1
|
Panetti GB, Kim J, Myong MS, Bird MJ, Scholes GD, Chirik PJ. Photodriven Ammonia Synthesis from Manganese Nitrides: Photophysics and Mechanistic Investigations. J Am Chem Soc 2024; 146:27610-27621. [PMID: 39330978 DOI: 10.1021/jacs.4c08795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Ammonia synthesis from N,N,O,O-supported manganese(V) nitrides and 9,10-dihydroacridine using proton-coupled electron transfer and visible light irradiation in the absence of precious metal photocatalysts is described. While the reactivity of the nitride correlated with increased absorption of blue light, excited-state lifetimes determined by transient absorption were on the order of picoseconds. This eliminated excited-state manganese nitrides as responsible for bimolecular N-H bond formation. Spectroscopic measurements on the hydrogen source, dihydroacridine, demonstrated that photooxidation of 9,10-dihydroacridine was necessary for productive ammonia synthesis. Transient absorption and pulse radiolysis data for dihydroacridine provided evidence for the presence of intermediates with weak E-H bonds, including the dihydroacridinium radical cation and both isomers of the monohydroacridine radical, but notably these intermediates were unreactive toward hydrogen atom transfer and net N-H bond formation. Additional optimization of the reaction conditions using higher photon flux resulted in higher rates of the ammonia production from the manganese(V) nitrides due to increased activation of the dihydroacridine.
Collapse
Affiliation(s)
- Grace B Panetti
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Michele S Myong
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Matthew J Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Gregory D Scholes
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Zhang W, Chen Z, Zhang Z. Photo-Deactivation Strategy for Switchable ATRP with the Assistance of Molecular Switches. Macromol Rapid Commun 2024; 45:e2400162. [PMID: 38719215 DOI: 10.1002/marc.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Indexed: 05/21/2024]
Abstract
Light irradiation is an external stimulus, rapidly developed in switchable atom transfer radical polymerization (ATRP) via photo-activation methods in recent years. Herein, a photo-deactivation strategy is introduced to regulate ATRP with the assistance of photoswitchable hexaarylbiimidozole (HABI). Under visible light irradiation and in the presence of HABI, ATRP is greatly decelerated or quenched depending on the concentration of HABI. Interestingly, with visible light off, ATRP can proceed smoothly and follow a first-order kinetics. Moreover, photo-switchable ATRP alternatively with light off and on is demonstrated. Besides, the mechanism of photo-deactivation ATRP involving radical quenching is proposed in the presence of HABI.
Collapse
Affiliation(s)
- Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry Engineering and Materials Science of Soochow University, Suzhou, 215123, China
| | - Zhuan Chen
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry Engineering and Materials Science of Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry Engineering and Materials Science of Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Shao H, Long R, Xu H, Sun P, Wang G, Li Y, Liao S. The Development of Visible-Light Organic Photocatalysts for Atom Transfer Radical Polymerization via Conjugation Extension. Molecules 2024; 29:2763. [PMID: 38930829 PMCID: PMC11206499 DOI: 10.3390/molecules29122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
This work aimed to develop organic photocatalysts (PCs) that could mediate organocatalytic atom transfer radical polymerization (O-ATRP) under visible light. Through the core-modification of known chromophoric structures and ring-locking to reach a conjugation extension, annulated N-aryl benzo[kl]acridines were identified as effective visible light-responsive photocatalysts. The corresponding selenium-doped structure showed excellent performance in the O-ATRP of methacrylates, which could afford polymer products with controlled molecular weights and low dispersities under the irradiation of visible light at a 100 ppm catalyst loading.
Collapse
Affiliation(s)
- Hui Shao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China (H.X.)
| | - Runzhi Long
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China (H.X.)
| | - Hui Xu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China (H.X.)
| | - Pan Sun
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China (H.X.)
| | - Guangrong Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China (H.X.)
| | - Yuanming Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China (H.X.)
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China (H.X.)
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Peng HY, Xu MK, Li X, Cai T. Exploiting Photoinduced Atom Transfer Radical Polymerizations with Boron-Dopant and Nitrogen-Defect Synergy in Carbon Nitride Nanosheets. Macromol Rapid Commun 2024:e2400365. [PMID: 38849126 DOI: 10.1002/marc.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Graphitic carbon nitrides (g-C3N4) possess various benefits as heterogeneous photocatalysts, including tunable bandgaps, scalability, and chemical robustness. However, their efficacy and ongoing advancement are hindered by challenges like limited charge-carrier separation rates, insufficient driving force for photocatalysis, small specific surface area, and inadequate absorption of visible light. In this study, boron dopants and nitrogen defects synergy are introduced into bulk g-C3N4 through the calcination of a blend of nitrogen-defective g-C3N4 and NaBH4 under inert conditions, resulting in the formation of BCN nanosheets characterized by abundant porosity and increased specific surface area. These BCN nanosheets promote intermolecular single electron transfer to the radical initiator, maintaining radical intermediates at a low concentration for better control of photoinduced atom transfer radical polymerization (photo-ATRP). Consequently, this method yields polymers with low dispersity and tailorable molecular weights under mild blue light illumination, outperforming previous reports on bulk g-C3N4. The heterogeneity of BCN enables easy separation and efficient reuse in subsequent polymerization processes. This study effectively showcases a simple method to alter the electronic and band structures of g-C3N4 with simultaneously introducing dopants and defects, leading to high-performance photo-ATRP and providing valuable insights for designing efficient photocatalytic systems for solar energy harvesting.
Collapse
Affiliation(s)
- He Yu Peng
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Meng Kai Xu
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Xue Li
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Tao Cai
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
5
|
Wang Z, Wu C, Liu W. Toward the Rational Design of Organic Catalysts for Organocatalysed Atom Transfer Radical Polymerisation. Polymers (Basel) 2024; 16:323. [PMID: 38337212 DOI: 10.3390/polym16030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Thanks to their diversity, organic photocatalysts (PCs) have been widely used in manufacturing polymeric products with well-defined molecular weights, block sequences, and architectures. Still, however, more universal property-performance relationships are needed to enable the rational design of such PCs. That is, a set of unique descriptors ought to be identified to represent key properties of the PCs relevant for polymerisation. Previously, the redox potentials of excited PCs (PC*) were used as a good descriptor for characterising very structurally similar PCs. However, it fails to elucidate PCs with diverse chromophore cores and ligands, among which those used for polymerisation are a good representative. As showcased by model systems of organocatalysed atom transfer radical polymerisation (O-ATRP), new universal descriptors accounting for additional factors, such as the binding and density overlap between the PC* and initiator, are proposed and proved to be successful in elucidating the experimental performances of PCs in polymerisation. While O-ATRP is exemplified here, the approach adopted is general for studying other photocatalytic systems.
