1
|
Dürrmann A, Hörner G, Baabe D, Heinemann FW, de Melo MAC, Weber B. Cooperative spin crossover leading to bistable and multi-inert system states in an iron(III) complex. Nat Commun 2024; 15:7321. [PMID: 39183211 PMCID: PMC11345420 DOI: 10.1038/s41467-024-51675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
Cooperativity among spin centres has long been the royal road in spin crossover (SCO) research to impose magnetic bistability in terms of thermal hysteresis. In this work we access magnetic multi-inert states of the iron(III) compound {FeL2[B(Ph)4]} ≡ FeB at low temperature, in addition to thermal bistability. The packing of the low-spin and high-spin forms of crystalline FeB differs only marginally what ultimately leads to structural conservatism. This indicates that the SCO-immanent breathing of the complex cation is almost fully compensated by the anion matrix. The unique cooling rate dependence of the residual low-temperature magnetisation in FeB unveils continuous switching between the trapped high-spin (ON) and the relaxed low-spin state (OFF). The macroscopic ratio of the spin states (ON:OFF) can be adjusted as a simple function of the cooling rate. That is, cooperative spin crossover can be the source of bistable and multi-inert system states in the very same material.
Collapse
Affiliation(s)
- Andreas Dürrmann
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, Jena, Germany
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, Bayreuth, Germany
| | - Gerald Hörner
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, Jena, Germany
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, Bayreuth, Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig, Germany
| | - Frank W Heinemann
- Lehrstuhl für Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, Erlangen, Germany
| | | | - Birgit Weber
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, Jena, Germany.
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, Bayreuth, Germany.
| |
Collapse
|
2
|
Halcrow MA. Mix and match - controlling the functionality of spin-crossover materials through solid solutions and molecular alloys. Dalton Trans 2024; 53:13694-13708. [PMID: 39119634 DOI: 10.1039/d4dt01855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The influence of dopant molecules on the structure and functionality of spin-crossover (SCO) materials is surveyed. Two aspects of the topic are well established. Firstly, isomorphous inert metal ion dopants in SCO lattices are a useful probe of the energetics of SCO processes. Secondly, molecular alloys of iron(II)/triazole coordination polymers containing mixtures of ligands were used to tune their spin-transitions towards room temperature. More recent examples of these and related materials are discussed that reveal new insights into these questions. Complexes which are not isomorphous can also be co-crystallised, either as solid solutions of the precursor molecules or as a random distribution of homo- and hetero-leptic centres in a molecular alloy. This could be a powerful method to manipulate SCO functionality. Published molecular alloys show different SCO behaviours, which may or may not include allosteric switching of their chemically distinct metal sites.
Collapse
Affiliation(s)
- Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
3
|
Cruz C, Galdames J, Camayo-Gutierrez L, Rouzières M, Mathonière C, Menéndez N, Audebrand N, Reyes-Lillo SE, Clérac R, Venegas-Yazigi D, Paredes-García V. Thermally and Photoinduced Spin-Crossover Behavior in Iron(II)-Silver(I) Cyanido-Bridged Coordination Polymers Bearing Acetylpyridine Ligands. Inorg Chem 2024. [PMID: 39137340 DOI: 10.1021/acs.inorgchem.4c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
We report two new cyanido-bridged Fe(II)-Ag(I) coordination polymers using different acetylpyridine isomers, {Fe(4acpy)2[Ag(CN)2]2} 1 and {Fe(3acpy)[Ag(CN)2]2} 2 (4acpy = 4-acetylpyridine; 3acpy = 3-acetylpyridine) displaying thermally and photoinduced spin crossover (SCO). In both cases, the acetylpyridine ligand directs the coordination polymer structure and the SCO of the materials. Using 4-acetylpyridine, a two-dimensional (2D) structure is observed in 1 made of layers stacked on each other by silver-ketone interactions leading to a complete SCO and reversible thermally and photoswitching of the magnetic and optical properties. Changing the acetyl group to a 3-position, a completely different structure is obtained for 2. The unexpected coordination of the carbonyl group to the Fe(II) centers induces a three-dimensional (3D) structure, leading to statistical disorder around the Fe(II) with three different coordination spheres, [N6], [N4O2], and [N5O]. This disorder gives rise to an incomplete thermally induced SCO with a poor photoswitchability. These results demonstrate that the choice of the acetyl position on the pyridine dictates the structural characteristics of the compounds with a direct impact on the SCO behavior. Remarkably, this work opens interesting perspectives for the future design of Fe-Ag cyanido coordination polymers with judiciously substituted pyridine ligands to tune the thermally and photoinduced SCO properties.
