1
|
Zhu M, Huang PZ, Li LM, Yang YX, Pan L, Wang ZJ, Ni HF, Zhang FW, Teri G, Zhang ZX, Liu Z, Fu DW, Zhang Y. Thermal-responsive luminescence/dielectric responses with reversibly shifted light emissions. Chem Sci 2025:d4sc06631f. [PMID: 39898307 PMCID: PMC11784913 DOI: 10.1039/d4sc06631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Molecular-rotor-type crystals dominated by crown ethers have garnered significant attention for their applications in sensing, optoelectronics, information encryption and other diverse fields. However, the role of crown ethers in regulating photoluminescent properties has long been overlooked in such structural systems. Here, by inserting 18-crown-6 molecules into the ionic crystal (4-pyridinemethaneaminum)PF6 (PP-1), we constructed a molecular-rotor-type crystal [(4-pyridinemethaneaminum)(18-crown-6)][PF6] (PCP-1), exhibiting sensitively thermal-driven, unusual PL/dielectric responses. Notably, the introduction of the 18-crown-6 molecule changed the dynamic thermal motion and exerted a confinement effect through rich hydrogen bonding interactions, thereby inducing structural phase transitions and modulating energy transfer processes. These not only brought about switchable dielectric responses but also resulted in a comprehensive improvement of PL properties, encompassing extended lifetime, doubled quantum yield and temperature-controllable luminescent color. This study offers novel insights into the role of crown ethers in developing smart luminescent materials, holding promising prospects for intelligent recognition and information encryption.
Collapse
Affiliation(s)
- Ming Zhu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Lin-Mei Li
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Yi-Xuan Yang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Lei Pan
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Zhi-Jie Wang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 People's Republic of China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Feng-Wen Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Zunqi Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University Urumqi 830052 People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 People's Republic of China
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 People's Republic of China
| |
Collapse
|
2
|
Su Y, Wang G, Fu B, Piao X, Zhang K. A biomimetic phosphor that can build a rigid microenvironment for its long-lived afterglow in aqueous medium. Commun Chem 2024; 7:270. [PMID: 39550449 PMCID: PMC11569201 DOI: 10.1038/s42004-024-01347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
Organic phosphorescent materials have great prospects for application, whose performance particularly depends on the preparation method. Inspired by nature's wisdom, we report a phosphor that can utilize monomers in its environment by polymerization to construct a rigid microenvironment under light illumination, leading to a glow-in-the-dark emulsion with a phosphorescence lifetime of 1 s in water. This phosphor can achieve active growth of the aqueous emulsion with the introduction of more monomers. In the presence of trace amounts of oxygen (which has adverse effects on both polymerization and afterglow), this phosphor can still undergo photo-induced polymerization, removing the influence of oxygen and obtaining afterglow emulsion, demonstrating its adaptability to the environment. This phosphor can also catalyze the polymerization of monomers containing yellow fluorophore, obtaining long-lifetime yellow afterglow emulsion through excited state energy transfer. We have also conducted in-depth studies on the photo-catalytic and phosphorescent properties of this phosphor in model systems. This biomimetic intelligent manufacturing provides a new approach for organic phosphorescent materials and is significant for future applications.
Collapse
Affiliation(s)
- Yuming Su
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke Creation Center of New Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Guangming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke Creation Center of New Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Boyi Fu
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke Creation Center of New Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Xixi Piao
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke Creation Center of New Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China.
| | - Kaka Zhang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Ningbo Zhongke Creation Center of New Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
3
|
Zhu W, Zhao B, Fang S, Zhu H, Huang F. An anthracene-containing crown ether: synthesis, host-guest properties and modulation of solid state luminescence. Chem Sci 2024:d4sc05077k. [PMID: 39309098 PMCID: PMC11409855 DOI: 10.1039/d4sc05077k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Organic solid state vapochromic materials are of great significance for the development of supramolecular chemistry and materials science. Herein, we synthesize a crown ether derivative (An34C10) containing two anthracene units and construct new crown ether-based vapochromic host-guest co-crystals. Due to the presence of anthracene, An34C10 not only shows good fluorescence properties but also displays mechanochromism. Single crystal structural analysis, powder X-ray diffraction and differential scanning calorimetry experiments demonstrate that the transformation between different stacking modes of An34C10 is responsible for mechanochromism. In addition, An34C10 can complex with 1,2,4,5-tetracyanobenzene (TCNB) to form host-guest complex (An34C10@TCNB) co-crystals. Because organic solvent fuming alters charge-transfer interactions in An34C10@TCNB, the fluorescence of the co-crystals can be turned on and off by 4-methylpyridine and chloroform vapors, respectively, realizing selective detection with opposite emission outputs. Meanwhile, the stimuli-responsive properties of An34C10 and An34C10@TCNB possess good cycling performance. This work provides a new strategy for the construction of organic solid state luminescent materials.
Collapse
Affiliation(s)
- Weijie Zhu
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310058 P. R. China (+86) 571-87953189
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
- School of Chemical and Environmental Engineering, Hunan Institute of Technology Hengyang 421002 P. R. China
| | - Bohan Zhao
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310058 P. R. China (+86) 571-87953189
| | - Shuai Fang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310058 P. R. China (+86) 571-87953189
| | - Huangtianzhi Zhu
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310058 P. R. China (+86) 571-87953189
| | - Feihe Huang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310058 P. R. China (+86) 571-87953189
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| |
Collapse
|
4
|
Maida MC, Sugawara N, Suzuki A, Ito M, Kubo Y. Metal ion-manipulated afterglow on rhodamine 6G derivative-doped room-temperature phosphorescent PVA films. Front Chem 2024; 12:1441452. [PMID: 39345861 PMCID: PMC11428105 DOI: 10.3389/fchem.2024.1441452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
The long-lived room-temperature phosphorescence (RTP) originating from thiophene boronate polyvinyl alcohol (PVA) has enabled the creation of metal-ion-responsive RTP films doped with spirolactam ring-containing rhodamine 6G (1). In this study, RTP-active PVA films, namely, TDB@PVA and ATB@PVA, were prepared through boronate esterification of thiophene-2,5-diboronic acid (TDB) and 5-acetylthiophene-2-boronic acid (ATB) with the diol units of PVA. The delayed emission properties were evaluated, revealing an emission band at 477 nm with a turquoise afterglow for TDB@PVA and at 510 nm with a green afterglow for ATB@PVA after UV light irradiation ceased. The photophysical properties were assessed using TD-DFT and DFT calculations at the B3LYP/cc-pVDZ level. N-(rhodamine-6G)lactam dye with a salicylimine unit (1) was doped into the RTP-based PVA films, producing a multicolored afterglow upon the addition of metal ions. This phenomenon is explained by a triplet-to-singlet Förster-type resonance energy transfer process from the cross-linked thiophene boronate in PVA to the metal-ion-activated colored form of 1. This photophysical feature finds applicability in encryption techniques. Notably, the reversible metal-ligand coordination of 1 in the PVA system enabled a write/erase information process.
Collapse
Affiliation(s)
| | | | | | | | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
5
|
Hou H, Wang H, He M, Li Q, Wang X, Guo F, Chen Q, Qu L, Yang C. Thermal Annealing Effects on Long-Lived Fluorenol Room Temperature Phosphorescence for Styrene Detection. Angew Chem Int Ed Engl 2024:e202411323. [PMID: 39213167 DOI: 10.1002/anie.202411323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Fluorene derivatives have been widely developed in OLEDs because of its efficient fluorescence quantum efficiency, but for which unique rigid biphenyl planar structure and large conjugated system, we hypothesize that they have a great potential for room temperature phosphorescence (RTP) applications, and confirmed this conjecture by subjecting polyvinyl alcohol (PVA) and phosphors to thermal annealing. The cross-linked structure formed during thermal annealing judiciously modulates the phosphorescence emission characteristics of the fluorenol with the synergistic interaction between PVA and fluorenol. Specifically, the lifetime exhibited a substantial increase from 1352.2 ms to 2874.1 ms, accompanied by a quantum yield augmentation from 4.8 % to 11.3 %, which substantiate that cross-linked induced by thermal annealing effectively amplifies the phosphorescent intensity and stability of the phosphors, facilitating ultralong phosphorescent emission at ambient conditions. Furthermore, an effective probe based on this film is developed for its highly sensitive, quantitative and immediate detection of volatile organic compounds. This investigation not only proffers a novel paradigm for the development of advanced RTP materials but also imparts insightful considerations for optimizing the performance of polymers in conjunction with functional materials, encompassing bioimaging, sensing, and optoelectronic devices.
