive Hybrid Lead Iodide with Face-Sharing PbI 6 Octahedral Chains. Inorg Chem 2021; 60:15136-15140. [PMID: 34612632 DOI: 10.1021/acs.inorgchem.1c02732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One-dimensional (1D) organic-inorganic hybrid lead halides with unique core-shell quantum wire structures and splendid photoluminescence properties have been considered one of the most promising high-efficiency broadband emitters. However, studies on the broadband emissions in 1D purely face-shared lead iodide hybrids are still rare so far. Herein, we report on a new 1D lead iodide hybrid, (2cepyH)PbI3 (2cepy = 1-(2-chloroethyl)pyrrolidine), characterized with face-sharing PbI6 octahedral chains. Upon UV photoexcitation, this material shows broadband yellow emissions originating from the self-trapped excitons associated with distorted Pb-I lattices on account of the strong exciton-phonon coupling, as proved by variable-temperature emission spectra. Moreover, experimental and calculated results reveal that (2cepyH)PbI3 is an indirect bandgap semiconductor, the band structures of which are governed by inorganic parts. Our work represents the first broadband emitter based on a 1D face-shared lead iodide hybrid and opens a new way to obtain the novel broadband emission materials.
Collapse
Affiliation(s)
- Zhikai Qi
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030006, China
| | - Huizhi Gao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030006, China
| | - Xuelian Yang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030006, China
| | - Yali Chen
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030006, China
| | - Fu-Qiang Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030006, China
| | - Mei Qu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030006, China
| | - Shi-Li Li
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030006, China
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030006, China.,Key Laboratory of Interface Science and Engineering in Advanced Material (Ministry of Education), College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
31
|
Wei JH, Liao JF, Zhou L, Luo JB, Wang XD, Kuang DB. Indium-antimony-halide single crystals for high-efficiency white-light emission and anti-counterfeiting. SCIENCE ADVANCES 2021; 7:7/34/eabg3989. [PMID: 34417176 PMCID: PMC8378825 DOI: 10.1126/sciadv.abg3989] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/01/2021] [Indexed: 05/03/2023]
Abstract
Although single-source white emissive perovskite has emerged as a class of encouraging light-emitting material, the synthesis of lead-free halide perovskite materials with high luminous efficiency is still challenging. Here, we report a series of zero-dimensional indium-antimony (In/Sb) alloyed halide single crystals, BAPPIn2-2x Sb2x Cl10 (BAPP = C10H28N4, x = 0 to 1), with tunable emission. In BAPPIn1.996Sb0.004Cl10, bright yellow emission with near 100% photoluminescence quantum yield (PLQY) is yielded when it was excited at 320 nm, which turns into bright white-light emission with a PLQY of 44.0% when excited at 365 nm. Combined spectroscopy and theoretical studies reveal that the BAPP4+-associated blue emission and inorganic polyhedron-afforded orange emission function as a perfect pair of complementary colors affording white light in BAPPIn1.996Sb0.004Cl10 Moreover, the interesting afterglow behavior, together with excitation-dependent emission property, makes BAPPIn2-2x Sb2x Cl10 as high-performance anti-counterfeiting/information storage materials.
Collapse
Affiliation(s)
- Jun-Hua Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jin-Feng Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Jian-Bin Luo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xu-Dong Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
32
|
Zhao M, Yang Z, Ning L, Xia Z. Tailoring of White Luminescence in a NaLi 3 SiO 4 :Eu 2+ Phosphor Containing Broad-Band Defect-Induced Charge-Transfer Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101428. [PMID: 34096107 DOI: 10.1002/adma.202101428] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Single-component materials with white-light emission are ideal for lighting applications. However, it is very challenging to achieve white luminescence in single-dopant activated solid phosphors. Herein, white NaLi3 Si1- x O4 :Eu2+ materials are designed via defect engineering and synthesized by reducing the Si content (0.15 ≤ x ≤ 0.25). Stochiometric NaLi3 SiO4 :Eu2+ exhibits a narrow-band blue emission at 469 nm, ascribed to the 5d → 4f transition of Eu2+ at highly symmetric cuboid Na sites, while samples with Si content reduced by 15-25% display white emission with two peaks at 472 nm and 585 nm. The newly appeared broadband yellow peak arises from charge-transfer transitions involving Eu2+ and nearby defects, as verified by an unusual bandwidth, a large Stokes shift, and a long decay time. A single-component white light-emitting diode device is fabricated by employing a white phosphor to demonstrate a color-rendering index of 82.9. This result provides a new design strategy for single-component white-light materials with broad-band defect-induced charge-transfer emission.