Collapse
Affiliation(s)
- Zhilei Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Chenyu Wu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Wenjian Liu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Li SY, Yang XY, Shen PH, Xu L, Xu J, Zhang Q, Xu HJ. Selective Defluoroalkylation and Hydrodefluorination of Trifluoromethyl Groups Photocatalyzed by Dihydroacridine Derivatives. J Org Chem 2023. [PMID: 38054778 DOI: 10.1021/acs.joc.3c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The selective functionalization of trifluoromethyl groups through C-F cleavage poses a significant challenge due to the high bond energy of the C(sp3)-F bonds. Herein, we present dihydroacridine derivatives as photocatalysts that can functionalize the C-F bond of trifluoromethyl groups with various alkenes under mild conditions. Mechanistic studies and DFT calculations revealed that upon irradiation, the dihydroacridine derivatives exhibit high reducibility and function as photocatalysts for reductive defluorination. This process involves a sequential single-electron transfer mechanism. This research provides valuable insights into the properties of dihydroacridine derivatives as photocatalysts, highlighting the importance of maintaining a planar conformation and a large conjugated system for optimal catalytic activity. These findings facilitate the efficient catalytic reduction of inert chemical bonds.
Collapse
Affiliation(s)
- Shi-Yu Li
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Xin-Yu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Peng-Hui Shen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Lei Xu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Jun Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Qi Zhang
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P.R. China
| | - Hua-Jian Xu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| |
Collapse
|
7
|
Hu X, Szczepaniak G, Lewandowska-Andralojc A, Jeong J, Li B, Murata H, Yin R, Jazani AM, Das SR, Matyjaszewski K. Red-Light-Driven Atom Transfer Radical Polymerization for High-Throughput Polymer Synthesis in Open Air. J Am Chem Soc 2023; 145:24315-24327. [PMID: 37878520 PMCID: PMC10636753 DOI: 10.1021/jacs.3c09181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Photoinduced reversible-deactivation radical polymerization (photo-RDRP) techniques offer exceptional control over polymerization, providing access to well-defined polymers and hybrid materials with complex architectures. However, most photo-RDRP methods rely on UV/visible light or photoredox catalysts (PCs), which require complex multistep synthesis. Herein, we present the first example of fully oxygen-tolerant red/NIR-light-mediated photoinduced atom transfer radical polymerization (photo-ATRP) in a high-throughput manner under biologically relevant conditions. The method uses commercially available methylene blue (MB+) as the PC and [X-CuII/TPMA]+ (TPMA = tris(2-pyridylmethyl)amine) complex as the deactivator. The mechanistic study revealed that MB+ undergoes a reductive quenching cycle in the presence of the TPMA ligand used in excess. The formed semireduced MB (MB•) sustains polymerization by regenerating the [CuI/TPMA]+ activator and together with [X-CuII/TPMA]+ provides control over the polymerization. This dual catalytic system exhibited excellent oxygen tolerance, enabling polymerizations with high monomer conversions (>90%) in less than 60 min at low volumes (50-250 μL) and high-throughput synthesis of a library of well-defined polymers and DNA-polymer bioconjugates with narrow molecular weight distributions (Đ < 1.30) in an open-air 96-well plate. In addition, the broad absorption spectrum of MB+ allowed ATRP to be triggered under UV to NIR irradiation (395-730 nm). This opens avenues for the integration of orthogonal photoinduced reactions. Finally, the MB+/Cu catalysis showed good biocompatibility during polymerization in the presence of cells, which expands the potential applications of this method.
Collapse
Affiliation(s)
- Xiaolei Hu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Anna Lewandowska-Andralojc
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Uniwersytetu
Poznanskiego 10, 61-614 Poznan, Poland
| | - Jaepil Jeong
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Bingda Li
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Arman Moini Jazani
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Subha R. Das
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Puffer KO, Corbin DA, Miyake GM. Impact of Alkyl Core Substitution Kinetics in Diaryl Dihydrophenazine Photoredox Catalysts on Properties and Performance in O-ATRP. ACS Catal 2023; 13:14042-14051. [PMID: 38883439 PMCID: PMC11178316 DOI: 10.1021/acscatal.3c04060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Organocatalyzed atom transfer radical polymerization (O-ATRP) is a controlled radical polymerization method mediated by organic photoredox catalysts (PCs) for producing polymers with well-defined structures. While N,N-diaryl dihydrophenazine PCs have successfully produced polymers with low dispersity (Đ < 1.3) in O-ATRP, low initiator efficiencies (I* ~ 60-80%) indicate an inability to achieve targeted molecular weights and have been attributed to the addition of radicals to the PC core. In this work, we measure the rates of alkyl core substitution (AkCS) to gain insight into why PCs differing in N-aryl group connectivity exhibit differences in polymerization control. Additionally, we evaluate how PC properties evolve during O-ATRP when a non-core-substituted PC is used. PC 1 with 1-naphthyl groups in the N-aryl position resulted in faster AkCS (k 1 = 1.21 ± 0.16 × 10-3 s-1, k 2 = 2.04 ± 0.11 × 10-3 s-1) and better polymerization control at early reaction times as indicated by plots of molecular weight (number average molecular weight = M n) vs conversion compared to PC 2 with 2-naphthyl groups (k 1 = 6.28 ± 0.38 × 10-4 s-1, k 2 = 1.15 ± 0.07 × 10-3 s-1). The differences in rates indicate that N-aryl connectivity can influence polymerization control by changing the rate of AkCS PC formation. The rate of AkCS increased from the initial to the second substitution, suggesting that PC properties are modified by AkCS. Increased PC radical cation (PC•+) oxidation potentials (E 1/2 = 0.26-0.27 V vs SCE) or longer triplet excited-state lifetimes (τ T1 = 1.4-33 μs) for AkCS PCs 1b and 2b compared to parent PCs 1 and 2 (E 1/2 = 0.21-0.22 V vs SCE, τ T1 = 0.61-3.3 μs) were observed and may explain changes to PC performance with AkCS. Insight from evaluation of the formation, properties, and performance of AkCS PCs will facilitate their use in O-ATRP and in other PC-driven organic transformations.