Collapse
Affiliation(s)
- Carlos Cruz
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile
- Centro de Nanociencia y Nanotecnología, CEDENNA, Santiago 8370146, Chile
| | - Jorge Galdames
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile
- Centro de Nanociencia y Nanotecnología, CEDENNA, Santiago 8370146, Chile
| | - Liz Camayo-Gutierrez
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile
| | | | | | - Nieves Menéndez
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Nathalie Audebrand
- Univ. Rennes, CNRS, INSA Rennes, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226 Rennes, F-35000, France
| | - Sebastian E Reyes-Lillo
- Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile
| | - Rodolphe Clérac
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, Pessac , F-33600, France
| | - Diego Venegas-Yazigi
- Centro de Nanociencia y Nanotecnología, CEDENNA, Santiago 8370146, Chile
- Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile
- Facultad de Química y Biología, Departamento de Química de los Materiales, Universidad de Santiago de Chile, Santiago 8370146, Chile
| | - Verónica Paredes-García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile
- Centro de Nanociencia y Nanotecnología, CEDENNA, Santiago 8370146, Chile
| |
Collapse
|
4
|
Dou DY, Qi DF, Zhao TY, Zheng PX, Bao X. Design and characterization of Fe(II) complexes with tetradentate ligands exhibiting spin-crossover near room temperature. Dalton Trans 2024; 53:8619-8625. [PMID: 38691386 DOI: 10.1039/d4dt00460d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Construction of spin-crossover (SCO) materials is very appealing for applications such as molecular switches and information storage. This study focuses on the design of Fe(II) complexes using N,N'-bis(2-pyridinylmethyl)-1,2-ethanediamine-based ligands with an N4 structure for SCO material development. By incorporating para-substituted benzene groups into the ligand's pyridine moiety, two polymorphs, α and β, were obtained, both exhibiting SCO activity. Notably, the β polymorph displayed a spin crossover temperature of 270 K, which is approaching room temperature. Structural analyses were conducted to compare the differences between the polymorphs, along with a literature review of related complexes, providing insights into the characteristics of SCO behavior.
Collapse
Affiliation(s)
- Di-Yu Dou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Da-Fan Qi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Tian-Yuan Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Peng-Xuan Zheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Xin Bao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
5
|
Kaushik K, Sarkar A, Kamilya S, Li Y, Dechambenoit P, Rouzières M, Mehta S, Mondal A. Light-Induced, Structural Matrix Guided Stepwise Spin-State Switching in 3d-5d Molecular Assembly. Inorg Chem 2024; 63:7604-7612. [PMID: 38556753 DOI: 10.1021/acs.inorgchem.3c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
A new iron(II) molecular complex {[W(CN)8][Fe(bik*)3]2}BF4·7H2O·1.5CH3OH (1.7H2O·1.5CH3OH) was synthesized using a versatile octacyanotungstate(V) building block and N-donor bidentate ligand (bik* = bis(1-ethyl-1H-imidazol-2-yl)ketone) and detailed characterizations were carried out. The crystal structure of 1.7H2O·1.5CH3OH is composed of an ionic salt from one anionic [W(CN)8]3- unit, two isolated cationic [Fe(bik*)3]2+ units, and one BF4- counteranion in the asymmetric unit. Magnetic studies of 1.7H2O·1.5CH3OH display interesting two-step reversible thermo-induced spin-state switching and the partially desolvated form 1.7H2O shows a photomagnetic effect at low temperatures. Additionally, the physical properties of 1.7H2O·1.5CH3OH were compared with the monomeric unit of {[Fe(bik*)3]2}·4ReO4·H2O (2.H2O) and detailed photophysical investigations were also performed to study the effect of a structural matrix {[W(CN)8]3- and ReO4- unit} on the spin-state switching properties of the [Fe(bik*)3]2+ unit in both systems (1.7H2O·1.5CH3OH and 2.H2O).
Collapse
Affiliation(s)
- Krishna Kaushik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Archita Sarkar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Yanling Li
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, F-75252 Paris, cedex 5, France
| | - Pierre Dechambenoit
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, 560012 Bangalore, India
| |
Collapse
|
6
|
Vennelakanti V, Kilic IB, Terrones GG, Duan C, Kulik HJ. Machine Learning Prediction of the Experimental Transition Temperature of Fe(II) Spin-Crossover Complexes. J Phys Chem A 2024; 128:204-216. [PMID: 38148525 DOI: 10.1021/acs.jpca.3c07104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Spin-crossover (SCO) complexes are materials that exhibit changes in the spin state in response to external stimuli, with potential applications in molecular electronics. It is challenging to know a priori how to design ligands to achieve the delicate balance of entropic and enthalpic contributions needed to tailor a transition temperature close to room temperature. We leverage the SCO complexes from the previously curated SCO-95 data set [Vennelakanti et al. J. Chem. Phys. 159, 024120 (2023)] to train three machine learning (ML) models for transition temperature (T1/2) prediction using graph-based revised autocorrelations as features. We perform feature selection using random forest-ranked recursive feature addition (RF-RFA) to identify the features essential to model transferability. Of the ML models considered, the full feature set RF and recursive feature addition RF models perform best, achieving moderate correlation to experimental T1/2 values. We then compare ML T1/2 predictions to those from three previously identified best-performing density functional approximations (DFAs) which accurately predict SCO behavior across SCO-95, finding that the ML models predict T1/2 more accurately than the best-performing DFAs. In addition, we study ML model predictions for a set of 18 SCO complexes for which only estimated T1/2 values are available. Upon excluding outliers from this set, the RF-RFA RF model shows a strong correlation to estimated T1/2 values with a Pearson's r of 0.82. In contrast, DFA-predicted T1/2 values have large errors and show no correlation to estimated T1/2 values over the same set of complexes. Overall, our study demonstrates slightly superior performance of ML models in comparison with some of the best-performing DFAs, and we expect ML models to improve further as larger data sets of SCO complexes are curated and become available for model training.
