1
|
Chen F, Cao Z, Zhu C. Intramolecularly remote functional group migration reactions involving free radicals. Chem Commun (Camb) 2024; 60:14912-14923. [PMID: 39601626 DOI: 10.1039/d4cc05739b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The application of rearrangement reactions offers opportunities for the efficient construction of complex molecules that are challenging to obtain through conventional synthetic methods. However, the development of radical-mediated rearrangements has lagged far behind that of ionic-type rearrangements, due to the uncontrollability of radical species. Along with the recent renaissance in radical chemistry, radical-mediated functional group migration (FGM) reactions provide a versatile platform for the selective incorporation of functional groups across different molecular distances, enabling the construction of intricate molecular architectures. In the past few years, FGM reactions have showcased plentiful reaction modes, rendering precious control in terms of chemo- and regio-selectivities. This feature article summarizes our achievements in radical-mediated FGM reactions, wherein brief discussion of related works from other laboratories is also included. In this feature article, we aim to provide a comprehensive understanding of the progress in this emerging area.
Collapse
Affiliation(s)
- Fushan Chen
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Zhu Cao
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Chen Zhu
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Figueroa LPR, de Carvalho RL, Almeida RG, Paz ERS, Diogo EBT, Araujo MH, Borges WS, Ramos VFS, Menna-Barreto RFS, Wood JM, Bower JF, da Silva Júnior EN. Generation and capture of naphthoquinonynes: a new frontier in the development of trypanocidal quinones via aryne chemistry. RSC Med Chem 2024:d4md00558a. [PMID: 39512946 PMCID: PMC11539365 DOI: 10.1039/d4md00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/22/2024] [Indexed: 11/15/2024] Open
Abstract
The regioselective synthesis of functionalized naphthoquinones via the formation and capture of naphthoquinonynes has been used to prepare trypanocidal compounds. The target compounds are functionalized on the aromatic ring, leaving the quinoidal ring intact. Using this technique, eighteen functionalized naphthoquinones were succesfull obtained, divided in two main groups: the first scope using N-nucleophiles, and the second scope using pyridine N-oxides, with yields up to 74%. Evaluation against bloodstream trypomastigotes of T. cruzi has identified fourteen compounds that are more potent than benznidazole (Bz); for instance, compounds 29b-I and 30b, with IC50/24 h values of 10.5 and 10.1 μM, respectively, are approximately 10-fold more active than Bz. This study provides the first examples of the application of naphthoquinonyne chemistry for the synthesis of new compounds with potent trypanocidal activities.
Collapse
Affiliation(s)
- Laura P R Figueroa
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
- Center of Exact Sciences, Department of Chemistry, Universidade Federal do Espírito Santo CEP 29075-910 Vitória ES Brazil
| | - Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| | - Renata G Almeida
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| | - Esther R S Paz
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| | - Emilay B T Diogo
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| | - Maria H Araujo
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| | - Warley S Borges
- Center of Exact Sciences, Department of Chemistry, Universidade Federal do Espírito Santo CEP 29075-910 Vitória ES Brazil
| | - Victor F S Ramos
- Laboratory of Cellular Biology, IOC, FIOCRUZ Rio de Janeiro RJ 21045-900 Brazil
| | | | - James M Wood
- The Ferrier Research Institute, Victoria University of Wellington Wellington 6012 New Zealand
| | - John F Bower
- University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Universidade Federal de Minas Gerais CEP 31270-901 Belo Horizonte MG Brazil
| |
Collapse
|
3
|
Choi W, Kim L, Hong S. Unraveling the Potential of Vinyl Ether as an Ethylene Surrogate in Heteroarene C─H Functionalization via the Spin-Center Shift. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309800. [PMID: 38477022 PMCID: PMC11109664 DOI: 10.1002/advs.202309800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Despite the simplicity and abundance of ethylene, its practical application presents significant hurdles due to its nature as a highly flammable gas. Herein, a strategic use of easily handled vinyl ether is reported as a latent ethylene surrogate achieved via a spin-center shift (SCS) pathway, enabling the successful three-component reaction that bridges heteroarenes and various coupling partners, including sulfinates, thiols, and phosphine oxides. Through a photoredox catalytic process, α-oxy radicals are generated by combining various radicals with phenyl vinyl ether, which are subsequently added to N-heteroarenes. Subsequently, the radical-mediated SCS pathway serves as the driving force for C─O bond cleavage, effectively engaging the phenoxy group as a leaving group. In addition, by broadening the utility of the method, a valuable synthon is provided for efficient C─H vinylation of N-heteroarenes following sulfonyl group elimination. This approach not only enriches the toolbox of synthetic methodology but also provides a more streamlined alternative, circumventing the challenges associated with direct ethylene gas usage. The versatility of the method, particularly evident in late-stage functionalizations of medicinally relevant molecules and peptides, underscores its capability to produce invaluable three-component compounds and vinylated N-heteroarene derivatives.