Collapse
Affiliation(s)
- Katherine O Puffer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Daniel A Corbin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
9
|
Kapil K, Jazani AM, Szczepaniak G, Murata H, Olszewski M, Matyjaszewski K. Fully Oxygen-Tolerant Visible-Light-Induced ATRP of Acrylates in Water: Toward Synthesis of Protein-Polymer Hybrids. Macromolecules 2023; 56:2017-2026. [PMID: 36938511 PMCID: PMC10019465 DOI: 10.1021/acs.macromol.2c02537] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/05/2023] [Indexed: 02/22/2023]
Abstract
Over the last decade, photoinduced ATRP techniques have been developed to harness the energy of light to generate radicals. Most of these methods require the use of UV light to initiate polymerization. However, UV light has several disadvantages: it can degrade proteins, damage DNA, cause undesirable side reactions, and has low penetration depth in reaction media. Recently, we demonstrated green-light-induced ATRP with dual catalysis, where eosin Y (EYH2) was used as an organic photoredox catalyst in conjunction with a copper complex. This dual catalysis proved to be highly efficient, allowing rapid and well-controlled aqueous polymerization of oligo(ethylene oxide) methyl ether methacrylate without the need for deoxygenation. Herein, we expanded this system to synthesize polyacrylates under biologically relevant conditions using CuII/Me6TREN (Me6TREN = tris[2-(dimethylamino)ethyl]amine) and EYH2 at ppm levels. Water-soluble oligo(ethylene oxide) methyl ether acrylate (average M n = 480, OEOA480) was polymerized in open reaction vessels under green light irradiation (520 nm). Despite continuous oxygen diffusion, high monomer conversions were achieved within 40 min, yielding polymers with narrow molecular weight distributions (1.17 ≤ D̵ ≤ 1.23) for a wide targeted DP range (50-800). In situ chain extension and block copolymerization confirmed the preserved chain end functionality. In addition, polymerization was triggered/halted by turning on/off a green light, showing temporal control. The optimized conditions also enabled controlled polymerization of various hydrophilic acrylate monomers, such as 2-hydroxyethyl acrylate, 2-(methylsulfinyl)ethyl acrylate), and zwitterionic carboxy betaine acrylate. Notably, the method allowed the synthesis of well-defined acrylate-based protein-polymer hybrids using a straightforward reaction setup without rigorous deoxygenation.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Arman Moini Jazani
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
Sun Y, Weng Y, Chen G, Zhang W. Switchable RAFT Polymerization Employing Photoresponsive HABI as a Mediator. Macromol Rapid Commun 2023; 44:e2200664. [PMID: 36253090 DOI: 10.1002/marc.202200664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Indexed: 11/07/2022]
Abstract
Recently, considerable interest has been devoted to developing switchable reversible addition fragmentation chain transfer (RAFT) polymerizations via photoactivation methods. Herein, a photo-deactivation strategy is introduced to regulate RAFT polymerization using photoresponsive hexaarylbiimidozole (HABI) as a mediator, which leads to switchable RAFT polymerization by repeated ON/OFF experiments. In comparison with well-known PET-RAFT polymerization, photo-deactivation RAFT (PD-RAFT) polymerization can be temporally stopped with UV light ON, where photoresponsive HABI can reversibly quench propagating radicals, resulting in switchable RAFT polymerization. The proposed mechanism of PD-RAFT polymerization in the presence of HABI involving radical quenching is based on ESR, NMR, GPC, MALDI-TOF-MS, and kinetics studies.
Collapse
Affiliation(s)
- Yue Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Yuyan Weng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.,Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
11
|
Kim M, Hong S, Jeong J, Hong S. Visible-Light-Active Coumarin- and Quinolinone-Based Photocatalysts and Their Applications in Chemical Transformations. CHEM REC 2023:e202200267. [PMID: 36627191 DOI: 10.1002/tcr.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Organic dyes have been actively studied as useful photocatalysts because they allow access to versatile structural flexibility and green synthetic applications. The identification of a new class of robust organic chromophores is, therefore, in high demand to increase structural diversity and variability. Although coumarins and quinolinones have long been acknowledged as organic chromophores, their ability to participate in photoinduced transformations is somewhat less familiar. Fascinated by their chromophoric features and adaptable platform, our group is interested in the identification of fluorescent bioactive molecules and in the development of new photoinduced synthetic methods using coumarins and quinolinones as photocatalysts. This account provides an overview of our recent progress in the discovery and application of light-absorbing coumarin and quinolinone derivatives in photochemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Myojeong Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seonghyeok Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinwook Jeong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
12
|
Bortolato T, Simionato G, Vayer M, Rosso C, Paoloni L, Benetti EM, Sartorel A, Lebœuf D, Dell’Amico L. The Rational Design of Reducing Organophotoredox Catalysts Unlocks Proton-Coupled Electron-Transfer and Atom Transfer Radical Polymerization Mechanisms. J Am Chem Soc 2023; 145:1835-1846. [PMID: 36608266 PMCID: PMC9881005 DOI: 10.1021/jacs.2c11364] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Photocatalysis has become a prominent tool in the arsenal of organic chemists to develop and (re)imagine transformations. However, only a handful of versatile organic photocatalysts (PCs) are available, hampering the discovery of new reactivities. Here, we report the design and complete physicochemical characterization of 9-aryl dihydroacridines (9ADA) and 12-aryl dihydrobenzoacridines (12ADBA) as strong reducing organic PCs. Punctual structural variations modulate their molecular orbital distributions and unlock locally or charge-transfer (CT) excited states. The PCs presenting a locally excited state showed better performances in photoredox defunctionalization processes (yields up to 92%), whereas the PCs featuring a CT excited state produced promising results in atom transfer radical polymerization under visible light (up to 1.21 Đ, and 98% I*). Unlike all the PC classes reported so far, 9ADA and 12ADBA feature a free NH group that enables a catalytic multisite proton-coupled electron transfer (MS-PCET) mechanism. This manifold allows the reduction of redox-inert substrates including aryl, alkyl halides, azides, phosphate and ammonium salts (Ered up to -2.83 vs SCE) under single-photon excitation. We anticipate that these new PCs will open new mechanistic manifolds in the field of photocatalysis by allowing access to previously inaccessible radical intermediates under one-photon excitation.
Collapse
Affiliation(s)
- Tommaso Bortolato
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Gianluca Simionato
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Marie Vayer
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 allée Gaspard Monge, 67000Strasbourg, France
| | - Cristian Rosso
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Lorenzo Paoloni
- Dipartimento
di Fisica e Astronomia G. Galilei, University
of Padova, Via Marzolo
8, 35131, Padova, Italy
| | - Edmondo M. Benetti
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Andrea Sartorel
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - David Lebœuf
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 allée Gaspard Monge, 67000Strasbourg, France,E-mail:
| | - Luca Dell’Amico
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy,E-mail:
| |
Collapse
|
13
|
Zhang Y, Wang H, Jiang D, Sun N, He W, Zhao L, Qin N, Zhu N, Fang Z, Guo K. Photomediated core modification of diaryl dihydrophenzines through three-component alkylarylation of alkenes toward organocatalyzed ATRP. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
14
|
Zhang D, Shao YB, Xie W, Chen Y, Liu W, Bao H, He F, Xue XS, Yang X. Remote Enantioselective Desymmetrization of 9,9-Disubstituted 9,10-Dihydroacridines through Asymmetric Aromatic Aminations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dekun Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ying-Bo Shao
- College of Chemistry, Nankai University, Tianjin 300071, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wansen Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hanyang Bao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Faqian He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024 China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
15
|
Corbin DA, Cremer C, Puffer KO, Newell BS, Patureau FW, Miyake GM. Effects of the Chalcogenide Identity in N-Aryl Phenochalcogenazine Photoredox Catalysts. ChemCatChem 2022; 14:e202200485. [PMID: 36245968 PMCID: PMC9541587 DOI: 10.1002/cctc.202200485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/06/2022] [Indexed: 11/06/2022]
Abstract
Phenochalcogenazines such as phenoxazines and phenothiazines have been widely employed as photoredox catalysts (PCs) in small molecule and polymer synthesis. However, the effect of the chalcogenide in these catalysts has not been fully investigated. In this work, a series of four phenochalcogenazines is synthesized to understand how the chalcogenide impacts catalyst properties and performance. Increasing the size of the chalcogenide is found to distort the PC structure, ultimately impacting the properties of each PC. For example, larger chalcogenides destabilize the PC radical cation, possibly resulting in catalyst degradation. In addition, PCs with larger chalcogenides experience increased reorganization during electron transfer, leading to slower electron transfer. Ultimately, catalyst performance is evaluated in organocatalyzed atom transfer radical polymerization and a photooxidation reaction for C(sp2)-N coupling. Results from these experiments highlight that a balance of PC properties is most beneficial for catalysis, including a long-lived excited state, a stable radical cation, and a low reorganization energy.