Collapse
Affiliation(s)
- Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Irem B Kilic
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gianmarco G Terrones
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Kaushik K, Mehta S, Das M, Ghosh S, Kamilya S, Mondal A. Stimuli-responsive magnetic materials: impact of spin and electronic modulation. Chem Commun (Camb) 2023; 59:13107-13124. [PMID: 37846652 DOI: 10.1039/d3cc04268e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Addressing molecular bistability as a function of external stimuli, especially in spin-crossover (SCO) and metal-to-metal electron transfer (MMET) systems, has seen a surge of interest in the field of molecule-based magnetic materials due to their enormous potential in various technological applications such as molecular spintronics, memory and electronic devices, switches, sensors, and many more. The fine-tuning of molecular components allow the design and synthesis of materials with tailored properties for these vast applications. In this Feature Article, we discuss a part of our research work into this broad topic, pertaining to the recent discoveries in the field of switchable molecular magnetic materials based on SCO and MMET systems, along with some historical background of the area and related accomplishments made in recent years.
Collapse
Affiliation(s)
- Krishna Kaushik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Mayurika Das
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sounak Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
8
|
Magott M, Płonka K, Sieklucka B, Dziedzic-Kocurek K, Kosaka W, Miyasaka H, Pinkowicz D. Guest-induced pore breathing controls the spin state in a cyanido-bridged framework. Chem Sci 2023; 14:9651-9663. [PMID: 37736640 PMCID: PMC10510767 DOI: 10.1039/d3sc03255h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
Iron(ii) spin cross-over (SCO) compounds combine a thermally driven transition from the diamagnetic low-spin (LS) state to the paramagnetic high-spin (HS) state with a distinct change in the crystal lattice volume. Inversely, if the crystal lattice volume was modulated post-synthetically, the spin state of the compound could be tunable, resulting in the inverse effect for SCO. Herein, we demonstrate such a spin-state tuning in a breathing cyanido-bridged porous coordination polymer (PCP), where the volume change resulting from guest-induced gate-opening and -closing directly affects its spin state. We report the synthesis of a three-dimensional coordination framework {[FeII(4-CNpy)4]2[WIV(CN)8]·4H2O}n (1·4H2O; 4-CNpy = 4-cyanopyridine), which demonstrates a SCO phenomenon characterized by strong elastic frustration. This leads to a 48 K wide hysteresis loop above 140 K, but below this temperature results in a very gradual and incomplete SCO transition. 1·4H2O was activated under mild conditions, producing the nonporous {[FeII(4-CNpy)4]2[WIV(CN)8]}n (1) via a single-crystal-to-single-crystal process involving a 7.3% volume decrease, which shows complete and nonhysteretic SCO at T1/2 = 93 K. The low-temperature photoswitching behavior in 1 and 1·4H2O manifested the characteristic elasticity of the frameworks; 1 can be quantitatively converted into a metastable HS state after 638 nm light irradiation, while the photoactivation of 1·4H2O is only partial. Furthermore, nonporous 1 adsorbed CO2 molecules in a gated process, leading to {[FeII(4-CNpy)4]2[WIV(CN)8]·4CO2}n (1·4CO2), which resulted in a 15% volume increase and stabilization of the HS state in the whole temperature range down to 2 K. The demonstrated post-synthetic guest-exchange employing common gases is an efficient approach for tuning the spin state in breathing SCO-PCPs.
Collapse
Affiliation(s)
- Michał Magott
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Klaudia Płonka
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Katarzyna Dziedzic-Kocurek
- Marian Smoluchowski Institute of Physics, Jagiellonian University Stanisława Łojasiewicza 11 Kraków 30-348 Poland
| | - Wataru Kosaka
- Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Hitoshi Miyasaka
- Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
9
|
Liu Q, Cheng Y, Liu S, Chen ZY, Zhang YZ. Anthryl-functionalized cyanide-bridged Fe/Co cubes. Dalton Trans 2023; 52:12878-12884. [PMID: 37641912 DOI: 10.1039/d3dt01630g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Two anthryl-functionalized cyanide-bridged [Fe4Co4] cube complexes, [(pzTp)Fe(CN)3Co(TpEtOAn)]4[OTf]4·8MeCN·7Et2O (1) and [NEt4]3[(pzTp)Fe(CN)3Co(TpEtOAn)]4[OTf]7·5MeCN·2Et2O (2) (pzTp- = tetrapyrazolylborate, TpEtOAn = 2,2,2-tris-(pyrazol-1-yl)ethoxy(9-methyl-anthracene)), were synthesized and characterized. The crystallographic study revealed that the [Fe4Co4] cubes are arranged into a linear supramolecular chain through significant anthryl-anthryl π-π stacking interactions in complex 1, whereas a zigzag supramolecular 1D assembly is observed in 2. The magnetic measurements showed that both compounds exhibited incomplete transitions from the paramagnetic {FeIIILS(μ-CN)CoIIHS} state to the diamagnetic {FeIILS(μ-CN)CoIIILS} state at about 200 K. The luminescence measurement of 1 in solution revealed an enhancement of the emission upon dilution or addition of perfluoronaphthalene (PFN) molecules, which could be attributed to the suppression of the aggregation-caused quenching (ACQ) effect, suggesting possible aggregation of the cube units in the solution.