Collapse
Affiliation(s)
- Hui Hou
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hao Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Meiyi He
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qiankun Li
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xiaojuan Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Fengling Guo
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qingao Chen
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lunjun Qu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
6
|
Zhang J, Ren MP, Xu M, Zhang Z, An M, Lu Y, Lei XW, Gong Z, Yue CY. Ultrafast Visual Detection of a Trace Amount of Water by Highly Efficient Hybrid Manganese Halides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33780-33788. [PMID: 38961579 DOI: 10.1021/acsami.4c05411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
A quantitative water detection method is urgently needed in storage facilities, space exploration, and the chemical industry. Although numerous physical techniques have been widely utilized to determine the water content, they still suffer from many disadvantages such as highly expensive special instruments, complicated analysis processes, etc. Hence, a convenient, rapid, and sensitive water analysis method is highly desirable. Herein, we developed a visual fluorescence sensing technology for water detection based on reversible PL off-on switching of organic-inorganic hybrid zero-dimensional (0D) manganese halides. In this work, a family of hybrid manganese halides were synthesized through a facile solution method, namely, [NH4(18-Crown-6)]2MnBr4, [Ca(18-Crown-6)·3H2O](18-Crown-6)MnBr4, [NH4(dibenzo-18-Crown-6)]2MnBr4, and [Ca(dibenzo-18-Crown-6)·2H2O]MnBr4. Excited by UV light, these highly crystalline manganese halides exhibit strong green light emissions from the d-d electron transition of Mn2+ with near-unity photoluminescence quantum yield and submillisecond lifetime. Benefiting from the dynamic and weak ionic bonding interactions, these 0D manganese halides display reversible water-response on/off luminescence switching but fail in any other aprotic solvents. Therefore, these 0D hybrid manganese halides can be explored as ultrafast visual fluorescence probes to detect the trace amount of water in organic solvents with multiple superiorities of rapid response time (< 2 s), ultralow detection limit (9.71 ppm), excellent repeatability, etc. The reversible water-response luminescent on/off switching also provides a binary optical gate with advanced applications in anticounterfeiting and information security, etc.
Collapse
Affiliation(s)
- Jie Zhang
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Meng-Ping Ren
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Man Xu
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Zhonghui Zhang
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Mingxue An
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yang Lu
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiao-Wu Lei
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Zhongliang Gong
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Cheng-Yang Yue
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| |
Collapse
|
7
|
Li L, Zhou J, Han J, Liu D, Qi M, Xu J, Yin G, Chen T. Finely manipulating room temperature phosphorescence by dynamic lanthanide coordination toward multi-level information security. Nat Commun 2024; 15:3846. [PMID: 38719819 PMCID: PMC11078970 DOI: 10.1038/s41467-024-47674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Room temperature phosphorescence materials have garnered significant attention due to their unique optical properties and promising applications. However, it remains a great challenge to finely manipulate phosphorescent properties to achieve desirable phosphorescent performance on demand. Here, we show a feasible strategy to finely manipulate organic phosphorescent performance by introducing dynamic lanthanide coordination. The organic phosphors of terpyridine phenylboronic acids possessing excellent coordination ability are covalently embedded into a polyvinyl alcohol matrix, leading to ultralong organic room temperature phosphorescence with a lifetime of up to 0.629 s. Notably, such phosphorescent performance, including intensity and lifetime, can be well controlled by varying the lanthanide dopant. Relying on the excellent modulable performance of these lanthanide-manipulated phosphorescence films, multi-level information encryption including attacker-misleading and spatial-time-resolved applications is successfully demonstrated with greatly improved security level. This work opens an avenue for finely manipulating phosphorescent properties to meet versatile uses in optical applications.
Collapse
Affiliation(s)
- Longqiang Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayin Zhou
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyi Han
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Depeng Liu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Qi
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juanfang Xu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangqiang Yin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
8
|
Guo J, Gao Y, Pan M, Li X, Kong F, Wu M, Zhang L, Cheng Z, Zhao R, Ma H. Photorewriting, Time-Resolved Encryption, and Unclonable Anticounterfeiting with Artificial Intelligence Authentication via a Reversible Photoswitchable System. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38682804 DOI: 10.1021/acsami.4c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
In the fields of photolithographic patterning, optical anticounterfeiting, and information encryption, reversible photochromic materials with solid-state fluorescence are emerging as a potential class of systems. A design strategy for reversible photochromic materials has been proposed and synthesized through the introduction of photoactive thiophene groups into the molecular backbone of aryl vinyls, compounds with unique aggregation-induced emission properties, and solid-state reversible photocontrollable fluorescence and color-changing properties. This work develops novel photochromic inks, films, and cellulose hydrogels for enhancing the security of information encryption and anticounterfeiting technologies. They achieve rapid and reversible color change under ultraviolet light irradiation. Dependent upon the rate of color change, higher levels of time-resolved security can be achieved. This feature is important for enhancing the confidentiality of encrypted information and the reliability of security labels. Color-changing cellulose hydrogels, inks, and films consisting of three photochromic fluorescent molecules have quick photoactivity, great photoreversibility and photostability, and good processability, making them ideal for time-delayed anticounterfeiting and smart encryption. Furthermore, specialized algorithms are used to construct convolutional neural networks, and image analysis is performed on these systems, thus solving the current problem of the time-consuming information decryption process. This artificial intelligence method offers new opportunities for enhanced data encryption.
Collapse
Affiliation(s)
- Jiandong Guo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Yu Gao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Mengyao Pan
- University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, People's Republic of China
| | - Xiaobai Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Fanwei Kong
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Mingyang Wu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Lijia Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Zhiyong Cheng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Ruiyan Zhao
- Harbin No.6 High School, Harbin, Heilongjiang 150040, People's Republic of China
| | - Hongwei Ma
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Harbin, Heilongjiang 150040, People's Republic of China
| |
Collapse
|
9
|
Huo M, Song SQ, Dai XY, Li FF, Hu YY, Liu Y. Phosphorescent acyclic cucurbituril solid supramolecular multicolour delayed fluorescence behaviour. Chem Sci 2024; 15:5163-5173. [PMID: 38577356 PMCID: PMC10988582 DOI: 10.1039/d4sc00160e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Organic photoluminescent macrocyclic hosts have been widely advanced in many fields. Phosphorescent hosts with the ability to bind organic guests have rarely been reported. Herein, acyclic cucurbituril modified with four carboxylic acids (ACB-COOH) is mined to present uncommon purely organic room-temperature phosphorescence (RTP) at 510 nm with a lifetime of 1.86 μs. Its RTP properties are significantly promoted with an extended lifetime up to 2.12 s and considerable quantum yield of 6.29% after assembly with a polyvinyl alcohol (PVA) matrix. By virtue of the intrinsic self-crimping configuration of ACB-COOH, organic guests, including fluorescence dyes (Rhodamine B (RhB) and Pyronin Y (PyY)) and a drug molecule (morphine (Mor)), could be fully encapsulated by ACB-COOH to attain energy transfer involving phosphorescent acyclic cucurbituril. Ultimately, as-prepared systems are successfully exploited to establish multicolor afterglow materials and visible sensing of morphine. As an expansion of phosphorescent acyclic cucurbituril, the host afterglow color can be readily regulated by attaching different aromatic sidewalls. This study develops the fabrication strategies and application scope of a supramolecular phosphorescent host and opens up a new direction for the manufacture of intelligent long-lived luminescent materials.