Collapse
Affiliation(s)
- Daniel A. Corbin
- Department of ChemistryColorado State University200 W. Lake St.Fort CollinsColorado80523United States
| | - Christopher Cremer
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Katherine O. Puffer
- Department of ChemistryColorado State University200 W. Lake St.Fort CollinsColorado80523United States
| | - Brian S. Newell
- Analytical Resources Core, Materials and Molecular Analysis CenterColorado State University200 W. Lake St.Fort CollinsColorado80523United States
| | - Frederic W. Patureau
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Garret M. Miyake
- Department of ChemistryColorado State University200 W. Lake St.Fort CollinsColorado80523United States
| |
Collapse
|
16
|
Valle M, Ximenis M, Lopez de Pariza X, Chan JMW, Sardon H. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022; 61:e202203043. [PMID: 35700152 PMCID: PMC9545893 DOI: 10.1002/anie.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Organocatalysis has evolved into an effective complement to metal- or enzyme-based catalysis in polymerization, polymer functionalization, and depolymerization. The ease of removal and greater sustainability of organocatalysts relative to transition-metal-based ones has spurred development in specialty applications, e.g., medical devices, drug delivery, optoelectronics. Despite this, the use of organocatalysis and other organomediated reactions in polymer chemistry is still rapidly developing, and we envisage their rapidly growing application in nascent areas such as controlled radical polymerization, additive manufacturing, and chemical recycling in the coming years. In this Review, we describe ten trending areas where we anticipate paradigm shifts resulting from novel organocatalysts and other transition-metal-free conditions. We highlight opportunities and challenges and detail how new discoveries could lead to previously inaccessible functional materials and a potentially circular plastics economy.
Collapse
Affiliation(s)
- María Valle
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Marta Ximenis
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
- University of the Balearic Islands UIBDepartment of ChemistryCra. Valldemossa, Km 7.507122Palma de MallorcaSpain
| | - Xabier Lopez de Pariza
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Julian M. W. Chan
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for ScienceTechnology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Singapore
| | - Haritz Sardon
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| |
Collapse
|
17
|
Asaji Y, Maruyama H, Yoshimura T, Matsuo JI. Intermolecular direct catalytic cross-Michael/Michael reactions and tandem Michael/Michael/aldol reactions to linear compounds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Gryaznova TV, Nikanshina EO, Fayzullin RR, Islamov DR, Tarasov MV, Kholin KV, Budnikova YH. EPR-electrochemical monitoring of P–C coupling: Towards one-step electrochemical phosphorylation of acridine. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Lorandi F, Fantin M, Matyjaszewski K. Atom Transfer Radical Polymerization: A Mechanistic Perspective. J Am Chem Soc 2022; 144:15413-15430. [PMID: 35882005 DOI: 10.1021/jacs.2c05364] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its inception, atom transfer radical polymerization (ATRP) has seen continuous evolution in terms of the design of the catalyst and reaction conditions; today, it is one of the most useful techniques to prepare well-defined polymers as well as one of the most notable examples of catalysis in polymer chemistry. This Perspective highlights fundamental advances in the design of ATRP reactions and catalysts, focusing on the crucial role that mechanistic studies play in understanding, rationalizing, and predicting polymerization outcomes. A critical summary of traditional ATRP systems is provided first; we then focus on the most recent developments to improve catalyst selectivity, control polymerizations via external stimuli, and employ new photochemical or dual catalytic systems with an outlook to future research directions and open challenges.
Collapse
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Marco Fantin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
20
|
Visible light-controlled living cationic polymerization of methoxystyrene. Nat Commun 2022; 13:3621. [PMID: 35750872 PMCID: PMC9232534 DOI: 10.1038/s41467-022-31359-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
Photo-controlled living polymerization has received great attention in recent years. However, despite the great success therein, the report on photo-controlled living cationic polymerization has been greatly limited. We demonstrate here a novel decolorable, metal-free and visible light-controlled living cationic polymerization system by using tris(2,4-dimethoxyphenyl)methylium tetrafluoroborate as the photocatalyst and phosphate as the chain transfer agent (CTA) for polymerization of 4-methoxystyrene. This polymerization reaction under green LED light irradiation shows clear living characteristics including predictable molar mass, low molar-mass dispersity (Đ = 1.25), and sequential polymerization capability. In addition, the photocatalytic system exits excellent "on-off" photo switchability and shows the longest "off period" of 36 h up to now for photo-controlled cationic polymerization. Furthermore, the residual photo-catalyst is easily deactivated and decolored with addition of a base after the polymerization. The present study has extended the photo-controlled living cationic polymerization systems with new organic photocatalysts, phosphate CTA and polymerizable monomer as well as the new properties of excellent photostability and in-situ decolored capacity.
Collapse
|
21
|
Sardon H, Valle M, Lopez de Pariza X, Ximenis M, Chan JM. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haritz Sardon
- University of Basque Country POLYMAT Paseo Manuel Lardizabal n 3 20018 San Sebastian SPAIN
| | - María Valle
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | | | - Marta Ximenis
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | - Julian M.W. Chan
- Agency for Science Technology and Research Institue of Chemical and Engineering Science SINGAPORE
| |
Collapse
|
22
|
Aydogan C, Yilmaz G, Shegiwal A, Haddleton DM, Yagci Y. Photoinduced Controlled/Living Polymerizations. Angew Chem Int Ed Engl 2022; 61:e202117377. [PMID: 35128771 DOI: 10.1002/anie.202117377] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/09/2022]
Abstract
The application of photochemistry in polymer synthesis is of interest due to the unique possibilities offered compared to thermochemistry, including topological and temporal control, rapid polymerization, sustainable low-energy processes, and environmentally benign features leading to established and emerging applications in adhesives, coatings, adaptive manufacturing, etc. In particular, the utilization of photochemistry in controlled/living polymerizations often offers the capability for precise control over the macromolecular structure and chain length in addition to the associated advantages of photochemistry. Herein, the latest developments in photocontrolled living radical and cationic polymerizations and their combinations for application in polymer syntheses are discussed. This Review summarizes and highlights recent studies in the emerging area of photoinduced controlled/living polymerizations. A discussion of mechanistic details highlights differences as well as parallels between different systems for different polymerization methods and monomer applicability.