Collapse
Affiliation(s)
- Qi Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Yue Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Shihao Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Zi-Yi Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
10
|
Sundaresan S, Brooker S. Solution Spin Crossover Versus Speciation Effects: A Cautionary Tale. Inorg Chem 2023. [PMID: 37482662 DOI: 10.1021/acs.inorgchem.3c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Two acyclic tetradentate Schiff base ligands, HLX-OH (X = H and Br), were synthesised by 2:1 condensation of either 2-pyridinecarboxaldehyde or 5-bromo-2-pyridinecarboxaldehyde and 1,3-diamino-2-propanol and then used to prepare six mononuclear complexes, [FeII(HLX-OH)(NCE)2], with three different NCE co-ligands (E = BH3, Se, and S). The apparent solution spin crossover switching temperature, T1/2, of these 6 complexes, determined by Evans method NMR studies, is tuned by several factors: (a) substituent X present at the 5 position of the pyridine ring of the ligand, (b) E present in the NCE co-ligand, (c) solvent employed (P'), and (d) potentially also by speciation effects. In CD3CN, for the pair of NCE = NCBH3 complexes, when X = H, the complex is practically LS (extrapolated T1/2 ∼624 K), whereas when X = Br, it is far lower (373 K), which implies a higher field strength when X = H than when it is Br. The same trend, X = H results in a higher apparent T1/2 than X = Br, is seen for the other two pairs of complexes, with E = Se (429 > 351 K, ΔT1/2 = 78 K) or S (361 > 342 K, ΔT1/2 = 19 K). For the family of three X = Br complexes, the change of E from BH3 (373 K) to Se (351 K) to S (342 K) leads to an overall ΔT1/2(apparent) = 31 K, whereas the decreases are far more pronounced in the X = H family (BH3 ∼624 > Se 429 > S 361 K). Changing the solvent used from CD3CN to (CD3)2CO and CD3NO2, for [FeII(HLBr-OH)(NCE)2] with either E = BH3 or S, revealed excellent, and very similar, positive linear correlations (R2 = 0.99) of increasing solvent polarity index P' (from 5 to 7) with increasing apparent T1/2 of the complex (E = BH3 gave T1/2 300 < 373 < 451 K , ΔT1/2 = 151 K; E = S gave T1/2 288 < 342 < 427 K, ΔT1/2 = 147 K). Several other solvent parameters were also correlated with the apparent T1/2 of these complexes (R2 = 0.74-0.96). Excellent linear correlations (R2 = 0.99) are also obtained with the coordination ability (aTM) of the three NCE co-ligands with the apparent T1/2 in both families of compounds, [FeII(HLX-OH)(NCE)2] where X = H or Br. The 15N NMR chemical shifts of the nitrogen atom in the three NCE co-ligands (direct measurement) show modest correlations (R2 = 0.74 for LH-OH family and 0.80 for LBr-OH family) with the apparent T1/2 values of the corresponding complexes.
Collapse
Affiliation(s)
- Sriram Sundaresan
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Sally Brooker
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
11
|
Díaz-Torres R, Chastanet G, Collet E, Trzop E, Harding P, Harding DJ. Bidirectional photoswitchability in an iron(iii) spin crossover complex: symmetry-breaking and solvent effects. Chem Sci 2023; 14:7185-7191. [PMID: 37416698 PMCID: PMC10321481 DOI: 10.1039/d3sc01495a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
The impact of solvent on spin crossover (SCO) behaviour is reported in two solvates [Fe(qsal-I)2]NO3·2ROH (qsal-I = 4-iodo-2-[(8-quinolylimino)methyl]phenolate; R = Me 1 or Et 2) which undergo abrupt and gradual SCO, respectively. A symmetry-breaking phase transition due to spin-state ordering from a [HS] to [HS-LS] state occurs at 210 K in 1, while T1/2 = 250 K for the EtOH solvate, where complete SCO occurs. The MeOH solvate exhibits LIESST and reverse-LIESST from the [HS-LS] state, revealing a hidden [LS] state. Moreover, photocrystallographic studies on 1 at 10 K reveal re-entrant photoinduced phase transitions to a high symmetry [HS] phase when irradiated at 980 nm or a high symmetry [LS] phase after irradiation at 660 nm. This study represents the first example of bidirectional photoswitchability and subsequent symmetry-breaking from a [HS-LS] state in an iron(iii) SCO material.
Collapse
Affiliation(s)
- Raúl Díaz-Torres
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University Pathum Thani 12121 Thailand
| | - Guillaume Chastanet
- Université de Bordeaux, ICMCB 87 Avenue du Dr A. Schweitzer Pessac F-33608 France
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251 F-35000 Rennes France
| | - Elzbieta Trzop
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251 F-35000 Rennes France
| | - Phimphaka Harding
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - David J Harding
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
12
|
Li X, Zhang D, Qian Y, Liu W, Mathonière C, Clérac R, Bao X. Chemical Manipulation of the Spin-Crossover Dynamics through Judicious Metal-Ion Dilution. J Am Chem Soc 2023; 145:9564-9570. [PMID: 37075226 DOI: 10.1021/jacs.2c13697] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
In 2019, our groups described a unique FeII complex, [Fe(2MeL)(NCBH3)2] (2MeL = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-1,2-ethanediamine) possessing a low-spin ground state that is not easily accessible due to the extremely slow dynamics of the high-spin to low-spin phase transition. Herein, we report the successful chemical manipulation of this spin-crossover (SCO) process through controlled metal-ion dilutions. The emergence or suppression of the thermally induced SCO behavior was observed depending on the radius of the metal ion used for the dilution (NiII or ZnII). Reversible photo-switching has been confirmed in all mixed-metal complexes whether the low-spin state is thermally accessible. Remarkably, the dilution with ZnII metal ions stabilizes HS FeII complexes with complete suppression of the thermally induced SCO process without destroying the reversible photoswitchability of the material.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Dong Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yuqing Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Wenxuan Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Corine Mathonière