Collapse
Affiliation(s)
- Ming Zhao
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhiyu Yang
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Lixin Ning
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, Anhui, 241000, P. R. China
| | - Zhiguo Xia
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| |
Collapse
|
33
|
Fan L, Liu K, Zeng Q, Li M, Cai H, Zhou J, He S, Zhao J, Liu Q. Efficiency-Tunable Single-Component White-Light Emission Realized in Hybrid Halides Through Metal Co-Occupation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29835-29842. [PMID: 34130456 DOI: 10.1021/acsami.1c07636] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic-inorganic hybrid metal halides have attracted widespread attention as emerging optoelectronic materials, especially in solid-state lighting, where they can be used as single-component white-light phosphors for white light-emitting diodes. Herein, we have successfully synthesized a zero-dimensional (0D) organic-inorganic hybrid mixed-metal halide (Bmpip)2PbxSn1-xBr4 (0 < x < 1, Bmpip+ = 1-butyl-1-methyl-piperidinium, C10H22N+) that crystallizes in a monoclinic system in the C2/c space group. Pb2+ and Sn2+ form a four-coordinate seesaw structure separated by organic cations forming a 0D structure. For different excitation wavelengths, (Bmpip)2PbxSn1-xBr4 (0 < x < 1) exhibits double-peaked emission at 470 and 670 nm. The emission color of (Bmpip)2PbxSn1-xBr4 can be easily tuned from orange-red to blue by adjusting the Pb/Sn molar ratio or excitation wavelength. Representatively, (Bmpip)2Pb0.16Sn0.84Br4 exhibits approximately white-light emission with high photoluminescence quantum yield up to 39%. Interestingly, the color of (Bmpip)2PbxSn1-xBr4 can also be easily tuned by temperature, promising its potential for application in temperature measurement and indication. Phosphor-converted light-emitting diodes are fabricated by combining (Bmpip)2PbxSn1-xBr4 and 365 nm near-UV LED chips and exhibit high-quality light output.
Collapse
Affiliation(s)
- Liubing Fan
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qindan Zeng
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology& Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Mingyang Li
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hao Cai
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Zhou
- Department of Physics, Beijing Technology and Business University, Beijing 100048, China
| | - Shihui He
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
34
|
Qi Z, Chen Y, Guo Y, Yang X, Gao H, Zhou G, Li SL, Zhang XM. Highly efficient self-trapped exciton emission in a one-dimensional face-shared hybrid lead bromide. Chem Commun (Camb) 2021; 57:2495-2498. [PMID: 33585850 DOI: 10.1039/d0cc08218j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new one-dimensional (1D) face-shared hybrid lead bromide of (2cepiH)PbBr3, which exhibits intrinsic broadband yellow-light emission with a quantum yield of 16.8% outperforming all previously reported 1D face-shared hybrid metal halides, is obtained. The origin of broadband emission and the coexistence of free excitons and self-trapped excitons are deeply investigated by variable-temperature photoluminescence spectra. Our work paves the way to discovering more wonderful light-emitting materials.
Collapse
Affiliation(s)
- Zhikai Qi
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China.
| | - Yali Chen
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China.
| | - Yao Guo
- Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, P. R. China
| | - Xuelian Yang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China.
| | - Huizhi Gao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China.
| | - Guojun Zhou
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China.
| | - Shi-Li Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China.
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China. and School of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|
35
|
Sun XY, Yue M, Jiang YX, Zhao CH, Liao YY, Lei XW, Yue CY. Combining Dual-Light Emissions to Achieve Efficient Broadband Yellowish-Green Luminescence in One-Dimensional Hybrid Lead Halides. Inorg Chem 2021; 60:1491-1498. [PMID: 33464052 DOI: 10.1021/acs.inorgchem.0c02785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, low-dimensional lead halides have emerged as some of most attractive photoelectric materials due to their intrinsic broadband emissions with a potential application in white-light emitting diodes. To achieve the desired performance, tremendous research has emphasized the modulation of inorganic components as optical centers; however, less work has paid attention to the direct contribution of the organic components. Herein, we successfully assembled two new hybrid lead halides of [H2BPP]Pb2X6 (X = Br, 1, and Cl, 2) containing one-dimensional double [Pb2X6]2- chains using optically active 1,3-bis(4-pyridyl)-propane (BPP) as an organic cation. Under UV-light excitation, compounds 1 and 2 exhibit broadband yellowish-green emissions, which were verified by promising photoluminescence quantum efficiencies (PLQEs) of 8.10% and 4.84%, respectively. The broadband light emissions are derived from the combination of dual higher-energy blue and lower-energy yellow light spectra, which can be attributed to the individual contributions of the organic and inorganic components, respectively, according to the time-resolved and temperature-dependent emission spectra as well as theoretical calculations. This work proves the great contribution of organic components to the photophysical properties and provides a new design strategy to realize broadband light emission by rationally combining the dual-emitting properties of different assembly blocks.
