1
|
Kawazoe T, Yanai H, Fukuhara T, Kanatani Y, Imakhlaf A, Witulski B, Matsumoto T. Ring Rearrangement Reactions of 4-Alkenylisocoumarins and Photophysical Evaluation of Multi-Substituted Anthracene Products. Chemistry 2024; 30:e202401965. [PMID: 38865106 DOI: 10.1002/chem.202401965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
Herein we report that readily available 4-alkenylisocoumarins can be regarded as potent dienolate equivalents. For example, lactol silyl ethers derived from 4-alkenylisocoumarins were selectively converted to the corresponding benzo-homophthalates through a fluoride-induced ring opening step that was followed by a ring closure through a vinylogous intramolecular aldol condensation. Likewise, nucleophilic activation of 4-alkenylisocoumarins directly yields diversely poly-substituted naphthalenes and anthracenes without formation of any regioisomer. Photophysical evaluation of a set of thus obtained 1,3-di- and 1,3,4-trisubstituted anthracenes reveals their distinct intramolecular charge transfer (ICT) character during light absorption in polar solutions and excimer emission from the solid state when a face-to-face π-stacked molecular assembly is present in the crystal packing.
Collapse
Affiliation(s)
- Teru Kawazoe
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan (HY) (TM
| | - Hikaru Yanai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan (HY) (TM
| | - Toya Fukuhara
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan (HY) (TM
| | - Yusaku Kanatani
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan (HY) (TM
| | - Amanda Imakhlaf
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICaen, Normandie University, 6 Bvd Maréchal Juin, Caen, 14050, France
| | - Bernhard Witulski
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICaen, Normandie University, 6 Bvd Maréchal Juin, Caen, 14050, France
| | - Takashi Matsumoto
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan (HY) (TM
| |
Collapse
|
2
|
Mund NK, Čellárová E. Recent advances in the identification of biosynthetic genes and gene clusters of the polyketide-derived pathways for anthraquinone biosynthesis and biotechnological applications. Biotechnol Adv 2023; 63:108104. [PMID: 36716800 DOI: 10.1016/j.biotechadv.2023.108104] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Natural anthraquinones are represented by a large group of compounds. Some of them are widespread across the kingdoms, especially in bacteria, fungi and plants, while the others are restricted to certain groups of organisms. Despite the significant pharmacological potential of several anthraquinones (hypericin, skyrin and emodin), their biosynthetic pathways and candidate genes coding for key enzymes have not been experimentally validated. Understanding the genetic and epigenetic regulation of the anthraquinone biosynthetic gene clusters in fungal endophytes would help not only understand their pathways in plants, which ensure their commercial availability, but also favor them as promising systems for prospective biotechnological production.
Collapse
Affiliation(s)
- Nitesh Kumar Mund
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Genetics, Mánesova 23, 041 54 Košice, Slovakia
| | - Eva Čellárová
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Genetics, Mánesova 23, 041 54 Košice, Slovakia.
| |
Collapse
|
3
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
4
|
Odziomek M, Giusto P, Kossmann J, Tarakina NV, Heske J, Rivadeneira SM, Keil W, Schmidt C, Mazzanti S, Savateev O, Perdigón-Toro L, Neher D, Kühne TD, Antonietti M, López-Salas N. "Red Carbon": A Rediscovered Covalent Crystalline Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206405. [PMID: 35977414 DOI: 10.1002/adma.202206405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Carbon suboxide (C3 O2 ) is a unique molecule able to polymerize spontaneously into highly conjugated light-absorbing structures at temperatures as low as 0 °C. Despite obvious advantages, little is known about the nature and the functional properties of this carbonaceous material. In this work, the aim is to bring "red carbon," a forgotten polymeric semiconductor, back to the community's attention. A solution polymerization process is adapted to simplify the synthesis and control the structure. This allows one to obtain this crystalline covalent material at low temperatures. Both spectroscopic and elemental analyses support the chemical structure represented as conjugated ladder polypyrone ribbons. Density functional theory calculations suggest a crystalline structure of AB stacks of polypyrone ribbons and identify the material as a direct bandgap semiconductor with a medium bandgap that is further confirmed by optical analysis. The material shows promising photocatalytic performance using blue light. Moreover, the simple condensation-aromatization route described here allows the straightforward fabrication of conjugated ladder polymers and can be inspiring for the synthesis of carbonaceous materials at low temperatures in general.