Collapse
Affiliation(s)
- Man Huo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Shuang-Qi Song
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Fan-Fan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yu-Yang Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
10
|
Li X, Wang Y, Zhang Z, Cai S, An Z, Huang W. Recent Advances in Room-Temperature Phosphorescence Metal-Organic Hybrids: Structures, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308290. [PMID: 37884272 DOI: 10.1002/adma.202308290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Metal-organic hybrid (MOH) materials with room-temperature phosphorescence (RTP) have drawn attention in recent years due to their superior RTP properties of high phosphorescence efficiency and ultralong emission lifetime. Great achievement has been realized in developing MOH materials with high-performance RTP, but a systematic study on MOH materials with RTP feature is lacking. This review highlights recent advances in metal-organic hybrid RTP materials. The molecular packing, the photophysical properties, and their applications of metal-organic hybrid RTP materials are discussed in detail. Metal-organic hybrid RTP materials can be divided into six parts: coordination polymers, metal-organic frameworks (MOFs), metal-halide hybrids, organic ionic crystals, organic ionic polymers, and organic-inorganic hybrid perovskites. These RTP materials have been successfully applied in time-resolved data encryption, fingerprint recognition, information logic gates, X-ray imaging, and photomemory. This review not only provides the basic principles of designing RTP metal-organic hybrids, but also propounds the future research prospects of RTP metal-organic hybrids. This review offers many effective strategies for developing metal-organic hybrids with excellent RTP properties, thus satisfying practical applications.
Collapse
Affiliation(s)
- Xian Li
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Yuefei Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Zaiyong Zhang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Suzhi Cai
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
11
|
Dai W, Jiang Y, Lei Y, Huang X, Sun P, Shi J, Tong B, Yan D, Cai Z, Dong Y. Recent progress in ion-regulated organic room-temperature phosphorescence. Chem Sci 2024; 15:4222-4237. [PMID: 38516079 PMCID: PMC10952074 DOI: 10.1039/d3sc06931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Organic room-temperature phosphorescence (RTP) materials have attracted considerable attention for their extended afterglow at ambient conditions, eco-friendliness, and wide-ranging applications in bio-imaging, data storage, security inks, and emergency illumination. Significant advancements have been achieved in recent years in developing highly efficient RTP materials by manipulating the intermolecular interactions. In this perspective, we have summarized recent advances in ion-regulated organic RTP materials based on the roles and interactions of ions, including the ion-π interactions, electrostatic interactions, and coordinate interactions. Subsequently, the current challenges and prospects of utilizing ionic interactions for inducing and modulating the phosphorescent properties are presented. It is anticipated that this perspective will provide basic guidelines for fabricating novel ionic RTP materials and further extend their application potential.
Collapse
Affiliation(s)
- Wenbo Dai
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Yitian Jiang
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou China
| | - Yunxiang Lei
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou China
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou China
| | - Peng Sun
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology Beijing China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| |
Collapse
|
12
|
Xue N, Zhou HY, Han Y, Li M, Lu HY, Chen CF. A general supramolecular strategy for fabricating full-color-tunable thermally activated delayed fluorescence materials. Nat Commun 2024; 15:1425. [PMID: 38365888 PMCID: PMC10873404 DOI: 10.1038/s41467-024-45717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Developing a facile and feasible strategy to fabricate thermally activated delayed fluorescence materials exhibiting full-color tunability remains an appealing yet challenging task. In this work, a general supramolecular strategy for fabricating thermally activated delayed fluorescence materials is proposed. Consequently, a series of host-guest cocrystals are prepared by electron-donating calix[3]acridan and various electron-withdrawing guests. Owing to the through-space charge transfer mediated by multiple noncovalent interactions, these cocrystals all display efficient thermally activated delayed fluorescence. Especially, by delicately modulating the electron-withdrawing ability of the guest molecules, the emission colors of these cocrystals can be continuously tuned from blue (440 nm) to red (610 nm). Meanwhile, high photoluminescence quantum yields of up to 87% is achieved. This research not only provides an alternative and general strategy for the fabrication of thermally activated delayed fluorescence materials, but also establishes a reliable supramolecular protocol toward the design of advanced luminescent materials.
Collapse
Affiliation(s)
- Nan Xue
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Meng Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hai-Yan Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chuan-Feng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
13
|
Huang Y, Ning L, Zhang X, Zhou Q, Gong Q, Zhang Q. Stimuli-fluorochromic smart organic materials. Chem Soc Rev 2024; 53:1090-1166. [PMID: 38193263 DOI: 10.1039/d2cs00976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Smart materials based on stimuli-fluorochromic π-conjugated solids (SFCSs) have aroused significant interest due to their versatile and exciting properties, leading to advanced applications. In this review, we highlight the recent developments in SFCS-based smart materials, expanding beyond organometallic compounds and light-responsive organic luminescent materials, with a discussion on the design strategies, exciting properties and stimuli-fluorochromic mechanisms along with their potential applications in the exciting fields of encryption, sensors, data storage, display, green printing, etc. The review comprehensively covers single-component and multi-component SFCSs as well as their stimuli-fluorochromic behaviors under external stimuli. We also provide insights into current achievements, limitations, and major challenges as well as future opportunities, aiming to inspire further investigation in this field in the near future. We expect this review to inspire more innovative research on SFCSs and their advanced applications so as to promote further development of smart materials and devices.
Collapse
Affiliation(s)
- Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lijian Ning
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaomin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qian Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| |
Collapse
|
14
|
Liu S, Zhang Y, Li J, Wang C, Chen Y, Liu Y. Water/Light Multiregulated Supramolecular Polypseudorotaxane Gel with Switchable Room-Temperature Phosphorescence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5149-5157. [PMID: 38247294 DOI: 10.1021/acsami.3c17214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Water/light regulated room-temperature phosphorescence (RTP) of polypseudorotaxane supramolecular gel is constructed by threading the poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) chain with the bromoaromatic aldehyde into mono-(6-ethylenediamine-6-deoxygenated)-β-cyclodextrin (ECD) cavities and further assembling with negatively charged Laponite XLG (CNS) and diarylethene derivative (DAE) through electrostatic interaction. This hydrogel exhibits significant blue fluorescence emission; instead, after lyophilization to xerogel, the system exhibits both blue fluorescence and yellow RTP based on the rigid network structure of the xerogel, which restricts the vibration of the phosphor and suppresses the nonradiative relaxation process. Interestingly, the addition of excess ECDs to the gel system can enhance the RTP emission. Furthermore, the reversible luminescence behavior can be adjusted by the photoresponsive isomerism of DAE and humidity. This polypseudorotaxane supramolecular gel system provides a novel strategy for constructing tunable RTP materials.
Collapse
Affiliation(s)
- Songen Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yi Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jianqiu Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Conghui Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
15
|
Feng W, Chen D, Zhao Y, Mu B, Yan H, Barboiu M. Modulation of Deep-Red to Near-Infrared Room-Temperature Charge-Transfer Phosphorescence of Crystalline "Pyrene Box" Cages by Coupled Ion/Guest Structural Self-Assembly. J Am Chem Soc 2024; 146:2484-2493. [PMID: 38229260 DOI: 10.1021/jacs.3c10206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Organic cocrystals obtained from multicomponent self-assembly have garnered considerable attention due to their distinct phosphorescence properties and broad applications. Yet, there have been limited reports on cocrystal systems that showcase efficient deep-red to near-infrared (NIR) charge-transfer (CT) phosphorescence. Furthermore, effective strategies to modulate the emission pathways of both fluorescence and phosphorescence remain underexplored. In this work, we dedicated our work to four distinct self-assembled cocrystals called "pyrene box" cages using 1,3,6,8-pyrenetetrasulfonate anions (PTS4-), 4-iodoaniline (1), guanidinium (G+), diaminoguanidinium (A2G+), and hydrated K+ countercations. The binding of such cations to PTS4- platforms adaptively modulates their supramolecular stacking self-assembly with guest molecules 1, allowing to steer the fluorescence and phosphorescence pathways. Notably, the confinement of guest molecule 1 within "pyrene box" PTSK{1} and PTSG{1} cages leads to an efficient deep-red to NIR CT phosphorescence emission. The addition of fuming gases like triethylamine and HCl allows reversible pH modulations of guest binding, which in turn induce a reversible transition of the "pyrene box" cage between fluorescence and phosphorescence states. This capability was further illustrated through a proof-of-concept demonstration in shrimp freshness detection. Our findings not only lay a foundation for future supramolecular designs leveraging weak intermolecular host-guest interactions to engineer excited states in interacting chromophores but also broaden the prospective applications of room-temperature phosphorescence materials in food safety detection.