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Rodolphe Clérac
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | - Xin Bao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
13
|
Kulmaczewski R, Armstrong IT, Catchpole P, Ratcliffe ESJ, Vasili HB, Warriner SL, Cespedes O, Halcrow MA. Di-Iron(II) [2+2] Helicates of Bis-(Dipyrazolylpyridine) Ligands: The Influence of the Ligand Linker Group on Spin State Properties. Chemistry 2023; 29:e202202578. [PMID: 36382594 PMCID: PMC10108139 DOI: 10.1002/chem.202202578] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Four bis[2-{pyrazol-1-yl}-6-{pyrazol-3-yl}pyridine] ligands have been synthesized, with butane-1,4-diyl (L1 ), pyrid-2,6-diyl (L2 ), benzene-1,2-dimethylenyl (L3 ) and propane-1,3-diyl (L4 ) linkers between the tridentate metal-binding domains. L1 and L2 form [Fe2 (μ-L)2 ]X4 (X- =BF4 - or ClO4 - ) helicate complexes when treated with the appropriate iron(II) precursor. Solvate crystals of [Fe2 (μ-L1 )2 ][BF4 ]4 exhibit three different helicate conformations, which differ in the torsions of their butanediyl linker groups. The solvates exhibit gradual thermal spin-crossover, with examples of stepwise switching and partial spin-crossover to a low-temperature mixed-spin form. Salts of [Fe2 (μ-L2 )2 ]4+ are high-spin, which reflects their highly twisted iron coordination geometry. The composition and dynamics of assembly structures formed by iron(II) with L1 -L3 vary with the ligand linker group, by mass spectrometry and 1 H NMR spectroscopy. Gas-phase DFT calculations imply the butanediyl linker conformation in [Fe2 (μ-L1 )2 ]4+ influences its spin state properties, but show anomalies attributed to intramolecular electrostatic repulsion between the iron atoms.
Collapse
Affiliation(s)
| | | | - Pip Catchpole
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
| | | | - Hari Babu Vasili
- School of Physics and Astronomy W. H. Bragg Building, University of LeedsLeedsLS2 9JTUK
| | | | - Oscar Cespedes
- School of Physics and Astronomy W. H. Bragg Building, University of LeedsLeedsLS2 9JTUK
| | | |
Collapse
|
14
|
Bibik YS, Shova S, Rotaru A, Shylin SI, Fritsky IO, Lampeka RD, Gural'skiy IA. Cooperative Spin Crossover above Room Temperature in the Iron(II) Cyanoborohydride-Pyrazine Complex. Inorg Chem 2022; 61:14761-14769. [PMID: 36067517 DOI: 10.1021/acs.inorgchem.2c02177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hysteretic spin crossover in coordination complexes of 3d-metal ions represents one of the most spectacular phenomena of molecular bistability. In this paper we describe a self-assembly of pyrazine (pz) and Fe(BH3CN)2 that afforded the new 2D coordination polymer [Fe(pz)2(BH3CN)2]∞. It undergoes an abrupt, hysteretic spin crossover (SCO) with a T1/2 of 338 K (heating) and 326 K (cooling) according to magnetic susceptibility measurements. Mössbauer spectroscopy revealed a complete transition between the low-spin (LS) and the high-spin (HS) states of the iron centers. This LS-to-HS transition induced an increase of the unit cell volume by 10.6%. Meanwhile, a modulation of multiple [C-Hδ+···Hδ--B] dihydrogen bonds stimulates a contraction in direction c (2.2%). The simplicity of the synthesis, mild temperatures of transition, a pronounced thermochromism, stability upon thermal cycling, a striking volume expansion upon SCO, and an easy processability to composite films make this new complex an attractive material for switchable components of diverse applications.
Collapse
Affiliation(s)
- Yurii S Bibik
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St., 01601 Kyiv, Ukraine
| | - Sergiu Shova
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iaşi, Romania
| | - Aurelian Rotaru
- Faculty of Electrical Engineering and Computer Science & MANSiD Research Center, Ştefan cel Mare University, Universitatii St. 13, 720229 Suceava, Romania
| | - Sergii I Shylin
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Igor O Fritsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St., 01601 Kyiv, Ukraine
| | - Rostyslav D Lampeka
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St., 01601 Kyiv, Ukraine
| | - Il'ya A Gural'skiy
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St., 01601 Kyiv, Ukraine
| |
Collapse
|
15
|
Sheng HJ, Xia CC, Zhang XY, Zhang CC, Ji WJ, Zhao Y, Wang XY. Anion Modified Spin Crossover in [Fe(qsal-4-F)] + Complexes with a 4-Position Substituted Qsal Ligand. Inorg Chem 2022; 61:12726-12735. [PMID: 35905478 DOI: 10.1021/acs.inorgchem.2c01795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four iron(III) complexes, [Fe(qsal-4-F)2]Y·sol (Hqsal-4-F = 4-fluoro-N-(8-quinolyl)salicylaldimine; Y = NO3-, sol = 0.91MeOH·0.57H2O (1NO3); Y = PF6- (2PF6); Y = BF4- (3BF4); Y = OTf-, sol =1.5MeOH (4OTf)), with a new 4-position substituted qsal type ligand Hqsal-4-F have been synthesized and structurally and magnetically characterized. Complexes 1NO3-3BF4 consist of 1D chains formed by the [Fe(qsal-4-F)2]+ cations connected by π-π and C-H···O interactions, which are further linked by more weak interactions to form 2D layers and 3D networks. On the other hand, complex 4OTf has a structure of nearly isolated 1D column where the [Fe(qsal-4-F)2]+ cations are connected by π-π, C-H···π, and C-F···π interactions. Magnetic studies revealed the occurrence of two-step symmetry-breaking SCO in 1NO3 and two-step gradual SCO in 2PF6. Complex 3BF4 undergoes a gradual SCO, whereas 4OTf remains almost high-spin. The smaller anions tend to stabilize the low-spin state, while larger anions tend to stabilize the high-spin state. In addition, the intermediate spin state of 1NO3 could be thermally trapped by quenching from the high temperature, thereby kinetically suppressing the spin transition to the full low-spin state. This work represents a good example that the position of the substituent and the anions plays critical roles in the preparation of SCO materials with tunable properties.