Collapse
Affiliation(s)
- Mateusz Odziomek
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Paolo Giusto
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Janina Kossmann
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Nadezda V Tarakina
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Julian Heske
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Salvador M Rivadeneira
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Waldemar Keil
- Department of Chemistry, Physical Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Claudia Schmidt
- Department of Chemistry, Physical Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Stefano Mazzanti
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Oleksandr Savateev
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Lorena Perdigón-Toro
- Soft Matter Physics and Optoelectronics, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Dieter Neher
- Soft Matter Physics and Optoelectronics, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Markus Antonietti
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Nieves López-Salas
- Colloids Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
5
|
Chen DQ, Guo Y, Li X, Zhang GQ, Li P. Small molecules as modulators of regulated cell death against ischemia/reperfusion injury. Med Res Rev 2022; 42:2067-2101. [PMID: 35730121 DOI: 10.1002/med.21917] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 11/11/2021] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion (IR) injury contributes to disability and mortality worldwide. Due to the complicated mechanisms and lack of proper therapeutic targets, few interventions are available that specifically target the pathogenesis of IR injury. Regulated cell death (RCD) of endothelial and parenchymal cells is recognized as the promising intervening target. Recent advances in IR injury suggest that small molecules exhibit beneficial effects on various RCD against IR injury, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, and parthanatos. Here, we describe the mechanisms behind these novel promising therapeutic targets and explain the machinery powering the small molecules. These small molecules exert protection by targeting endothelial or parenchymal cells to alleviate IR injury. Therapies of the ideal combination of small molecules targeting multiple cell types have shown potent synergetic therapeutic effects, laying the foundation for novel strategies to attenuate IR injury.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.,Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Xin Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
6
|
Chaitanya NK, Rao YNS, Choutipalli VSK, Mainkar PS, Subramanian V, Chandrasekhar S. Cascade aryne insertion/vinylogous aldol reaction of vinyl-substituted β-keto/enol carbonyls. Chem Commun (Camb) 2022; 58:3178-3181. [PMID: 35171160 DOI: 10.1039/d1cc06810e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyclic and acyclic vinyl substituted β-keto/enol carbonyl substrates, on reaction with arynes, result in differentially substituted naphthyl carbocycles, hitherto difficult to synthesize with existing protocols. While the substitutions on the arynes have no role, the ring size of the cyclic β-keto/enol esters has a profound influence on the product formation.