Collapse
Affiliation(s)
- Weixu Feng
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi,China
| | - Dong Chen
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi,China
| | - Yan Zhao
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi,China
| | - Bin Mu
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi,China
| | - Hongxia Yan
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi,China
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nano-systems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier F-34095, France
| |
Collapse
|
16
|
Zhang Y, Li J, Zhao J, Li X, Wang Z, Huang Y, Zhang H, Liu Q, Lei Y, Ding D. π-π Interaction-Induced Organic Long-wavelength Room-Temperature Phosphorescence for In Vivo Atherosclerotic Plaque Imaging. Angew Chem Int Ed Engl 2024; 63:e202313890. [PMID: 38059792 DOI: 10.1002/anie.202313890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Room-temperature phosphorescent (RTP) materials have great potential for in vivo imaging because they can circumvent the autofluorescence of biological tissues. In this study, a class of organic-doped long-wavelength (≈600 nm) RTP materials with benzo[c][1,2,5] thiadiazole as a guest was constructed. Both host and guest molecules have simple structures and can be directly purchased commercially at a low cost. Owing to the long phosphorescence wavelength of the doping system, it exhibited good tissue penetration (10 mm). Notably, these RTP nanoparticles were successfully used to image atherosclerotic plaques, with a signal-to-background ratio (SBR) of 44.52. This study provides a new approach for constructing inexpensive red organic phosphorescent materials and a new method for imaging cardiovascular diseases using these materials.
Collapse
Affiliation(s)
- Yufan Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jisen Li
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jiliang Zhao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Xuefei Li
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Zhimei Wang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yicheng Huang
- School of Chemistry and Materials Engineering, Wenzhou University, 325035, Wenzhou, China
| | - Hongkai Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, 300192, Tianjin, China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering, Wenzhou University, 325035, Wenzhou, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| |
Collapse
|
17
|
Dai XY, Huo M, Liu Y. Phosphorescence resonance energy transfer from purely organic supramolecular assembly. Nat Rev Chem 2023; 7:854-874. [PMID: 37993737 DOI: 10.1038/s41570-023-00555-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/24/2023]
Abstract
Phosphorescence energy transfer systems have been applied in encryption, biomedical imaging and chemical sensing. These systems exhibit ultra-large Stokes shifts, high quantum yields and are colour-tuneable with long-wavelength afterglow fluorescence (particularly in the near-infrared) under ambient conditions. This review discusses triplet-to-singlet PRET or triplet-to-singlet-to-singlet cascaded PRET systems based on macrocyclic or assembly-confined purely organic phosphorescence introducing the critical toles of supramolecular noncovalent interactions in the process. These interactions promote intersystem crossing, restricting the motion of phosphors, minimizing non-radiative decay and organizing donor-acceptor pairs in close proximity. We discuss the applications of these systems and focus on the challenges ahead in facilitating their further development.
Collapse
Affiliation(s)
- Xian-Yin Dai
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Man Huo
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
18
|
Liu G, Tian C, Fan X, Dang Y, Qin J, Liu L, Cao Z, Jiang S. Dual-Stimulus-Driven Dynamically Controllable [3]Rotaxane with Tunable Organic Room-Temperature Phosphorescence. Org Lett 2023. [PMID: 38019050 DOI: 10.1021/acs.orglett.3c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A dual-stimulus-driven stiff-stilbene-based dynamic [3]rotaxane has been facilely developed using the threading-stoppering strategy and exhibits reversible shuttling motions and bidirectional rotations upon encountering acid-base and distinct light stimulations, respectively. Herein, the two dibenzo-24-crown-8 macrocycles can undergo reversible switching motion between two different stations along the axle suffered from acid-base stimulation, and simultaneously, the two rotaxanes can also perform cis-trans rotations upon irradiation with distinct light. In other words, the constructed rotaxanes can conduct two modes of regular motions without interference. Interestingly, reciprocating switching motion of the rings along the axle enabled the rotaxanes to exhibit controllable and reversible photoisomerization speed, conversion yield, and quantum yield. Crucially, these rotaxanes also manifest adjustable solid-state organic room-temperature phosphorescence (RTP) and photoluminescence stimulated by dual factors (acid-base and diverse light), which are further applied in information encryption and anticounterfeiting. The presented study provides an instructive way for precisely boosting photoisomerization performances and the fabrication of dual-stimuli-induced molecular machines with functions of two-mode mechanical motions and controllable pure organic RTP switches.
Collapse
Affiliation(s)
- Guoxing Liu
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Changming Tian
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Xinhui Fan
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Yuli Dang
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Jieqiong Qin
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Lijie Liu
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Zhanqi Cao
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Song Jiang
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| |
Collapse
|
19
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
20
|
Zhu H, Chen L, Sun B, Wang M, Li H, Stoddart JF, Huang F. Applications of macrocycle-based solid-state host-guest chemistry. Nat Rev Chem 2023; 7:768-782. [PMID: 37783822 DOI: 10.1038/s41570-023-00531-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 10/04/2023]
Abstract
Macrocyclic molecules have been used in various fields owing to their guest binding properties. Macrocycle-based host-guest chemistry in solution can allow for precise control of complex formation. Although solution-phase host-guest complexes are easily prepared, their limited stability and processability prevent widespread application. Extending host-guest chemistry from solution to the solid state results in complexes that are generally more robust, enabling easier processing and broadened applications. Macrocyclic compounds in the solid state can encapsulate guests with larger affinities than their soluble counterparts. This is crucial for use in applications such as separation science and devices. In this Review, we summarize recent progress in macrocycle-based solid-state host-guest chemistry and discuss the basic physical chemistry of these complexes. Representative macrocycles and their solid-state complexes are explored, as well as potential applications. Finally, perspectives and challenges are discussed.
Collapse
Affiliation(s)
- Huangtianzhi Zhu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Liya Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Bin Sun
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Hao Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China.
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China.
| |
Collapse
|
21
|
Zhang ZY, Deng CY, Shen CC, Xu RY, Wang XZ, Wang YH, Ding B, Li B, Li J, Li C. Phosphorescence enhancement of pyridinium macrocycles by poly(vinylalcohol). Chem Commun (Camb) 2023; 59:11248-11251. [PMID: 37661728 DOI: 10.1039/d3cc03225f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
A phosphorescence enhancement of pyridinium macrocycle/monomer phosphors is realized with up to 14.7-fold prolonging of the phosphorescence lifetimes and visible afterglow by doping into a poly(vinylalcohol) (PVA) matrix. The abundant hydrogen-bonding interactions and electrostatic interactions between the phosphors and the PVA suppressed the nonradiative decay processes, slowed down the radiative decay and nonradiative decay of triplet states, and therefore promoted the long-lived RTP.