Collapse
Affiliation(s)
- Hui-Juan Sheng
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng-Cai Xia
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Yu Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng-Cheng Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wen-Jie Ji
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Ghosh S, Bagchi S, Kamilya S, Mehta S, Sarkar D, Herchel R, Mondal A. Impact of counter anions on spin-state switching of manganese(III) complexes containing an azobenzene ligand. Dalton Trans 2022; 51:7681-7694. [PMID: 35521740 DOI: 10.1039/d2dt00660j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four mononuclear manganese(III) complexes coordinated with photo-active hexadentate azobenzene ligands, [Mn(5azo-sal2-323)](X) (X = Cl, 1; X = BF4, 2; X = ClO4, 3; X = PF6, 4), were prepared. The impact of various counter anions on the stabilization and switching of the spin state of the manganese(III) center was explored through detailed magneto-structural investigation using variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, and spectroelectrochemical studies, along with theoretical calculations. All four complexes consisted of an isostructural monocationic distorted octahedral MnN4O2 coordination environment offered by the hexadentate ligand and Cl-, BF4-, ClO4-, and PF6- as counter anions respectively. Complex 1 with a spherical Cl- counter anion showed a reversible and gradual spin-state switching between low-spin (LS) (S = 1) and high-spin (HS) (S = 2) states above 400 K, where non-covalent cation-anion interactions played a significant role in stabilizing the LS state. While, irrespective of the shape of the counter anion, complexes 2-4 remained in the HS state throughout the measured temperature range of 300-2 K, where strong π-π interaction between the azobenzene motifs among cationic units played a substantial role in stabilizing the HS state. Furthermore, magnetic data analyses revealed significantly large zero-field splitting in the S = 1 state for 1 (D = 19.4 cm-1, E/D = 0.008) in comparison with that in the S = 2 state for 2-4 (D = 3.99-4.97 cm-1, E/D = 0.002-0.195). Spectroelectrochemical investigations revealed the quasi-reversible reduction and oxidation of the manganese(III) center to manganese(II) and manganese(IV), respectively. A detailed theoretical calculation at the DFT and CASSCF level of theory was carried out to better understand the magneto-structural correlation.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sukanya Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Debopam Sarkar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, CZ-771 46 Olomouc, Czech Republic
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
17
|
Sun XP, Tang Z, Li J, Ma P, Yao ZS, Wang J, Niu J, Tao J. Discovery of Kinetic Effect in a Valence Tautomeric Cobalt-Dioxolene Complex. Inorg Chem 2022; 61:4240-4245. [PMID: 35234459 DOI: 10.1021/acs.inorgchem.1c03898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two isostructural valence tautomeric (VT) complexes with different critical temperatures were prepared and fully investigated through a series of magnetic, structural, spectral, and differential scanning calorimetry evidence. The kinetic effect in the VT complex was observed for the first time through scan-rate-dependent studies and further validated by annealing tests.
Collapse
Affiliation(s)
- Xiao-Peng Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zheng Tang
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China
| | - Jiajia Li
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jun Tao
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
18
|
Kulmaczewski R, Kershaw Cook LJ, Pask CM, Cespedes O, Halcrow MA. Iron(II) Complexes of 4-(Alkyldisulfanyl)-2,6-di(pyrazolyl)pyridine Derivatives. Correlation of Spin-Crossover Cooperativity with Molecular Structure Following Single-Crystal-to-Single-Crystal Desolvation. CRYSTAL GROWTH & DESIGN 2022; 22:1960-1971. [PMID: 35431660 PMCID: PMC9007408 DOI: 10.1021/acs.cgd.2c00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The complex salts [Fe(L 1)2]X2 (1X 2 ; L 1 = 4-(isopropyldisulfanyl)-2,6-bis(pyrazolyl)pyridine; X- = BF4 -, ClO4 -) form solvated crystals from common organic solvents. Crystals of 1X 2 ·Me2CO show abrupt spin transitions near 160 K, with up to 22 K thermal hysteresis. 1X 2 ·Me2CO cocrystallizes with other, less cooperative acetone solvates, which all transform into the same solvent-free materials 1X 2 ·sf upon exposure to air, or mild heating. Conversion of 1X 2 ·Me2CO to 1X 2 ·sf proceeds in a single-crystal to single-crystal fashion. 1X 2 ·sf are not isomorphous with the acetone solvates, and exhibit abrupt spin transitions at low temperature with hysteresis loops of 30-38 K (X- = BF4 -) and 10-20 K (X- = ClO4 -), depending on the measurement method. Interestingly, the desolvation has an opposite effect on the SCO temperature and hysteresis in the two salts. The hysteretic spin transitions in 1X 2 ·Me2CO and 1X 2 ·sf do not involve a crystallographic phase change but are accompanied by a significant rearrangement of the metal coordination sphere. Other solvates 1X 2 ·MeNO2, 1X 2 ·MeCN, and 1X 2 ·H2O are mostly isomorphous with each other and show more gradual spin-crossover equilibria near room temperature. All three of these lattice types have similar unit cell dimensions and contain cations associated into chains through pairwise, intermolecular S···π interactions. Polycrystalline [Fe(L 2)2][BF4]2·MeNO2 (2[BF 4 ] 2 ·MeNO2; L 2 = 4-(methyldisulfanyl)-2,6-bis(pyrazolyl)pyridine) shows an abrupt spin transition just above room temperature, with an unsymmetrical and structured hysteresis loop, whose main features are reversible upon repeated thermal scanning.