Collapse
Affiliation(s)
- Wonjun Choi
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon34141Republic of Korea
| | - Leejae Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon34141Republic of Korea
| | - Sungwoo Hong
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon34141Republic of Korea
| |
Collapse
|
4
|
Ma Z, Wu X, Zhu C. Merging Fluorine Incorporation and Functional Group Migration. CHEM REC 2023; 23:e202200221. [PMID: 36367274 DOI: 10.1002/tcr.202200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Indexed: 11/13/2022]
Abstract
Fluorine incorporation by concomitant fluoroalkyl radical addition to alkene or alkyne and functional group migration (FGM) represents an ingenious and robust strategy for the synthesis of structurally diverse fluorinated compounds. This account gives an overview of related studies in our group, in which three main reaction modes are discussed: 1) radical fluoroalkylative difunctionalization of unactivated alkenes via intramolecular FGM; 2) alkene difunctionalization by docking-migration process using fluoroalkyl-containing bifunctional reagents; 3) incorporation of fluoroalkyl group into C(sp3 )-H bond via consecutive hydrogen atom transfer (HAT) and FGM. Relying on these methods, a variety of trifluoromethylation and di-/mono-fluoroalkylation reactions along with the migration of cyano, heteroaryl, oximino, formyl, alkynyl, and alkenyl groups have been accomplished under mild conditions.
Collapse
Affiliation(s)
- Zhigang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiangsu, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiangsu, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiangsu, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
5
|
Abstract
Azines, such as pyridines, quinolines, pyrimidines, and pyridazines, are widespread components of pharmaceuticals. Their occurrence derives from a suite of physiochemical properties that match key criteria in drug design and is tunable by varying their substituents. Developments in synthetic chemistry, therefore, directly impact these efforts, and methods that can install various groups from azine C-H bonds are particularly valuable. Furthermore, there is a growing interest in late-stage functionalization (LSF) reactions that focus on advanced candidate compounds that are often complex structures with multiple heterocycles, functional groups, and reactive sites. Because of factors such as their electron-deficient nature and the effects of the Lewis basic N atom, azine C-H functionalization reactions are often distinct from their arene counterparts, and the application of these reactions in LSF contexts is difficult. However, there have been many significant advances in azine LSF reactions, and this review will describe this progress, much of which has occurred over the past decade. It is possible to categorize these reactions as radical addition processes, metal-catalyzed C-H activation reactions, and transformations occurring via dearomatized intermediates. Substantial variation in reaction design within each category indicates both the rich reactivity of these heterocycles and the creativity of the approaches involved.