Collapse
Affiliation(s)
- Xing-Yu Sun
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China.,College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Meng Yue
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yong-Xin Jiang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Cheng-Hao Zhao
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yuan-Yuan Liao
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiao-Wu Lei
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Cheng-Yang Yue
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| |
Collapse
|
36
|
Mn 2+ doping enabled efficient high-color-rendering single-phase white-emitting lead halide perovskites. Sci Bull (Beijing) 2021; 66:97-99. [PMID: 36654228 DOI: 10.1016/j.scib.2020.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Fattal H, Creason TD, Delzer CJ, Yangui A, Hayward JP, Ross BJ, Du MH, Glatzhofer DT, Saparov B. Zero-Dimensional Hybrid Organic-Inorganic Indium Bromide with Blue Emission. Inorg Chem 2021; 60:1045-1054. [PMID: 33397099 DOI: 10.1021/acs.inorgchem.0c03164] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Low-dimensional hybrid organic-inorganic metal halides have received increased attention because of their outstanding optical and electronic properties. However, the most studied hybrid compounds contain lead and have long-term stability issues, which must be addressed for their use in practical applications. Here, we report a new zero-dimensional hybrid organic-inorganic halide, RInBr4, featuring photoemissive trimethyl(4-stilbenyl)methylammonium (R+) cations and nonemissive InBr4- tetrahedral anions. The crystal structure of RInBr4 is composed of alternating layers of inorganic anions and organic cations along the crystallographic a axis. The resultant hybrid demonstrates bright-blue emission with Commission Internationale de l'Eclairage color coordinates of (0.19, 0.20) and a high photoluminescence quantum yield (PLQY) of 16.36% at room temperature, a 2-fold increase compared to the PLQY of 8.15% measured for the precursor organic salt RBr. On the basis of our optical spectroscopy and computational work, the organic component is responsible for the observed blue emission of the hybrid material. In addition to the enhanced light emission efficiency, the novel hybrid indium bromide demonstrates significantly improved environmental stability. These findings may pave the way for the consideration of hybrid organic In(III) halides for light emission applications.
Collapse
Affiliation(s)
- Hadiah Fattal
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Tielyr D Creason
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Cordell J Delzer
- Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Aymen Yangui
- Chemical Physics and NanoLund, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Jason P Hayward
- Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bradley J Ross
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mao-Hua Du
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Daniel T Glatzhofer
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Bayrammurad Saparov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
38
|
Jing CQ, Li JZ, Xu T, Jiang K, Zhao XJ, Wu YF, Xue NT, Jing ZH, Lei XW. Organic cations directed 1D [Pb 3Br 10] 4− chains: syntheses, crystal structures, and photoluminescence properties. CrystEngComm 2021. [DOI: 10.1039/d0ce01457e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To diversify the luminescence properties of 1D perovskites, different organic amine cations were combined with 1D [Pb3Br10]4− chains leading to a series of A2Pb3Br10 homologues, displaying broadband near white-light emissions with highest CRI of 96.
Collapse
Affiliation(s)
- Chang-Qing Jing
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
- Department of Chemistry and Chemical Engineering
| | - Jing-Zhao Li
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Te Xu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Kuan Jiang
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Xue-Jie Zhao
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Yu-Fang Wu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Nian-Ting Xue
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Zhi-Hong Jing
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Xiao-Wu Lei
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
- Department of Chemistry and Chemical Engineering
| |
Collapse
|
39
|
Zhang WF, Pan WJ, Xu T, Song RY, Zhao YY, Yue CY, Lei XW. One-Dimensional Face-Shared Perovskites with Broad-Band Bluish White-Light Emissions. Inorg Chem 2020; 59:14085-14092. [PMID: 32926625 DOI: 10.1021/acs.inorgchem.0c01861] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In recent years, two-dimensional (2D) hybrid lead halide perovskites based on corner-shared [PbX6] octahedrons have received extensive attention with important potentials in single-component white-light emitting diodes (WLEDs) due to the soft and distorted crystal lattices. However, limited research focused on the one-dimensional (1D) perovskites although they possess similar structural superiorities to achieve this performance. Herein, by using different types of organic amine cations as structural direction reagents, we report one new type of hybrid 1D perovskites of APbCl3 (A = (DTHPE)0.5, DMTHP, DBN) based on the same 1D face-shared octahedral [PbCl3]- chains. Upon UV light excitation, these 1D APbCl3 perovskites exhibit intrinsic broad-band bluish white-light emissions covering entire visible light spectra with the highest photoluminescence quantum yield (PLQY) of 6.99%, which catches up with the values of previously reported 2D perovskites. Through the systematical studies of time-resolved, temperature-dependent PL emissions, theoretical calculations, and so on, these broad-band light emissions can be ascribed to the radiative transition within conjugated organic cations. The facile assembly process, intrinsic broad-band light emissions, and high PLQYs enable these 1D APbCl3 perovskites as new types of promising candidates in fabricating single-component WLEDs.