Collapse
Affiliation(s)
- Nandikolla Krishna Chaitanya
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Y N Sambasiva Rao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venkata Surya Kumar Choutipalli
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Centre for High Computing, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venkatesan Subramanian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Centre for High Computing, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Wu X, Sparr C. Retrosynthetic polyketide disconnections for unnatural aromatics. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Inokuma Y, Inaba Y. Polyketone-Based Molecular Ropes as Versatile Components for Functional Materials. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasuhide Inokuma
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Yuya Inaba
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
9
|
Shirakura H, Manabe Y, Kasai C, Inaba Y, Tsurui M, Kitagawa Y, Hasegawa Y, Yoneda T, Ide Y, Inokuma Y. Isopyrazole‐Masked Tetraketone: Tautomerism and Functionalization for Fluorescent Metal Ligands. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hayato Shirakura
- Division of Applied Chemistry Faculty of Engineering Hokkaido University Kita 13, Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 Japan
| | - Yumehiro Manabe
- Division of Applied Chemistry Faculty of Engineering Hokkaido University Kita 13, Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 Japan
| | - Chika Kasai
- Division of Applied Chemistry Faculty of Engineering Hokkaido University Kita 13, Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 Japan
| | - Yuya Inaba
- Division of Applied Chemistry Faculty of Engineering Hokkaido University Kita 13, Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 Japan
| | - Makoto Tsurui
- Division of Applied Chemistry Faculty of Engineering Hokkaido University Kita 13, Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 Japan
| | - Yuichi Kitagawa
- Division of Applied Chemistry Faculty of Engineering Hokkaido University Kita 13, Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21, Nishi 10 Kita-ku, Sapporo, Hokkaido 001-0021 Japan
| | - Yasuchika Hasegawa
- Division of Applied Chemistry Faculty of Engineering Hokkaido University Kita 13, Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21, Nishi 10 Kita-ku, Sapporo, Hokkaido 001-0021 Japan
| | - Tomoki Yoneda
- Division of Applied Chemistry Faculty of Engineering Hokkaido University Kita 13, Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 Japan
| | - Yuki Ide
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21, Nishi 10 Kita-ku, Sapporo, Hokkaido 001-0021 Japan
| | - Yasuhide Inokuma
- Division of Applied Chemistry Faculty of Engineering Hokkaido University Kita 13, Nishi 8 Kita-ku, Sapporo, Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21, Nishi 10 Kita-ku, Sapporo, Hokkaido 001-0021 Japan
| |
Collapse
|
10
|
Yanai H, Kawazoe T, Ishii N, Witulski B, Matsumoto T. Regioselective Synthesis of 4-Aryl-1,3-dihydroxy-2-naphthoates through 1,2-Aryl-Migrative Ring Rearrangement Reaction and their Photoluminescence Properties. Chemistry 2021; 27:11442-11449. [PMID: 34018653 DOI: 10.1002/chem.202101459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 11/08/2022]
Abstract
4-Aryl-1,3-dihydroxy-2-naphthoates having the less accessible 1,2,3,4-tetrasubstituted naphthalene scaffold and that show photoluminescence emission from solid state as well as in solutions, were selectively synthesized from brominated lactol silyl ethers through the 1,2-aryl-migrative ring rearrangement reaction.
Collapse
Affiliation(s)
- Hikaru Yanai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Teru Kawazoe
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Nobuyuki Ishii
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Bernhard Witulski
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICaen, Normandie Univ., 6 Bvd Maréchal Juin, Caen, 14050, France
| | - Takashi Matsumoto
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
11
|
Schmidt TA, Sparr C. Catalyst Control over Twofold and Higher-Order Stereogenicity by Atroposelective Arene Formation. Acc Chem Res 2021; 54:2764-2774. [PMID: 34056908 DOI: 10.1021/acs.accounts.1c00178] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Contradictory to the first intuitive impression that forging putatively flat aromatic rings evades stereoisomerism, a striking variety of atropisomeric compounds are conceivable by the formation of arenes, offering captivating avenues for catalyst-controlled stereoselective strategies. Since the assembled atropisomeric products that contain one or several rotationally restricted single bonds are characterized by especially well defined molecular architectures, they are distinctly suitable for numerous pertinent applications. In view of the fascinating arene-forming aldol condensation pathways taking place in polyketide biosynthesis (cyclases/aromatases (CYC/ARO)), the versatile small-molecule-catalyzed aldol reaction appeared as an exceptionally appealing synthetic means to prepare various unexplored atropisomeric compounds in our efforts presented herein. In our initial studies, the use of secondary amine organocatalysts provided excellent selectivities in stereoselective arene-forming aldol condensations for a broad range