Collapse
Affiliation(s)
- Zhi-Yuan Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Chun-Yun Deng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Chen-Chen Shen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Rong-Yao Xu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Xi-Zhen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Yan-Hao Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Bo Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Bin Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Jian Li
- School of Chemistry and Chemical Engineering, Henan Normal University, P. R. China
| | - Chunju Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| |
Collapse
|
22
|
Edhborg F, Olesund A, Tripathy V, Wang Y, Sadhukhan T, Olsson AH, Bisballe N, Raghavachari K, Laursen BW, Albinsson B, Flood AH. Triplet States of Cyanostar and Its Anion Complexes. J Phys Chem A 2023. [PMID: 37427990 DOI: 10.1021/acs.jpca.3c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The design of advanced optical materials based on triplet states requires knowledge of the triplet energies of the molecular building blocks. To this end, we report the triplet energy of cyanostar (CS) macrocycles, which are the key structure-directing units of small-molecule ionic isolation lattices (SMILES) that have emerged as programmable optical materials. Cyanostar is a cyclic pentamer of covalently linked cyanostilbene units that form π-stacked dimers when binding anions as 2:1 complexes. The triplet energies, ET, of the parent cyanostar and its 2:1 complex around PF6- are measured to be 1.96 and 2.02 eV, respectively, using phosphorescence quenching studies at room temperature. The similarity of these triplet energies suggests that anion complexation leaves the triplet energy relatively unchanged. Similar energies (2.0 and 1.98 eV, respectively) were also obtained from phosphorescence spectra of the iodinated form, I-CS, and of complexes formed with PF6- and IO4- recorded at 85 K in an organic glass. Thus, measures of the triplet energies likely reflect geometries close to those of the ground state either directly by triplet energy transfer to the ground state or indirectly by using frozen media to inhibit relaxation. Density functional theory (DFT) and time-dependent DFT were undertaken on a cyanostar analogue, CSH, to examine the triplet state. The triplet excitation localizes on a single olefin whether in the single cyanostar or its π-stacked dimer. Restriction of the geometrical changes by forming either a dimer of macrocycles, (CSH)2, or a complex, (CSH)2·PF6-, reduces the relaxation resulting in an adiabatic energy of the triplet state of 2.0 eV. This structural constraint is also expected for solid-state SMILES materials. The obtained T1 energy of 2.0 eV is a key guide line for the design of SMILES materials for the manipulation of triplet excitons by triplet state engineering in the future.
Collapse
Affiliation(s)
- Fredrik Edhborg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Axel Olesund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Vikrant Tripathy
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yang Wang
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Tumpa Sadhukhan
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Andrew H Olsson
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Niels Bisballe
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Bo W Laursen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
23
|
Zhu H, Liu J, Wu Y, Wang L, Zhang H, Li Q, Wang H, Xing H, Sessler JL, Huang F. Substrate-Responsive Pillar[5]arene-Based Organic Room-Temperature Phosphorescence. J Am Chem Soc 2023; 145:11130-11139. [PMID: 37155275 DOI: 10.1021/jacs.3c00711] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Room-temperature phosphorescence (RTP) is a photophysical phenomenon typically associated with a long-lived emission that can be detected by the unaided eye. Several natural proteins display RTP, as do certain artificial polymers. In both cases, the RTP is ascribed to effective intramolecular through-space electronic communication. However, small molecules with internal electronic communication that enable RTP are relatively rare. Herein, we describe an alkyl halide-responsive RTP system consisting of a meta-formylphenyl-bearing pillar[5]arene derivative that supports effective through-space charge transfer (TSCT) within the pillararene cavity. Treatment with bromoethane, a heavy atom-containing guest for the pillar[5]arene host, serves to enhance the emission. An isomeric para-formylphenyl-bearing pillar[5]arene system proved ineffective in producing an RTP effect. Quantum chemical calculations based on single-crystal X-ray diffraction analyses provided insights into the structural determinants governing TSCT between the 1,4-dimethoxybenzene donor units and the formylphenyl groups of the pillar[5]arene, as well as the associated energy gaps and intersystem crossing channels. We believe that the present system and the associated mechanistic analysis provide the foundation for design of new small molecule with tunable RTP features.
Collapse
Affiliation(s)
- Huangtianzhi Zhu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Yitao Wu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Lei Wang
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Haoke Zhang
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qi Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hu Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hao Xing
- Hangzhou Zhijiang Advanced Material Co., Ltd, Hangzhou 311203, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| |
Collapse
|
24
|
Wang T, Liu M, Mao J, Liang Y, Wang L, Liu D, Wang T, Hu W. Recent advances in long-persistent luminescence materials based on host–guest architecture. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
25
|
Ju H, Zhang H, Hou LX, Zuo M, Du M, Huang F, Zheng Q, Wu ZL. Polymerization-Induced Crystallization of Dopant Molecules: An Efficient Strategy for Room-Temperature Phosphorescence of Hydrogels. J Am Chem Soc 2023; 145:3763-3773. [PMID: 36749032 DOI: 10.1021/jacs.2c13264] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conventional hydrogels such as polyacrylamide and polyacrylic acid ones seldom exhibit phosphorescences at ambient conditions, which limit their applications as optical materials. We propose and demonstrate here a facile strategy to afford these hydrogels with room-temperature phosphorescence by polymerization-induced crystallization of dopant molecules that results in segregation and confinement of the gel matrix with carbonyl groups and thus clusterization-induced phosphorescence. As a model system, crown ethers (CEs) are dissolved in an aqueous solution of concentrated acrylamide that greatly increases the solubility of CEs. During the polymerization process, CEs crystallize to form large spherulites in the polyacrylamide hydrogel. The crystallization arises from the drastically reduced solubility of CEs after the conversion of monomers to polymers during the gel synthesis. The resultant composite hydrogel with a water content of 67 wt % exhibits extraordinary phosphorescence behavior yet maintains good stretchability and resilience. We found that the partial gel matrix is squeezed and confined by in situ-formed crystals, leading to carbonyl clusters and thus phosphorescence emission. The composite gel shows green phosphorescence with an emission peak at 512 nm and a lifetime of 342 ms. The afterglow emission is detectable by the naked eye for several seconds. This strategy has good universality, as validated in other hydrogels with different polymeric matrices and dopant molecules. The development of hydrogels with good mechanical and phosphorescent properties should merit the design of multifunctional soft machines with applications in biomedical and engineering fields.
Collapse
Affiliation(s)
- Huaqiang Ju
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haoke Zhang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China
| | - Li Xin Hou
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Min Zuo
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Miao Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Feihe Huang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China.,Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
26
|
Xu S, Zhang H, Li Q, Liu H, Ji X. AIEgen-Enabled Multicolor Visualization for the Formation of Supramolecular Polymer Networks. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227881. [PMID: 36431981 PMCID: PMC9695632 DOI: 10.3390/molecules27227881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Extensive reports on the use of supramolecular polymer networks (SPNs) in self-healing materials, controlled release system and degradable products have led more researchers to tap their potential owing to the unique properties. Yet, the attendant efforts in the visualization through conventional luminescence methods during the formation of SPNs have been met with limited success. Herein, we designed a special type of SPNs prepared by PPMU polymer chains containing pyrene benzohydrazonate (PBHZ) molecules as AIEgens for the multicolor visualization with naked eyes. The complete detection of the formation process of the networks relied on the PBHZ molecules with aggregation-induced ratiometric emission (AIRE) effect, which enabled the fluorescence of the polymer networks transits from blue to cyan, and then to green with the increasing crosslinking degree derived from the hydrogen bonds between 2-ureido-4-pyrimidone (UPy) units of the polymer chains. Additionally, we certificated the stimuli-responsiveness of the obtained SPNs, and the fluorescence change, as well as observing the morphology transition. The AIEgen-enabled multicolor visualization of the formation of SPNs may provide better understanding of the details of the crosslinking interactions in the microstructural evolution, giving more inspiration for the multifunctional products based on SPNs.