Collapse
Affiliation(s)
- Wei-Feng Zhang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China.,College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Wen-Jing Pan
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Te Xu
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Ru-Yang Song
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yan-Yu Zhao
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Cheng-Yang Yue
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiao-Wu Lei
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| |
Collapse
|
40
|
Sun C, He W, Liu M, Pan W, Dong L, Chen G, Liu G, Lei X. Zero‐Dimensional Hybrid Cd‐Based Perovskites with Broadband Bluish White‐Light Emissions. Chem Asian J 2020; 15:3050-3058. [DOI: 10.1002/asia.202000616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/30/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Chen Sun
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R.China
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Wen‐Li He
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R.China
| | - Mei‐Jun Liu
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R.China
| | - Wen‐Jing Pan
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R.China
| | - Lin‐Feng Dong
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R.China
| | - Guang Chen
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 P. R. China
- Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources Northwest Institute of Plateau Biology Chinese Academy of Science Xining 810001 P. R. China
| | - Guo‐Dong Liu
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R.China
| | - Xiao‐Wu Lei
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R.China
| |
Collapse
|
41
|
Jing CQ, Wang J, Zhao HF, Chu WX, Yuan Y, Wang Z, Han MF, Xu T, Zhao JQ, Lei XW. Improving Broadband White-Light Emission Performances of 2D Perovskites by Subtly Regulating Organic Cations. Chemistry 2020; 26:10307-10313. [PMID: 32363612 DOI: 10.1002/chem.202001178] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/26/2020] [Indexed: 12/14/2022]
Abstract
Recently, 2D organic-inorganic hybrid lead halide perovskites have attracted intensive attention in solid-state luminescence fields such as single-component white-light emitters, and rational optimization of the photoluminescence (PL) performance through accurate structural-design strategies is still significant. Herein, by carefully choosing homologous aliphatic amines as templates, isotypical perovskites [DMEDA]PbCl4 (1, DMEDA=N,N-dimethylethylenediamine) and [DMPDA]PbCl4 (2, DMPDA=N,N-dimethyl-1,3-diaminopropane) having tunable and stable broadband bluish white emission properties were rationally designed. The subtle regulation of organic cations leads to a higher degree of distortion of the 2D [PbCl4 ]2- layers and enhanced photoluminescence quantum efficiencies (<1 % for 1 and 4.9 % for 2). The broadband light emissions could be ascribed to self-trapped excitons on the basis of structural characterization, time-resolved PL, temperature-dependent PL emission, and theoretical calculations. This work gives a new guidance to rationally optimize the PL properties of low-dimensional halide perovskites and affords a platform to probe the structure-property relationship.
Collapse
Affiliation(s)
- Chang-Qing Jing
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, P.R. China.,College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P.R. China
| | - Juan Wang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, P.R. China
| | - Hui-Fang Zhao
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, P.R. China
| | - Wen-Xin Chu
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, P.R. China
| | - Yun Yuan
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, P.R. China
| | - Zhi Wang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, P.R. China
| | - Meng-Fei Han
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, P.R. China
| | - Te Xu
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, P.R. China
| | - Jian-Qiang Zhao
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, P.R. China
| | - Xiao-Wu Lei
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, P.R. China
| |
Collapse
|
42
|
Sun C, Guo Y, Han S, Li J, Jiang K, Dong L, Liu Q, Yue C, Lei X. Three‐Dimensional Cuprous Lead Bromide Framework with Highly Efficient and Stable Blue Photoluminescence Emission. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chen Sun
- Department of Chemistry and Chemical EngineeringJining University Qufu Shandong 273155 P. R. China
- College of Chemistry and Chemical EngineeringQufu Normal University Qufu Shandong 273165 P. R. China
| | - Ya‐Hui Guo
- Department of Chemistry and Chemical EngineeringJining University Qufu Shandong 273155 P. R. China
| | - Sha‐Sha Han
- Department of Chemistry and Chemical EngineeringJining University Qufu Shandong 273155 P. R. China
| | - Jing‐Zhao Li
- Department of Chemistry and Chemical EngineeringJining University Qufu Shandong 273155 P. R. China
| | - Kuan Jiang
- Department of Chemistry and Chemical EngineeringJining University Qufu Shandong 273155 P. R. China
| | - Lin‐Feng Dong