of atropisomeric products, such as biaryls and rotationally restricted aromatic amides. In further analogy to polyketide biosynthesis, it was also conceivable that several aromatic rings are formed in catalytic cascade reactions. The use of small-molecule catalysts thereby enabled us to transfer this concept to the conversion of unnatural and noncanonical polyketide substrates, thus giving access to atropisomers with particular value for synthetic applications. The versatility of the stereoselective aldol reactions with numerous catalytic activation modes further provided a strategy to individually control several stereogenic axes, similar to the various methodologies developed for controlling stereocenter configurations. By the use of iterative building block additions combined with catalyst-controlled aldol reactions to form the aromatic rings, stereodivergent pathways for catalyst-substrate-matched and -mismatched products were obtained. Besides secondary amines, cinchona-alkaloid-based quaternary ammonium salts also proved to be highly efficient in overcoming severe substrate bias. The obtained atropisomeric multiaxis systems, with all of the biaryl bonds suitably restricted in rotation even at high temperatures, are spatially distinctly defined. The helical secondary structure is therefore excellently suited for several captivating applications.While previous catalyst-controlled stereoselective methods distinguish two stereoisomers for each stereogenic unit, catalyst control beyond the realms of this dualistic stereoisomerism remained unexplored. By the selective preparation of O̅ki atropisomers characterized by their sixfold stereogenicity in Rh-catalyzed [2 + 2 + 2] cyclotrimerizations, one out of the six possible stereoisomers resulting from the restricted rotation of a single bond was shown to be catalytically addressable. Catalyst control over higher-order stereogenicity therefore further interconnects conformational analysis and stereoselective catalysis and offers captivating avenues to explore uncharted stereochemical space for creating a broad range of unprecedented molecular motifs.
Collapse
Affiliation(s)
- Tanno A. Schmidt
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
12
|
Raps FC, Fäseke VC, Häussinger D, Sparr C. Catalyst‐Controlled Transannular Polyketide Cyclization Cascades: Selective Folding of Macrocyclic Polyketides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Felix C. Raps
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Vincent C. Fäseke
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Daniel Häussinger
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christof Sparr
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
13
|
Raps FC, Fäseke VC, Häussinger D, Sparr C. Catalyst‐Controlled Transannular Polyketide Cyclization Cascades: Selective Folding of Macrocyclic Polyketides. Angew Chem Int Ed Engl 2020; 59:18390-18394. [DOI: 10.1002/anie.202005733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Felix C. Raps
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Vincent C. Fäseke
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Daniel Häussinger
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christof Sparr
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
14
|
Inaba Y, Inokuma Y. Spirosilicate Dimers of a Bowl-shaped Diol Generated by Intramolecular Cyclization of an Aliphatic Tetraketone Chain. CHEM LETT 2020. [DOI: 10.1246/cl.200299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuya Inaba
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yasuhide Inokuma
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
15
|
Manabe Y, Wada K, Baba Y, Yoneda T, Ogoshi T, Inokuma Y. Supramolecular Conformational Control of Aliphatic Oligoketones by Rotaxane Formation. Org Lett 2020; 22:3224-3228. [DOI: 10.1021/acs.orglett.0c01010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yumehiro Manabe
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Keisuke Wada
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yudai Baba
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tomoki Yoneda
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yasuhide Inokuma
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
16
|
Sarkar P, Inaba Y, Shirakura H, Yoneda T, Inokuma Y. Modular synthesis of oligoacetylacetones via site-selective silylation of acetylacetone derivatives. Org Biomol Chem 2020; 18:3297-3302. [DOI: 10.1039/d0ob00501k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aliphatic oligoketones with tailored carbonyl and substituent sequences were modularly synthesized utilizing site-selective formation of enol silyl ethers. Their unique conformational preferences in solid-state were revealed by X-ray crystallography.
Collapse
Affiliation(s)
- Parantap Sarkar
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)
- Hokkaido University
- Sapporo
- Japan
| | - Yuya Inaba
- Division of Applied Chemistry
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Hayato Shirakura
- Division of Applied Chemistry
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Tomoki Yoneda
- Division of Applied Chemistry
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Yasuhide Inokuma
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)
- Hokkaido University
- Sapporo
- Japan
- Division of Applied Chemistry
| |
Collapse
|