Collapse
|
27
|
Rojas-Poblete M, Rodríguez-Kessler PL, Guajardo-Maturana R, Olea Ulloa C, Muñoz-Castro A. Nature and Role of Formal Charge of the ion Inclusion in Hexanuclear Platinium(II) Host-Guest Species. Insights from Relativistic DFT Calculations. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Zhu W, Xing H, Li E, Zhu H, Huang F. Room-Temperature Phosphorescence in the Amorphous State Enhanced by Copolymerization and Host–Guest Complexation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weijie Zhu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Hao Xing
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Errui Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Huangtianzhi Zhu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, People’s Republic of China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| |
Collapse
|
29
|
Zhao S, Chen L, Yang Y, Liu X. Research progress of phosphorescent probe for biological imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
30
|
Dai X, Hu Y, Sun Y, Huo M, Dong X, Liu Y. A Highly Efficient Phosphorescence/Fluorescence Supramolecular Switch Based on a Bromoisoquinoline Cascaded Assembly in Aqueous Solution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200524. [PMID: 35285166 PMCID: PMC9108601 DOI: 10.1002/advs.202200524] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Indexed: 05/07/2023]
Abstract
Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room-temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP-fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6-bromoisoquinoline derivative (G3 ), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3 . This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light-driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP-fluorescence photoswitching property accompanied by multicolor tunable long-lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light-responsive RTP materials in aqueous environments.
Collapse
Affiliation(s)
- Xian‐Yin Dai
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
| | - Yu‐Yang Hu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
| | - Yonghui Sun
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
| | - Man Huo
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
| | - Xiaoyun Dong
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
| | - Yu Liu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
| |
Collapse
|
31
|
Liu J, Zhang H, Hu L, Wang J, Lam JWY, Blancafort L, Tang BZ. Through-Space Interaction of Tetraphenylethylene: What, Where, and How. J Am Chem Soc 2022; 144:7901-7910. [PMID: 35443776 DOI: 10.1021/jacs.2c02381] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electronic conjugation through covalent bonds is generally considered as the basis for the electronic transition of organic luminescent materials. Tetraphenylethylene (TPE), an efficient fluorophore with aggregation-induced emission character, fluoresces blue emission in the aggregate state, and such photoluminescence is always ascribed to the through-bond conjugation (TBC) among the four phenyl rings and the central C═C bond. However, in this work, systematic spectroscopic studies and DFT theoretical simulation reveal that the intramolecular through-space interaction (TSI) between two vicinal phenyl rings generates the bright blue emission in TPE but not the TBC effect. Furthermore, the evaluation of excited-state decay dynamics suggests the significance of photoinduced isomerization in the nonradiative decay of TPE in the solution state. More importantly, different from the traditional qualitative description for TSI, the quantitative elucidation of the TSI is realized through the atoms-in-molecules analysis; meanwhile, a theoretical solid-state model for TPE and other multirotor systems for studying the electronic configuration is preliminarily established. The mechanistic model of TSI delineated in this work provides a new strategy to design luminescent materials beyond the traditional theory of TBC and expands the quantum understanding of molecular behavior to the aggregate level.
Collapse
Affiliation(s)
- Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Lianrui Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Jun Wang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Lluís Blancafort
- Institut de Quimica Computacional i Catalisi (IQCC) i Departament de Quimica, Facultat de Ciencies, Universitat de Girona, C/M. A. Capmany 69, Girona 17003, Spain
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China.,School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen 518172, China
| |
Collapse
|
32
|
Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan-Based Host-Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022; 61:e202117872. [PMID: 35146858 DOI: 10.1002/anie.202117872] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 02/06/2023]
Abstract
A supramolecular strategy to construct thermally activated delayed fluorescence (TADF) materials through host-guest charge transfer interactions was proposed. Consequently, a new class of macrocycle namely calix[3]acridan was conveniently synthesized in 90 % yield. The host-guest cocrystal formed by calix[3]acridan and 1,2-dicyanobenzene exhibited efficient TADF properties due to intense intermolecular charge transfer interactions. Moreover, the spatially separated highest occupied molecular orbital and lowest unoccupied molecular orbital resulted in a very small singlet-triplet energy gap of 0.014 eV and hence guaranteed an efficient reverse intersystem crossing for TADF. Especially, a high photoluminescence quantum yield of 70 % was achieved, and it represents the highest value among the reported intermolecular donor-acceptor TADF materials.
Collapse
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da-Wei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan‐Based Host−Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- He-Ye Zhou
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Da-Wei Zhang
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Meng Li
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Chuan-Feng Chen
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function Zhongguancun North First Street 2 100190 Beijing CHINA
| |
Collapse
|
34
|
Xu W, Chen Y, Lu Y, Qin Y, Zhang H, Xu X, Liu Y. Tunable Second‐Level Room‐Temperature Phosphorescence of Solid Supramolecules between Acrylamide–Phenylpyridium Copolymers and Cucurbit[7]uril. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wen‐Wen Xu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yong Chen
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yi‐Lin Lu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yue‐Xiu Qin
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Hui Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Xiufang Xu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
35
|
Li X, Wang G, Li J, Sun Y, Deng X, Zhang K. Intense Organic Afterglow Enabled by Molecular Engineering in Dopant-Matrix Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1587-1600. [PMID: 34963292 DOI: 10.1021/acsami.1c20331] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report intense dopant-matrix afterglow systems with an afterglow efficiency (ΦAG) of 47% and an afterglow lifetime (τAG) of 1.3 s. Luminescent difluoroboron β-diketonate (BF2bdk) dopants and their deuterated counterparts are designed with naphthalene and carboxylic acid groups. After doping into benzoic acid (BA) matrices, room-temperature afterglow brightness and afterglow duration of the BF2bdk-BA materials have unexpectedly been found to reach the levels of those at 77 K, which indicates that hydrogen bonding between BF2bdk and BA, as well as the deuteration technique, can reduce knr + kq of BF2bdk triplets to very small values even at room temperature. Detailed studies reveal that the BF2bdk possesses typical 1ICT characters in the S1 state and distinct 3LE composition in the T1 state, and thus shows a high ΦISC and a small kP to obtain a high ΦAG and a long τAG. Besides, triplet-triplet annihilation has been found in the dopant-matrix system at high doping concentrations to further increase ΦAG.
Collapse
Affiliation(s)
- Xun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Guangming Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Jiuyang Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Yan Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xinjian Deng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Kaka Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
36
|
Yan X, Peng H, Xiang Y, Wang J, Yu L, Tao Y, Li H, Huang W, Chen R. Recent Advances on Host-Guest Material Systems toward Organic Room Temperature Phosphorescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104073. [PMID: 34725921 DOI: 10.1002/smll.202104073] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/15/2021] [Indexed: 06/13/2023]
Abstract
The design and characterization of purely organic room-temperature phosphorescent (RTP) materials for optoelectronic applications is currently the focus of research in the field of organic electronics. Particularly, with the merits of preparation controllability and modulation flexibility, host-guest material systems are encouraging candidates that can prepare high-performance RTP materials. By regulating the interaction between host and guest molecules, it can effectively control the quantum efficiency, luminescent lifetime, and color of host-guest RTP materials, and even produce RTP emission with stimuli-responsive features, holding tremendous potential in diverse applications such as encryption and anti-counterfeiting, organic light-emitting diodes, sensing, optical recording, etc. Here a roundup of rapid achievement in construction strategies, molecule systems, and diversity of applications of host-guest material systems is outlined. Intrinsic correlations between the molecular properties and a survey of recent significant advances in the development of host-guest RTP materials divided into three systems including rigid matrix, exciplex, and sensitization are presented. Providing an insightful understanding of host-guest RTP materials and offering a promising platform for high throughput screening of RTP systems with inherent advantages of simple material preparation, low-cost, versatile resource, and controllably modulated properties for a wide range of applications is intended.