- Department of Chemistry and Chemical EngineeringJining University Qufu Shandong 273155 P. R. China
| | - Qi‐Long Liu
- Department of Chemistry and Chemical EngineeringJining University Qufu Shandong 273155 P. R. China
| | - Cheng‐Yang Yue
- Department of Chemistry and Chemical EngineeringJining University Qufu Shandong 273155 P. R. China
| | - Xiao‐Wu Lei
- Department of Chemistry and Chemical EngineeringJining University Qufu Shandong 273155 P. R. China
| |
Collapse
|
43
|
Sun C, Guo Y, Han S, Li J, Jiang K, Dong L, Liu Q, Yue C, Lei X. Three‐Dimensional Cuprous Lead Bromide Framework with Highly Efficient and Stable Blue Photoluminescence Emission. Angew Chem Int Ed Engl 2020; 59:16465-16469. [DOI: 10.1002/anie.202006990] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Chen Sun
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R. China
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Ya‐Hui Guo
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R. China
| | - Sha‐Sha Han
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R. China
| | - Jing‐Zhao Li
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R. China
| | - Kuan Jiang
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R. China
| | - Lin‐Feng Dong
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R. China
| | - Qi‐Long Liu
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R. China
| | - Cheng‐Yang Yue
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R. China
| | - Xiao‐Wu Lei
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 273155 P. R. China
| |
Collapse
|
44
|
Gautier R, Paris M, Massuyeau F. Hydrogen Bonding and Broad-Band Emission in Hybrid Zinc Halide Phosphors. Inorg Chem 2020; 59:2626-2630. [PMID: 32045226 DOI: 10.1021/acs.inorgchem.9b02964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In solid-state lighting (SSL) applications, hybrid zinc halide phosphors are a promising family because they meet specific criteria such as high color rendering, low cost, and nontoxicity. However, contrary to hybrid lead halide phosphors, their quantum efficiencies are low and the origin of this luminescence remains unclear. To unravel this origin and provide new insights into enhancement of this emission, four hybrid zinc halides have been investigated. These four compounds exhibit similar crystal structures but different photoluminescence properties. We show that photoemission requires the formation of Vk centers, which can be promoted by specific hydrogen bonding. We anticipate that the selection of a specific environment for the zinc halide units could lead to a promising family of low-cost and environmentally friendly phosphors for SSL.
Collapse
Affiliation(s)
- Romain Gautier
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes cedex 3, France
| | - Michael Paris
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes cedex 3, France
| | - Florian Massuyeau
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes cedex 3, France
| |
Collapse
|
45
|
Sun XY, Zhang WF, Pan HM, Ma YY, Jing ZH. Broadband yellow light emitting performance based on zero-dimensional hybrid lead bromide trimers. NEW J CHEM 2020. [DOI: 10.1039/d0nj04686h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new zero-dimensional organic–inorganic hybrid lead halides based on linear [Pb3Br12]6− trimers display broadband yellow light emissions with high photoluminescence quantum yields, exhibiting potential in the fabrications of white-light emitting diodes.
Collapse
Affiliation(s)
- Xing-Yu Sun
- College of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu
- P. R. China
| | - Wei-Feng Zhang
- College of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu
- P. R. China
| | - Hong-Mei Pan
- College of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu
- P. R. China
| | - Yue-Yu Ma
- College of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu
- P. R. China
| | - Zhi-Hong Jing
- College of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu
- P. R. China
| |
Collapse
|
46
|
Zhang WF, Zhao JQ, Sun XY, Ma YY, Pan HM, Jing ZH, Lei XW, Yao QX. Tetrameric cluster assembled one-dimensional hybrid lead halides with broadband light emission. CrystEngComm 2020. [DOI: 10.1039/d0ce01202e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A series of new types of 1D lead halide perovskites have been synthesized based on [Pb4X16] tetrameric clusters. The 1D crystal lattice exhibits broadband yellow light emission arising from the self-trapped excitons with potential application in WLEDs.
Collapse
Affiliation(s)
- Wei-Feng Zhang
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Jian-Qiang Zhao
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Xing-Yu Sun
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Yue-Yu Ma
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Hong-Mei Pan
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Zhi-Hong Jing
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Xiao-Wu Lei
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Qing-Xia Yao
- School of Chemistry and Chemical Engineering
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology
- Liaocheng University
- Liaocheng
- P. R. China
| |
Collapse
|