Collapse
Affiliation(s)
- Cansu Aydogan
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Gorkem Yilmaz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Ataulla Shegiwal
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - David M Haddleton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Yusuf Yagci
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| |
Collapse
|
23
|
Quan Q, Zhao Y, Chen K, Zhou H, Zhou C, Chen M. Organocatalyzed Controlled Copolymerization of Perfluorinated Vinyl Ethers and Unconjugated Monomers Driven by Light. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qinzhi Quan
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yucheng Zhao
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Huyan Zhou
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Chengda Zhou
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
24
|
Visible light-triggered PET-RAFT polymerization by heterogeneous 2D porphyrin-based COF photocatalyst under aqueous condition. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Aydogan C, Yilmaz G, Shegiwal A, Haddleton DM, Yagci Y. Photoinduced Controlled/Living Polymerizations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cansu Aydogan
- Department of Chemistry Faculty of Science and Letters Istanbul Technical University 34469 Maslak Istanbul Turkey
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Gorkem Yilmaz
- Department of Chemistry Faculty of Science and Letters Istanbul Technical University 34469 Maslak Istanbul Turkey
| | - Ataulla Shegiwal
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | | | - Yusuf Yagci
- Department of Chemistry Faculty of Science and Letters Istanbul Technical University 34469 Maslak Istanbul Turkey
| |
Collapse
|
27
|
Chen K, Zhou Y, Han S, Liu Y, Chen M. Main-Chain Fluoropolymers with Alternating Sequence Control via Light-Driven Reversible-Deactivation Copolymerization in Batch and Flow. Angew Chem Int Ed Engl 2022; 61:e202116135. [PMID: 35023256 DOI: 10.1002/anie.202116135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 12/12/2022]
Abstract
Polymers with regulated alternating structures are attractive in practical applications, particularly for main-chain fluoropolymers. We for the first time enabled controlled fluoropolymer synthesis with alternating sequence regulation using a novel fluorinated xanthate agent via a light-driven process, which achieved on-demand copolymerization of chlorotrifluoroethylene and vinyl esters/amides under both batch and flow conditions at ambient pressure. This method creates a facile access to fluoropolymers with a broad fraction range of alternating units, low dispersities and high chain-end fidelity. Moreover, a two-step photo-flow platform was established to streamline the in-situ chain-extension toward unprecedented block copolymers continuously from fluoroethylene. Influences of structural control were illustrated with thermal and surface properties. We anticipate that this work will promote advanced material engineering with customized fluoropolymers.
Collapse
Affiliation(s)
- Kaixuan Chen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yang Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Shantao Han
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yinli Liu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
28
|
Wu C, Corrigan N, Lim CH, Liu W, Miyake G, Boyer C. Rational Design of Photocatalysts for Controlled Polymerization: Effect of Structures on Photocatalytic Activities. Chem Rev 2022; 122:5476-5518. [PMID: 34982536 PMCID: PMC9815102 DOI: 10.1021/acs.chemrev.1c00409] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past decade, the use of photocatalysts (PCs) in controlled polymerization has brought new opportunities in sophisticated macromolecular synthesis. However, the selection of PCs in these systems has been typically based on laborious trial-and-error strategies. To tackle this limitation, computer-guided rational design of PCs based on knowledge of structure-property-performance relationships has emerged. These rational strategies provide rapid and economic methodologies for tuning the performance and functionality of a polymerization system, thus providing further opportunities for polymer science. This review provides an overview of PCs employed in photocontrolled polymerization systems and summarizes their progression from early systems to the current state-of-the-art. Background theories on electronic transitions are also introduced to establish the structure-property-performance relationships from a perspective of quantum chemistry. Typical examples for each type of structure-property relationships are then presented to enlighten future design of PCs for photocontrolled polymerization.
Collapse
Affiliation(s)
- Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | | | - Chern-Hooi Lim
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- New Iridium Incorporated, Boulder, Colorado 80303, United States
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Garret Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
29
|
Wei D, Li H, Yang C, Fu J, Chen H, Bai L, Wang W, Yang H, Yang L, Liang Y. Visible light‐driven acridone catalysis for atom transfer radical polymerization. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Donglei Wei
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Huili Li
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Chuanqing Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Jianmin Fu
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Hou Chen
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Huawei Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Lixia Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| | - Ying Liang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province Ludong University Yantai China
| |
Collapse
|
30
|
Bortolato T, Cuadros S, Simionato G, Dell'Amico L. The advent and development of organophotoredox catalysis. Chem Commun (Camb) 2022; 58:1263-1283. [PMID: 34994368 DOI: 10.1039/d1cc05850a] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decade, photoredox catalysis has unlocked unprecedented reactivities in synthetic organic chemistry. Seminal advancements in the field have involved the use of well-studied metal complexes as photoredox catalysts (PCs). More recently, the synthetic community, looking for more sustainable approaches, has been moving towards the use of purely organic molecules. Organic PCs are generally cheaper and less toxic, while allowing their rational modification to an increased generality. Furthermore, organic PCs have allowed reactivities that are inaccessible by using common metal complexes. Likewise, in synthetic catalysis, the field of photocatalysis is now experiencing a green evolution moving from metal catalysis to organocatalysis. In this feature article, we discuss and critically comment on the scientific reasons for this ongoing evolution in the field of photoredox catalysis, showing how and when organic PCs can efficiently replace their metal counterparts.
Collapse
Affiliation(s)
- Tommaso Bortolato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| | - Sara Cuadros
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| | - Gianluca Simionato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| |
Collapse
|
31
|
Corbin DA, Miyake GM. Photoinduced Organocatalyzed Atom Transfer Radical Polymerization (O-ATRP): Precision Polymer Synthesis Using Organic Photoredox Catalysis. Chem Rev 2022; 122:1830-1874. [PMID: 34842426 PMCID: PMC9815475 DOI: 10.1021/acs.chemrev.1c00603] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP) has received considerable attention since its introduction in 2014. Expanding on many of the advantages of traditional ATRP, O-ATRP allows well-defined polymers to be produced under mild reaction conditions using organic photoredox catalysts. As a result, O-ATRP has opened access to a range of sensitive applications where the use of a metal catalyst could be of concern, such as electronics, certain biological applications, and the polymerization of coordinating monomers. However, key limitations of this method remain and necessitate further investigation to continue the development of this field. As such, this review details the achievements made to-date as well as future research directions that will continue to expand the capabilities and application landscape of O-ATRP.