Collapse
Affiliation(s)
- Xi Yan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Hao Peng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Xiang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Juan Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lan Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ye Tao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Huanhuan Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
37
|
Huo M, Dai XY, Liu Y. Uncommon Supramolecular Phosphorescence-Capturing Assembly Based on Cucurbit[8]uril-Mediated Molecular Folding for Near-Infrared Lysosome Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104514. [PMID: 34741495 DOI: 10.1002/smll.202104514] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The construction of highly effective phosphorescence energy transfer capturing system still remains great challenge in aqueous phase. Herein, a high-efficiency supramolecular purely organic room temperature phosphorescence (RTP)-capturing system via a secondary assembly strategy by taking advantage of cucurbit[8]uril (CB[8]) and amphiphilic calixarene (SC4AH) is reported. Comparing with free bromonaphthalene-connected methoxyphenyl pyridinium salt (G), G⊂CB[8] exhibits an emerging RTP emission peak at 530 nm. Moreover, G⊂CB[8] further interacts with SC4AH to form the ternary assembly G⊂CB[8] @ SC4AH accompanied by remarkably enhanced RTP emission. Interestingly, RTP-capturing systems with delayed near-infrared (NIR) emissive performance (635, 675 nm) are feasibly acquired by introducing Nile Red (NiR) or Nile Blue (NiB) as the acceptor into hydrophobic layer of G⊂CB[8] @ SC4AH, possessing ultrahigh antenna effects (352.9, 123.5) at a high donor/acceptor ratio (150:1, 300:1). More importantly, cell experiments indicate that G⊂CB[8] @ SC4AH/NiB not only hold low cytotoxicity but also can successfully realize NIR lysosome-targeted imaging of A549 cancer cells. This RTP-capturing system of delayed NIR emission via multistage assembly strategy offers a new approach for NIR imaging in living cells.
Collapse
Affiliation(s)
- Man Huo
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xian-Yin Dai
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
38
|
Huo M, Dai X, Liu Y. Ultrahigh Supramolecular Cascaded Room‐Temperature Phosphorescence Capturing System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Man Huo
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Xian‐Yin Dai
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
39
|
Sun S, Fan Y, Ma L, Han Y, Ma X. Local Constraints on Junctions to Strengthen Near-Infrared Phosphorescence of Organic Dyes. J Phys Chem Lett 2021; 12:11919-11925. [PMID: 34878790 DOI: 10.1021/acs.jpclett.1c03396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A strategy involving the effect of the local constraint on junctions for doping-induced phosphorescence was proposed to increase the rigidity of hydrogen-bonded polymer to inhibit the nonradiative decay of the organic phosphorescent dyes and was verified by bromophenol blue (BPB) derivatives as the near-infrared (NIR) phosphorescent dye. It is shown that the effect of local constraints on junctions of β-cyclodextrin in the poly(vinyl alcohol) (PVA-LCPN) matrix can effectively improve the quantum yields of NIR phosphorescence of BPB derivatives. On the basis of the verification and optimization of the system through response surface analysis, the quantum yield of TBPB@PVA-LCPN film based on NIR emission could be increased up to 77% compared with that of TBPB@PVA, reaching 5.3%, and the quantum yield in the NIR region could be improved to 3.6%. The results of response surface analysis are consistent with the phenomenon of our proposed strategy, which can inspire the production of organic materials with NIR RTP emission. Together, this could inform efficient and cheap strategies for increasing the quantum yield of the doping RTP materials.
Collapse
Affiliation(s)
- Siyu Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Yucong Fan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Liangwei Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - You Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| |
Collapse
|
40
|
Xu WW, Chen Y, Lu YL, Qin YX, Zhang H, Xu X, Liu Y. Tunable Second-Level Room-Temperature Phosphorescence of Solid Supramolecules between Acrylamide-Phenylpyridium Copolymers and Cucurbit[7]uril. Angew Chem Int Ed Engl 2021; 61:e202115265. [PMID: 34874598 DOI: 10.1002/anie.202115265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 12/30/2022]
Abstract
A series of solid supramolecules based on acrylamide-phenylpyridium copolymers with various substituent groups (P-R: R=-CN, -CO2 Et, -Me, -CF3 ) and cucurbit[7]uril (CB[7]) are constructed to exhibit tunable second-level (from 0.9 s to 2.2 s) room-temperature phosphorescence (RTP) in the amorphous state. Compared with other solid supramolecules P-R/CB[7] (R=-CN, -CO2 Et, -Me), P-CF3 /CB[7] displays the longest lifetime (2.2 s), which is probably attributed to the fluorophilic interaction of cucurbiturils leading to a uncommon host-guest interaction between 4-phenylpyridium with -CF3 and CB[7]. Furthermore, the RTP solid supramolecular assembly (donors) can further react with organic dyes Eosin Y or SR101 (acceptors) to form ternary supramolecular systems featuring ultralong phosphorescence energy transfer (PpET) and visible delayed fluorescence (yellow for EY at 568 nm and red for SR101 at 620 nm). Significantly, the ultralong multicolor PpET supramolecular assembly can be further applied in fields of anti-counterfeiting and information encryption and painting.
Collapse
Affiliation(s)
- Wen-Wen Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi-Lin Lu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yue-Xiu Qin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hui Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
41
|
Liu J, Wang G, Wang X, Sun Y, Zhou B, Zou Y, Wang B, Zhang K. Manipulation of Organic Afterglow by Thermodynamic and Kinetic Control. Chemistry 2021; 27:16735-16743. [PMID: 34643972 DOI: 10.1002/chem.202103020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 11/07/2022]
Abstract
The fabrication of room-temperature organic phosphorescence and afterglow materials, as well as the transformation of their photophysical properties, has emerged as an important topic in the research field of luminescent materials. Here, we report the establishment of energy landscapes in dopant-matrix organic afterglow systems where the aggregation states of luminescent dopants can be controlled by doping concentrations in the matrices and the methods of preparing the materials. Through manipulation by thermodynamic and kinetic control, dopant-matrix afterglow materials with different aggregation states and diverse afterglow properties can be obtained. The conversion from metastable aggregation state to thermodynamic stable aggregation state of the dopant-matrix afterglow materials to leads to the emergence of intriguing afterglow transformation behavior triggered by thermal and solvent annealing. The thermodynamically unfavorable reversible afterglow transformation process can also be achieved by coupling the dopant-matrix afterglow system to mechanical forces.
Collapse
Affiliation(s)
- Jiahui Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China.,Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic, Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Guangming Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic, Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Xuepu Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic, Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yan Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic, Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Bei Zhou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic, Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yunlong Zou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic, Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Biaobing Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Kaka Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic, Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
42
|
Huo M, Dai XY, Liu Y. Ultrahigh Supramolecular Cascaded Room-Temperature Phosphorescence Capturing System. Angew Chem Int Ed Engl 2021; 60:27171-27177. [PMID: 34704341 DOI: 10.1002/anie.202113577] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 11/06/2022]
Abstract
An ultrahigh supramolecular cascaded phosphorescence-capturing aggregate was constructed by multivalent co-assembly of cucurbit[7]uril (CB[7]) and amphipathic sulfonatocalix[4]arene (SC4AD). The initial dibromophthalimide derivative (G) generated a weak phosphorescent emission at 505 nm by host-guest interaction with CB[7], which further assembled with SC4AD to form homogeneously spherical nanoparticles with a dramatic enhancement of both phosphorescence lifetime to 1.13 ms and emission intensity by 40-fold. Notably, this G⊂CB[7]@SC4AD aggregate exhibited efficient phosphorescence energy transfer to Rhodamine B (RhB) and benzothiadiazole (DBT) with high efficiency (ϕET ) of 84.4 % and 76.3 % and an antenna effect (AE) of 289.4 and 119.5, respectively, and then each of these can function as a bridge to further transfer their energy to second near-IR acceptors Cy5 or Nile blue (NiB) to achieve cascaded phosphorescence energy transfer. The final aggregate with long-range effect from 425 nm to 800 nm and long-lived photoluminescence was further employed as an imaging agent for multicolour cell labeling.