Collapse
Affiliation(s)
- Rafal Kulmaczewski
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | | | - Christopher M. Pask
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Oscar Cespedes
- School
of Physics and Astronomy, University of
Leeds, E. C. Stoner
Building, Leeds LS2 9JT, U.K.
| | - Malcolm A. Halcrow
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
19
|
Zhao XH, Shao D, Chen JT, Gan DX, Yang J, Zhang YZ. A trinuclear {FeIII2FeII} complex involving both spin and non-spin transitions exhibits three-step and wide thermal hysteresis. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1153-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Shahid N, Burrows KE, Pask CM, Cespedes O, Howard MJ, McGowan PC, Halcrow MA. Heteroleptic iron( ii) complexes of chiral 2,6-bis(oxazolin-2-yl)-pyridine (PyBox) and 2,6-bis(thiazolin-2-yl)pyridine ligands – the interplay of two different ligands on the metal ion spin sate. Dalton Trans 2022; 51:4262-4274. [DOI: 10.1039/d2dt00393g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The spin-crossover properties of [Fe(LR)L][ClO4]2 (LR = a chiral PyBox {L1R} or ThioPyBox {L2R} derivative) show subtle differences depending on the tridentate ‘L’ co-ligand.
Collapse
Affiliation(s)
- Namrah Shahid
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT
| | - Kay E. Burrows
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT
| | | | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, WH Bragg Building, Leeds, UK LS2 9JT
| | - Mark J. Howard
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT
| | - Patrick C. McGowan
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT
| | - Malcolm A. Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT
| |
Collapse
|
21
|
You M, Nguyen GT, Shao D, Wang T, Chang X, Ungur L, Zhang YZ. Manipulating the spin crossover behaviour in a series of cyanide-bridged {FeIII2FeII2} molecular squares through NCE- co-ligands. Dalton Trans 2022; 51:5596-5602. [DOI: 10.1039/d2dt00058j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manipulating the transition temperature (T1/2) of spin-crossover (SCO) complexes capable of fulfilling practical criteria through different synthetic strategies is one of the main focuses in the field of molecular magnetism....
Collapse
|
22
|
Ghosh S, Kamilya S, Pramanik T, Mohanty A, Rouzières M, Herchel R, Mehta S, Mondal A. Thermo- and photoinduced spin state switching in an iron(II) 2D coordination network associated with large light-induced thermal hysteresis and tuning of dimensionality via ligand modulation. Dalton Trans 2021; 50:7725-7735. [PMID: 33988205 DOI: 10.1039/d1dt00212k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three iron(ii) complexes, [Fe(L1)2(NCS)2(MeOH)2] (1), [Fe(L1)2(NCSe)2(MeOH)2] (2), and [Fe(L2)2(NCS)2]n (3) (L1 = 2,5-dipyridyl-3,4-ethylenedioxythiophene and L2 = 2,5-diethynylpyridinyl-3,4-ethylenedioxythiophene), have been synthesized using redox-active luminescent ethylenedioxythiophene (EDOT)-based ligands, and characterized by variable temperature single-crystal X-ray diffraction, (photo)magnetic, optical reflectivity, and spectroscopy studies. Magneto-structural investigations revealed that 1 and 2 are mononuclear with a FeN4O2 octahedral coordination geometry and remain in a high-spin (HS) (S = 2) state in a temperature range of 2-280 K. Interestingly, a 2D coordination network structure with FeN6 surrounding each iron center was observed for 3, which exhibits reversible thermo-induced spin-state switching between the paramagnetic high-spin (HS) (S = 2) and diamagnetic low-spin (LS) (S = 0) states at around 105 K (T1/2). Furthermore, optical reflectivity and photomagnetic measurements at low temperature confirmed that 3 shows reversible ON/OFF switching between the photoinduced excited paramagnetic HS metastable state and diamagnetic LS state under light irradiation (ON mode using red light and OFF mode using green light). Finally, the photoinduced excited HS state can be reversibly relaxed back to the diamagnetic ground LS state by heating the system at ca. 88 K (TLIESST = 88 K) (light-induced excited spin state trapping (LIESST) effect). Furthermore, 3 also showed an exciting and unique 18 K wide light-induced thermal hysteresis (LITH) effect above liquid nitrogen temperature (100 K). DFT and CASSCF level theoretical calculations were utilized to better understand the magneto-structural correlations of these complexes.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Titas Pramanik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Ashutosh Mohanty
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600 Pessac, France
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, CZ-771 46 Olomouc, Czech Republic
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
23
|
Capel Berdiell I, García-López V, Howard MJ, Clemente-León M, Halcrow MA. The effect of tether groups on the spin states of iron(II)/bis[2,6-di(pyrazol-1-yl)pyridine] complexes. Dalton Trans 2021; 50:7417-7426. [PMID: 33969863 DOI: 10.1039/d1dt01076j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The synthesis of six 2,6-di(pyrazol-1-yl)pyridine derivatives bearing dithiolane or carboxylic acid tether groups is described: [2,6-di(pyrazol-1-yl)pyrid-4-yl]methyl (R)-lipoate (L1), 2-[(2,6-di(pyrazol-1-yl)pyridine)-4-carboxamido]ethyl (R)-lipoate (L2), 2-[(2,6-di(pyrazol-1-yl)pyridine)-4-carboxy]ethyl (R)-lipoate (L3), N-([2,6-di(pyrazol-1-yl)pyrid-4-ylsulfanyl]-2-aminoethyl (R)-lipoamide (L4), 2-[(2,6-di(pyrazol-1-yl)pyridine)-4-carboxamido]acetic acid (L5) and 2-[(2,6-di(pyrazol-1-yl)pyridine)-4-carboxamido]propionic acid (L6). The iron(ii) perchlorate complexes of all the new ligands exhibit gradual thermal spin-crossover (SCO) in the solid state above room temperature, except L4 whose complex remains predominantly high-spin. Crystalline [Fe(L6)2][ClO4]2·2MeCN contains three unique cation sites which alternate within hydrogen-bonded chains, and undergo gradual SCO at different temperatures upon warming. The SCO midpoint temperature (T1/2) of the complexes in CD3CN solution ranges between 208-274 K, depending on the functional group linking the tether groups to the pyridyl ring. This could be useful for predicting how these complexes might behave when deposited on gold or silica surfaces.