Collapse
|
32
|
Chen M, Chen K, Zhou Y, Han S, Liu Y. Main‐Chain Fluoropolymers with Alternating Sequence Control via Light‐Driven Reversible‐Deactivation Copolymerization in Batch and Flow. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mao Chen
- Fudan University State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Yangpu, Handan Road 220, Yuejin Building 505 200433 Shanghai CHINA
| | - Kaixuan Chen
- Fudan University Department of Macromolecular Science CHINA
| | - Yang Zhou
- Fudan University Department of Macromolecular Science CHINA
| | - Shantao Han
- Fudan University Department of Macromolecular Science CHINA
| | - Yinli Liu
- Fudan University Department of Macromolecular Science CHINA
| |
Collapse
|
33
|
Matsuda M, Uchiyama M, Itabashi Y, Ohkubo K, Kamigaito M. Acridinium salts as photoredox organocatalysts for photomediated cationic RAFT and DT polymerizations of vinyl ethers. Polym Chem 2022. [DOI: 10.1039/d1py01568k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of acridinium salts with high excited-state oxidative power are employed as photoredox organocatalysts for photomediated cationic RAFT and DT polymerizations under visible light.
Collapse
Affiliation(s)
- Marina Matsuda
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuki Itabashi
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
34
|
Polgar AM, Huang SH, Hudson ZM. Donor modification of thermally activated delayed fluorescence photosensitizers for organocatalyzed atom transfer radical polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00470d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TADF donor-acceptor conjugates were applied as photosensitizers for organocatalyzed organic atom transfer radical polymerization. A donor-modification strategy was found to dramatically improve the control over the polymerization.
Collapse
Affiliation(s)
- Alexander M. Polgar
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Shine H. Huang
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
35
|
Sauvé ER, Mayder DM, Kamal S, Oderinde MS, Hudson ZM. An Imidazoacridine-Based TADF Material as Effective Organic Photosensitizer for Visible-Light-Promoted [2+2] Cycloaddition. Chem Sci 2022; 13:2296-2302. [PMID: 35310486 PMCID: PMC8864701 DOI: 10.1039/d1sc05098b] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
Energy transfer (EnT) is a fundamental activation process in visible-light-promoted photocycloaddition reactions. This work describes the performance of imidazoacridine-based TADF materials for visible-light mediated triplet–triplet EnT photocatalysis. The TADF material ACR-IMAC has been discovered as an inexpensive, high-performance organic alternative to the commonly used metal-based photosensitizers for visible-light EnT photocatalysis. The efficiency of ACR-IMAC as a photosensitizer is comparable with Ir-based photosensitizers in both intra- and intermolecular [2 + 2] cycloadditions. ACR-IMAC mediated both dearomative and non-dearomative [2 + 2] cycloadditions in good yields, with high regio- and diastereocontrol. Cyclobutane-containing bi- tri- and tetracylic scaffolds were successfully prepared, with broad tolerance toward functional groups relevant to drug discovery campaigns. Fluorescence quenching experiments, time-correlated single-photon counting, and transient absorption spectroscopy were also conducted to provide insight into the reaction and evidence for an EnT mechanism. This work describes the performance of imidazoacridine-based TADF materials for visible-light mediated triplet–triplet EnT photocatalysis.![]()
Collapse
Affiliation(s)
- Ethan R Sauvé
- Department of Chemistry, The University of British Columbia 2036 Main Mall, Vancouver British Columbia V6T 1Z1 Canada +1-604-822-2691
| | - Don M Mayder
- Department of Chemistry, The University of British Columbia 2036 Main Mall, Vancouver British Columbia V6T 1Z1 Canada +1-604-822-2691
| | - Saeid Kamal
- Department of Chemistry, The University of British Columbia 2036 Main Mall, Vancouver British Columbia V6T 1Z1 Canada +1-604-822-2691
| | - Martins S Oderinde
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development 3551 Lawrenceville Road, Princeton New Jersey 08540 USA +1-609-252-5237
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia 2036 Main Mall, Vancouver British Columbia V6T 1Z1 Canada +1-604-822-2691
| |
Collapse
|
36
|
Wan Y, Liu Q, Wu H, Zhang Z, Zhang G. 2,11-Dimethoxyldipyridopurinone as an efficient reducing visible-light photocatalyst for organic transformations. Org Chem Front 2022. [DOI: 10.1039/d1qo01914g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
2,11-Dimethoxyldipyridopurinone (DP4) was demonstrated as a potent reducing visible-light PC that can efficiently catalyze three prototypic photoreactions: the redox-neutral, net oxidative and reductive reactions via oxidative-quenching mechanisms.
Collapse
Affiliation(s)
- Yameng Wan
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Qingfeng Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Hao Wu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| |
Collapse
|
37
|
Harth E, Keyes A, Dau H, Matyjaszewski K. Tandem Living Insertion and Controlled Radical Polymerization for Polyolefin-Polyvinyl Block Copolymers. Angew Chem Int Ed Engl 2021; 61:e202112742. [PMID: 34967088 DOI: 10.1002/anie.202112742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Indexed: 11/07/2022]
Abstract
Practical synthesis of polyolefin-polyvinyl block copolymers remains a challenge for transition-metal catalyzed polymerizations. Common approaches functionalize polyolefins for post-radical polymerization via insertion methods, yet sacrifice the livingness of the olefin polymerization. This work identifies an orthogonal radical/spin coupling technique which affords tandem living insertion and controlled radical polymerization. The broad tolerance of this coupling technique has been demonstrated for diverse radical/spin traps such as 2,2,5-trimethyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO), 1-oxyl- (2,2,6,6-tetramethylpiperidine) -4-yl-α-bromoisobutyrate (TEMPO-Br), and N-tert -butyl-α-phenylnitrone (PBN). Subsequent controlled radical polymerization is demonstrated with NMP and atom transfer radical polymerization (ATRP), yielding polyolefin-polyvinyl di- and triblock copolymers ( Đ <1.3) with acrylic, vinylic and styrenic segments. These findings highlight radical trapping as an approach to expand the scope of polyolefin functionalization techniques to access polyolefin macroinitiators.
Collapse
Affiliation(s)
- Eva Harth
- University of Houston, Chemistry, 406 STL Building, United States, 77004, Houston, UNITED STATES
| | | | - Huong Dau
- University of Houston, Chemistry, UNITED STATES
| | | |
Collapse
|
38
|
Harth E, Keyes A, Dau H, Matyjaszewski K. Tandem Living Insertion and Controlled Radical Polymerization for Polyolefin‐Polyvinyl Block Copolymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eva Harth
- University of Houston Chemistry 406 STL BuildingUnited States 77004 Houston UNITED STATES
| | | | - Huong Dau
- University of Houston Chemistry UNITED STATES
| | | |
Collapse
|
39
|
Wan Y, Wu H, Ma N, Zhao J, Zhang Z, Gao W, Zhang G. De novo design and synthesis of dipyridopurinone derivatives as visible-light photocatalysts in productive guanylation reactions. Chem Sci 2021; 12:15988-15997. [PMID: 35024122 PMCID: PMC8672711 DOI: 10.1039/d1sc05294b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Described here is the de novo design and synthesis of a series of 6H-dipyrido[1,2-e:2',1'-i]purin-6-ones (DPs) as a new class of visible-light photoredox catalysts (PCs). The synthesized DP1-5 showed their λ Abs(max) values in 433-477 nm, excited state redox potentials in 1.15-0.69 eV and -1.41 to -1.77 eV (vs. SCE), respectively. As a representative, DP4 enables the productive guanylation of various amines, including 1°, 2°, and 3°-alkyl primary amines, secondary amines, aryl and heteroaryl amines, amino-nitrile, amino acids and peptides as well as propynylamines and α-amino esters giving diversities in biologically important guanidines and cyclic guanidines. The photocatalytic efficacy of DP4 in the guanylation overmatched commonly used Ir and Ru polypyridyl complexes, and some organic PCs. Other salient merits of this method include broad substrate scope and functional group tolerance, gram-scale synthesis, and versatile late-stage derivatizations that led to a derivative 81 exhibiting 60-fold better anticancer activity against Ramos cells with the IC50 of 0.086 μM than that of clinical drug ibrutinib (5.1 μM).