Collapse
Affiliation(s)
- Man Huo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
43
|
Zhou J, Yang T, Peng B, Shan B, Ding M, Zhang K. Structural Water Molecules Confined in Soft and Hard Nanocavities as Bright Color Emitters. ACS PHYSICAL CHEMISTRY AU 2021; 2:47-58. [PMID: 36855578 PMCID: PMC9718307 DOI: 10.1021/acsphyschemau.1c00020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecules confined in the nanocavity and nanointerface exhibit rich, unique physicochemical properties, e.g., the chromophore in the β-barrel can of green fluorescent protein (GFP) exhibits tunable bright colors. However, the physical origin of their photoluminescence (PL) emission remains elusive. To mimic the microenvironment of the GFP protein scaffold at the molecule level, two groups of nanocavities were created by molecule self-assembly using organic chromophores and by organic functionalization of mesoporous silica, respectively. We provide strong evidence that structural water molecules confined in these nanocavities are color emitters with a universal formula of {X+·(OH-·H2O)·(H2O) n-1}, in which X is hydrated protons (H3O+) or protonated amino (NH3 +) groups as an anchoring point, and that the efficiency of PL is strongly dependent on the stability of the main emitter centers of the structural hydrated hydroxide complex (OH-·H2O), which is a key intermediate to mediate electron transfer dominated by proton transfer at confined nanospace. Further controlled experiments and combined characterizations by time-resolved steady-state and ultrafast transient optical spectroscopy unveil an unusual multichannel radiative and/or nonradiative mechanism dominated by quantum transient states with a distinctive character of topological excitation. The finding of this work underscores the pivotal role of structurally bound H2O in regulating the PL efficiency of aggregation-induced emission luminogens and GFP.
Collapse
Affiliation(s)
- Jiafeng Zhou
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Taiqun Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bo Peng
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bingqian Shan
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng Ding
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kun Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China,Laboratoire
de chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie
de Lyon, Université de Lyon, 46 Allée d’italie, 69364 Lyon cedex 07, France,Shandong
Provincial Key Laboratory of Chemical Energy Storage and Novel Cell
Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong, P. R. China,
| |
Collapse
|
44
|
Zhang J, He B, Hu Y, Alam P, Zhang H, Lam JWY, Tang BZ. Stimuli-Responsive AIEgens. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008071. [PMID: 34137087 DOI: 10.1002/adma.202008071] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The unique advantages and the exciting application prospects of AIEgens have triggered booming developments in this area in recent years. Among them, stimuli-responsive AIEgens have received particular attention and impressive progress, and they have been demonstrated to show tremendous potential in many fields from physical chemistry to materials science and to biology and medicine. Here, the recent achievements of stimuli-responsive AIEgens in terms of seven most representative types of stimuli including force, light, polarity, temperature, electricity, ion, and pH, are summarized. Based on typical examples, it is illustrated how each type of systems realize the desired stimuli-responsive performance for various applications. The key work principles behind them are ultimately deciphered and figured out to offer new insights and guidelines for the design and engineering of the next-generation stimuli-responsive luminescent materials for more broad applications.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Benzhao He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Yubing Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Parvej Alam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Xihu District, Hangzhou, 310027, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Xihu District, Hangzhou, 310027, China
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Guangzhou, 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| |
Collapse
|
45
|
Wang X, Sun Y, Wang G, Li J, Li X, Zhang K. TADF-Type Organic Afterglow. Angew Chem Int Ed Engl 2021; 60:17138-17147. [PMID: 34060200 DOI: 10.1002/anie.202105628] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/29/2021] [Indexed: 11/05/2022]
Abstract
We report a highly efficient dopant-matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60-70 %, which features a moderate rate constant for reverse intersystem crossing (kRISC ) to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. Difluoroboron β-diketonate (BF2 bdk) compounds are designed with multiple electron-donating groups to possess moderate kRISC values and are selected as luminescent dopants. The matrices with carbonyl functional groups such as phenyl benzoate (PhB) have been found to interact with and perturb BF2 bdk excited states by dipole-dipole interactions and thus enhance the intersystem crossing of BF2 bdk excited states. Through dopant-matrix collaboration, the efficient TADF-type afterglow materials have been achieved to exhibit excellent processability into desired shapes and large-area films by melt casting, as well as aqueous afterglow dispersions for potential bioimaging applications.
Collapse
Affiliation(s)
- Xuepu Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yan Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Guangming Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Jiuyang Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Xun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Kaka Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
46
|
Liu Y, Zhang Q, Crespi S, Chen S, Zhang X, Xu T, Ma C, Zhou S, Shi Z, Tian H, Feringa BL, Qu D. Motorized Macrocycle: A Photo‐responsive Host with Switchable and Stereoselective Guest Recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Stefano Crespi
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Shaoyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Xiu‐Kang Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Tian‐Yi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chang‐Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shang‐Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
47
|
Liu Y, Zhang Q, Crespi S, Chen S, Zhang X, Xu T, Ma C, Zhou S, Shi Z, Tian H, Feringa BL, Qu D. Motorized Macrocycle: A Photo-responsive Host with Switchable and Stereoselective Guest Recognition. Angew Chem Int Ed Engl 2021; 60:16129-16138. [PMID: 33955650 PMCID: PMC8361693 DOI: 10.1002/anie.202104285] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Designing photo-responsive host-guest systems can provide versatile supramolecular tools for constructing smart systems and materials. We designed photo-responsive macrocyclic hosts, modulated by light-driven molecular rotary motors enabling switchable chiral guest recognition. The intramolecular cyclization of the two arms of a first-generation molecular motor with flexible oligoethylene glycol chains of different lengths resulted in crown-ether-like macrocycles with intrinsic motor function. The octaethylene glycol linkage enables the successful unidirectional rotation of molecular motors, simultaneously allowing the 1:1 host-guest interaction with ammonium salt guests. The binding affinity and stereoselectivity of the motorized macrocycle can be reversibly modulated, owing to the multi-state light-driven switching of geometry and helicity of the molecular motors. This approach provides an attractive strategy to construct stimuli-responsive host-guest systems and dynamic materials.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Stefano Crespi
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Shaoyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Xiu‐Kang Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Tian‐Yi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Chang‐Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Shang‐Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
48
|
Xu L, Liang X, Zhong S, Gao Y, Cui X. Seeking brightness from nature: Sustainable AIE macromolecule with clustering-triggered emission of xanthan gum and its multiple applications. Colloids Surf B Biointerfaces 2021; 206:111961. [PMID: 34224933 DOI: 10.1016/j.colsurfb.2021.111961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Unconventional biomacromolecule luminescent agents have attracted widespread attention due to the potential applications in diverse fields. In order to explore new luminescent agents and gain a comprehensive understanding of their emission mechanism, the emission behavior of xanthan gum was investigated. Xanthan gum shown obvious aggregation-induced emission (AIE) characteristics in concentration solution. Moreover, xanthan gum has shown potential values in intracellular imaging and can be used as a biosensor for detecting Fe3+ and Cu2+ in human serum.
Collapse
Affiliation(s)
- Lifeng Xu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Liang
- College of Life Sciences, Jilin University, Changchun, 130012, China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun, 130012, China; Weihai Institute for Bionics-Jilin University, Weihai, 264400, China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun, 130012, China; Weihai Institute for Bionics-Jilin University, Weihai, 264400, China.
| |
Collapse
|
49
|
|
50
|
Zheng H, Wang Y, Cao P, Wu P. Color-tunable ultralong room temperature phosphorescence from EDTA. Chem Commun (Camb) 2021; 57:3575-3578. [PMID: 33709093 DOI: 10.1039/d1cc00207d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Unexpected color-tunable ultralong room-temperature phosphorescence (RTP, τ∼0.5 s) was observed from EDTA (and also EDTA salts, chelates, and structural analogues). Through both experimental and theoretical investigations, the through-space conjugation of the lone pair n electrons of N/O atoms in EDTA was identified as the origin of RTP. The results here will be important for further developing phosphors with ultralong emission lifetime.
Collapse
Affiliation(s)
- Haoyue Zheng
- State Key Laboratory of Hydraulics and Mountain River Engineering, Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| | | | | | | |
Collapse
|