Collapse
Affiliation(s)
- Izar Capel Berdiell
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT.
| | - Victor García-López
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Spain
| | - Mark J Howard
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT.
| | - Miguel Clemente-León
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Spain
| | - Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT.
| |
Collapse
|
24
|
Pan Y, Meng YS, Liu Q, Gao WQ, Liu CH, Liu T, Zhu YY. Construction of SCO-Active Fe(II) Mononuclear Complexes from the Thio-pybox Ligand. Inorg Chem 2020; 59:7398-7407. [PMID: 32401025 DOI: 10.1021/acs.inorgchem.9b03506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of new spin-crossover complexes provides novel promising switching materials with significant potential at the molecular level. Ter-imine-type molecules represent one of the important classes of ligands in creating SCO-active complexes. Herein we report a family of mononuclear Fe(II) SCO-active compounds constructed from a new type of ter-imine ligand named the thio-pybox ligand (2,6-bis(4,4-dimethyl-4,5-dihydrothiazol-2-yl)pyridine, L1). Through the variation of counteranions, some cases display complete SCO and with T1/2 near ambient temperature. Among them, annealed [FeII(L1)2](ClO4)2 [1(ClO4)] shows T1/2↓ and T1/2↑ as 319 and 349 K, respectively. The wide thermal hysteresis of ΔT = 30 K originated from the weak interaction between complex cations and counteranions in the crystal lattice. Impressively, its high-spin population can be increased considerably by annealing at high temperature. The metastable high-spin phase is stable in the successive magnetic measurements and would gradually relax to its initial state with high population of low-spin configuration at ambient temperature. In acetonitrile-diluted solution, 1(ClO4) still maintains SCO with an estimated T1/2 at 240 K. Differential scanning calorimetry discloses the structural phase at around 355 K in the first heating process and the increase in the high-spin population concomitant with annealing was also corroborated by 57Fe Mössbauer measurements. Additionally, the influences on SCO by counteranion and ligand structure are investigated, which show that the fine tuning of complex structures can affect the behavior of the spin state significantly. Finally, magneto-structural correlation studies were performed on the structures of 1(ClO4) and its oxygen analogue at multiple temperatures. The analyses of some structural parameters, including terminal N···N donor separation, bite angle, patulous angle, and the root mean squared deviation indicate that the replacement of the oxygen atom with a sulfur atom can effectively improve the flexibility and release the steric strain and thus tune the SCO toward ambient temperature. Our research demonstrates the rational design of the ligand can lead to new SCO-active compounds with high performance.
Collapse
Affiliation(s)
- Yao Pan
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wan-Qing Gao
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
25
|
Yu X, Chen TY, Ye YS, Bao X. Spin crossover in mononuclear Fe(II) complexes based on a tetradentate ligand. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:174001. [PMID: 31914428 DOI: 10.1088/1361-648x/ab68f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three isostructural complexes with the formula [Fe(L5Me)(NCE)2]: L5Me = N,N'-bis(5-methyl-2-pyridylmethyl)ethane-1,2-diamine and E = S (1-S), E = Se (1-Se), E = BH3 (1-BH 3 ) have been synthesized and characterized by single-crystal x-ray diffraction, magnetic susceptibility and DSC studies. All the three derivatives are spin crossover (SCO) active, showing complete one-step spin conversion. The SCO midpoint temperatures (T 1/2) are 193 K for 1-S, 226 K for 1-Se, and 330 K for 1-BH 3 , which are among the highest values for the homologous Fe(II)-NCE complexes with comparable tetradentate ligands. The almost linear Fe-N ≡ C(E) angles are consistent with the strong ligand field (LF) strength imposed by these NCE- co-ligands. Strong hydrogen-like bonding N-H…E was observed to connect the molecules into 2D supramolecular sheets parallel to the bc plane. However, such supramolecular interaction is not sufficient enough to transmit strong cooperativity. A discussion on the factors governing the LF strength and the cooperativity has been made, based on the comparison of analogous complexes and also based on UV-vis spectroscopy studies of the Ni(II) complexes.
Collapse
Affiliation(s)
- Xin Yu
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China
| | | | | | | |
Collapse
|