Collapse
Affiliation(s)
- Yameng Wan
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Hao Wu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Jie Zhao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Wenjing Gao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| |
Collapse
|
40
|
Soly S, Mistry B, Murthy CN. Photo‐mediated metal‐free atom transfer radical polymerization: recent advances in organocatalysts and perfection towards polymer synthesis. POLYM INT 2021. [DOI: 10.1002/pi.6336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sneha Soly
- Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering The Maharaja Sayajirao University of Baroda Vadodara 390001 India
| | - Bhavita Mistry
- Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering The Maharaja Sayajirao University of Baroda Vadodara 390001 India
| | - CN Murthy
- Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering The Maharaja Sayajirao University of Baroda Vadodara 390001 India
| |
Collapse
|
41
|
Quan Q, Ma M, Wang Z, Gu Y, Chen M. Visible-Light-Enabled Organocatalyzed Controlled Alternating Terpolymerization of Perfluorinated Vinyl Ethers. Angew Chem Int Ed Engl 2021; 60:20443-20451. [PMID: 34121303 DOI: 10.1002/anie.202107066] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/08/2021] [Indexed: 11/08/2022]
Abstract
Polymerizations of perfluorinated vinyl ethers (PFVEs) provide an important category of fluoropolymers that have received considerable interests in applications. In this work, we report the development of an organocatalyzed controlled radical alternating terpolymerization of PFVEs and vinyl ethers (VEs) under visible-light irradiation. This method not only enables the synthesis of a broad scope of fluorinated terpolymers of low dispersities and high chain-end fidelity, facilitating tuning the chemical compositions by rationally choosing the type and/or ratio of comonomers, but also allows temporal control of chain-growth, as well as the preparation of a variety of novel fluorinated block copolymers. To showcase the versatility of this method, fluorinated alternating terpolymers have been synthesized and customized to simultaneously display a variety of desirable properties for solid polymer electrolyte design, creating new opportunities in high-performance energy storage devices.
Collapse
Affiliation(s)
- Qinzhi Quan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Mingyu Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Zongtao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yu Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
42
|
Quan Q, Ma M, Wang Z, Gu Y, Chen M. Visible‐Light‐Enabled Organocatalyzed Controlled Alternating Terpolymerization of Perfluorinated Vinyl Ethers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qinzhi Quan
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Mingyu Ma
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Zongtao Wang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Yu Gu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| |
Collapse
|
43
|
Zhu Y, Egap E. Light-Mediated Polymerization Induced by Semiconducting Nanomaterials: State-of-the-Art and Future Perspectives. ACS POLYMERS AU 2021; 1:76-99. [PMID: 36855427 PMCID: PMC9954404 DOI: 10.1021/acspolymersau.1c00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Direct capture of solar energy for chemical transformation via photocatalysis proves to be a cost-effective and energy-saving approach to construct organic compounds. With the recent growth in photosynthesis, photopolymerization has been established as a robust strategy for the production of specialty polymers with complex structures, precise molecular weight, and narrow dispersity. A key challenge in photopolymerization is the scarcity of effective photomediators (photoinitiators, photocatalysts, etc.) that can provide polymerization with high yield and well-defined polymer products. Current efforts on developing photomediators have mainly focused on organic dyes and metal complexes. On the other hand, nanomaterials (NMs), particularly semiconducting nanomaterials (SNMs), are suitable candidates for photochemical reactions due to their unique optical and electrical properties, such as high absorption coefficients, large charge diffusion lengths, and broad absorption spectra. This review provides a comprehensive insight into SNMs' photomediated polymerizations and highlights the roles SNMs play in photopolymerizations, types of polymerizations, applications in producing advanced materials, and the future directions.
Collapse
Affiliation(s)
- Yifan Zhu
- †Department
of Materials Science and Nanoengineering and ‡Department of Chemical and Biomolecular
Engineering, Rice University, Houston, Texas 77005, United States
| | - Eilaf Egap
- †Department
of Materials Science and Nanoengineering and ‡Department of Chemical and Biomolecular
Engineering, Rice University, Houston, Texas 77005, United States,
| |
Collapse
|
44
|
Zhang Y, Jiang D, Fang Z, Zhu N, Sun N, He W, Liu C, Zhao L, Guo K. Photomediated core modification of organic photoredox catalysts in radical addition: mechanism and applications. Chem Sci 2021; 12:9432-9441. [PMID: 34349917 PMCID: PMC8279010 DOI: 10.1039/d1sc02258j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 01/02/2023] Open
Abstract
Dihydrophenazines and their analogues have been widely used as strong reducing photoredox catalysts in radical chemistry, such as organocatalyzed atom transfer radical polymerization (O-ATRP). However, when dihydrophenazines were employed as organic photoredox catalysts (OPCs) to mediate O-ATRP, the initiator efficiency was nonquantitative due to cross-coupling between dihydrophenazines and radical species. Here, a new kind of core modification for dihydrophenazines, phenoxazines and phenothiazines was developed through this cross-coupling process. Mechanistic studies suggested that the radical species would be more likely to couple with OPC' radical cations rather than the ground-state OPC. Core modification of OPCs could stabilize the radical ions in an oxidative quenching catalytic cycle. Significantly, core modifications of OPCs could lower the energy of light required for photoexcitation. Compared with their noncore-modified counterparts, all the core-modified dihydrophenazines and phenoxazines exhibited efficient performance in controlling O-ATRP for the synthesis of poly(methyl methacrylate) with higher initiator efficiencies under the irradiation of simulated sunlight.
Collapse
Affiliation(s)
- Yajun Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China +86 2558139901 +86 25581399301
| | - Dandan Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China +86 2558139901 +86 25581399301
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China +86 2558139901 +86 25581399301
| | - Naixian Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China +86 2558139901 +86 25581399301
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China +86 2558139901 +86 25581399301
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China +86 2558139901 +86 25581399301
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China +86 2558139901 +86 25581399301
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China
| |
Collapse
|
45
|
Tong Y, Liu Y, Chen Q, Mo Y, Ma Y. Long-Lived Triplet Excited-State Bichromophoric Iridium Photocatalysts for Controlled Photo-Mediated Atom-Transfer Radical Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yujie Tong
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yiming Liu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Qi Chen
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yitian Mo
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
46
|
de Ávila Gonçalves S, R Rodrigues P, Pioli Vieira R. Metal-Free Organocatalyzed Atom Transfer Radical Polymerization: Synthesis, Applications, and Future Perspectives. Macromol Rapid Commun 2021; 42:e2100221. [PMID: 34223686 DOI: 10.1002/marc.202100221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well-defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O-ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O-ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O-ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O-ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields.
Collapse
Affiliation(s)
- Sayeny de Ávila Gonçalves
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| | - Plínio R Rodrigues
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas, São Paulo, 13083-852, Brazil
| |
Collapse
|
47
|
Zhu Y, Jin T, Lian T, Egap E. Enhancing the efficiency of semiconducting quantum dot photocatalyzed atom transfer radical polymerization by ligand shell engineering. J Chem Phys 2021; 154:204903. [PMID: 34241152 DOI: 10.1063/5.0051893] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Manipulating the ligand shell of semiconducting quantum dots (QDs) has proven to be a promising strategy to enhance their photocatalytic performance for small molecule transformations, such as H2 evolution and CO2 reduction. However, ligand-controlled catalysis for macromolecules, which differ from small molecules in penetrability and charge transfer behavior due to their bulky sizes, still remains undiscovered. Here, we systematically investigate the role of surface ligands in the photocatalytic performance of cadmium selenide (CdSe) QDs in light-induced atom transfer radical polymerization (ATRP) by using thiol-based ligands with various polarities and chain lengths. A highly enhanced polymerization efficiency was observed when 3-mercapto propionic acid (MPA), a short-chain and polar ligand, was used to modify the CdSe QDs' surface, achieving high chain-end fidelity, good temporal control, and a dispersity of 1.18, while also tolerating a wide-range of functional monomers ranging from acrylates to methacrylates and fluorinated monomers. Transient absorption spectroscopy and time-resolved photoluminescence studies reveal interesting mechanistic details of electron and hole transfers from the excited QDs to the initiators and 3-MPA capping ligands, respectively, providing key mechanistic insight of these ligand controlled and QD photocatalyzed ATRP processes. The thiolate ligands were found to serve as an efficient hole acceptor for QDs, which facilitates the formation of a charge-separated state, followed by electron transfer from the conduction band edge to initiators and ultimately suppressing charge recombination within the QD.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA
| | - Tao Jin
- Department of Chemistry, Emory University, 1515 Dickey Drive Nebraska, Atlanta, Georgia 30322, USA
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive Nebraska, Atlanta, Georgia 30322, USA
| | - Eilaf Egap
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
48
|
Zhang Z, Chen W, Zhang Y, Wang Y, Tian Y, Fang L, Ba X. Photoredox Organocatalysts with Thermally Activated Delayed Fluorescence for Visible-Light-Driven Atom Transfer Radical Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zhongwei Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Weiping Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Yuewei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuelan Tian
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Liping Fang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| |
Collapse
|
49
|
Corbin DA, Puffer KO, Chism KA, Cole JP, Theriot JC, McCarthy BG, Buss BL, Lim CH, Lincoln SR, Newell BS, Miyake GM. Radical Addition to N, N-Diaryl Dihydrophenazine Photoredox Catalysts and Implications in Photoinduced Organocatalyzed Atom Transfer Radical Polymerization. Macromolecules 2021; 54:4507-4516. [PMID: 34483366 PMCID: PMC8411832 DOI: 10.1021/acs.macromol.1c00501] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP) is a controlled radical polymerization methodology catalyzed by organic photoredox catalysts (PCs). In an efficient O-ATRP system, good control over molecular weight with an initiator efficiency (I* = M n,theo/M n,exp × 100%) near unity is achieved, and the synthesized polymers possess a low dispersity (Đ). N,N-Diaryl dihydrophenazine catalysts typically produce polymers with low dispersity (Đ < 1.3) but with less than unity molecular weight control (I* ~ 60-80%). This work explores the termination reactions that lead to decreased control over polymer molecular weight and identifies a reaction leading to radical addition to the phenazine core. This reaction can occur with radicals generated through reduction of the ATRP initiator or the polymer chain end. In addition to causing a decrease in I*, this reactivity modifies the properties of the PC, ultimately impacting polymerization control in O-ATRP. With this insight in mind, a new family of core-substituted N,N-diaryl dihydrophenazines is synthesized from commercially available ATRP initiators and employed in O-ATRP. These new core-substituted PCs improve both I* and Đ in the O-ATRP of MMA, while minimizing undesired side reactions during the polymerization. Further, the ability of one core-substituted PC to operate at low catalyst loadings is demonstrated, with minimal loss of polymerization control down to 100 ppm (weight average molecular weight [M w] = 10.8 kDa, Đ = 1.17, I* = 104% vs M w = 8.26, Đ = 1.10, I* = 107% at 1000 ppm) and signs of a controlled polymerization down to 10 ppm of the catalyst (M w = 12.1 kDa, Đ = 1.36, I* = 107%).
Collapse
Affiliation(s)
- Daniel A Corbin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Katherine O Puffer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Katherine A Chism
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Justin P Cole
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jordan C Theriot
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Blaine G McCarthy
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bonnie L Buss
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | | - Sarah R Lincoln
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Brian S Newell
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
50
|
Corbin DA, McCarthy BG, van de Lindt Z, Miyake GM. Radical Cations of Phenoxazine and Dihydrophenazine Photoredox Catalysts and Their Role as Deactivators in Organocatalyzed Atom Transfer Radical Polymerization. Macromolecules 2021; 54:4726-4738. [PMID: 34483367 PMCID: PMC8411649 DOI: 10.1021/acs.macromol.1c00640] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Radical cations of photoredox catalysts used in organocatalyzed atom transfer radical polymerization (O-ATRP) have been synthesized and investigated to gain insight into deactivation in O-ATRP. The stability and reactivity of these compounds were studied in two solvents, N,N-dimethylacetamide and ethyl acetate, to identify possible side reactions in O-ATRP and to investigate the ability of these radical cations to deactivate alkyl radicals. A number of other factors that could influence deactivation in O-ATRP were also probed, such as ion pairing with the radical cations, radical cation oxidation potential, and halide oxidation potential. Ultimately, these studies enabled radical cations to be employed as reagents during O-ATRP to demonstrate improvements in polymerization control with increasing radical cation concentrations. In the polymerization of acrylates, this approach enabled superior molecular weight control, a decrease in polymer dispersity from 1.90 to 1.44, and an increase in initiator efficiency from 78 to 102%. This work highlights the importance of understanding the mechanism and side reactions of O-ATRP, as well as the importance of catalyst radical cations for successful O-ATRP.
Collapse
Affiliation(s)
- Daniel A Corbin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Blaine G McCarthy
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Zach van de Lindt
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|