Collapse
Affiliation(s)
- Celena M Josephitis
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Hillary M H Nguyen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
6
|
Zhang W, Chen Z, Jiang YX, Liao LL, Wang W, Ye JH, Yu DG. Arylcarboxylation of unactivated alkenes with CO 2 via visible-light photoredox catalysis. Nat Commun 2023; 14:3529. [PMID: 37316537 DOI: 10.1038/s41467-023-39240-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Photocatalytic carboxylation of alkenes with CO2 is a promising and sustainable strategy to synthesize high value-added carboxylic acids. However, it is challenging and rarely investigated for unactivated alkenes due to their low reactivities. Herein, we report a visible-light photoredox-catalyzed arylcarboxylation of unactivated alkenes with CO2, delivering a variety of tetrahydronaphthalen-1-ylacetic acids, indan-1-ylacetic acids, indolin-3-ylacetic acids, chroman-4-ylacetic acids and thiochroman-4-ylacetic acids in moderate-to-good yields. This reaction features high chemo- and regio-selectivities, mild reaction conditions (1 atm, room temperature), broad substrate scope, good functional group compatibility, easy scalability and facile derivatization of products. Mechanistic studies indicate that in situ generation of carbon dioxide radical anion and following radical addition to unactivated alkenes might be involved in the process.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuan-Xu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Li-Li Liao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, P. R. China
| | - Wei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| |
Collapse
|
7
|
Shen J, Li L, Xu J, Shen C, Zhang P. Recent advances in the application of Langlois' reagent in olefin difunctionalization. Org Biomol Chem 2023; 21:2046-2058. [PMID: 36448510 DOI: 10.1039/d2ob01875f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this review, we summarise the recent applications of Langlois' reagent in the radical-mediated difunctionalization of alkenes. Among the various trifluoromethylation reagents, Langlois' reagent is an exceptional compound, and many important organic transformations have been realized by employing such reagents. Various organic transformations of Langlois' reagent, especially in radical chemistry, have been developed in recent years. This review describes several key activation methods for Langlois' reagent in the difunctionalization of alkenes by showcasing selected cornerstone research areas and related mechanisms to stimulate the interest of readers in promoting the wider development and application of Langlois' reagent.
Collapse
Affiliation(s)
- Jiabin Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. .,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Lin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
8
|
Zhang Z, Wang J, Yu M, Ye S, Wu J. Construction of β-Amino Sulfones from Sodium Metabisulfite via a Radical 1,4-Amino Migration. Org Lett 2023; 25:304-308. [PMID: 36583507 DOI: 10.1021/acs.orglett.2c04291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A three-component reaction of alkenyl-tethered oxime ethers, sodium metabisulfite, and aryldiazonium tetrafluoroborates under mild conditions is developed. This reaction proceeds at room temperature without any oxidants or additives, affording β-amino sulfones with good functional group tolerance through aminosulfonylation of unactivated alkene. Mechanistic studies show that this transformation undergoes a radical process, including radical trapping with sulfur dioxide and radical 1,4-amino migration.
Collapse
Affiliation(s)
- Ziqi Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jianyan Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Mengxia Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Shengqing Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
9
|
Kim M, Hong S, Jeong J, Hong S. Visible-Light-Active Coumarin- and Quinolinone-Based Photocatalysts and Their Applications in Chemical Transformations. CHEM REC 2023:e202200267. [PMID: 36627191 DOI: 10.1002/tcr.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Organic dyes have been actively studied as useful photocatalysts because they allow access to versatile structural flexibility and green synthetic applications. The identification of a new class of robust organic chromophores is, therefore, in high demand to increase structural diversity and variability. Although coumarins and quinolinones have long been acknowledged as organic chromophores, their ability to participate in photoinduced transformations is somewhat less familiar. Fascinated by their chromophoric features and adaptable platform, our group is interested in the identification of fluorescent bioactive molecules and in the development of new photoinduced synthetic methods using coumarins and quinolinones as photocatalysts. This account provides an overview of our recent progress in the discovery and application of light-absorbing coumarin and quinolinone derivatives in photochemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Myojeong Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seonghyeok Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinwook Jeong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
10
|
Wang C, Song S, Chen Z, Shen D, Wang Z, Zhou J, Guo J, Li J. Phototriggered Self-Catalyzed Three-Component Minisci Reaction: A Route to β-C(sp 3) Heteroarylated Alcohols/Ethers. J Org Chem 2022; 87:16794-16806. [PMID: 36427193 DOI: 10.1021/acs.joc.2c02498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Herein, a visible-light-triggered photocatalyst-free radical cascade Minisci reaction of heteroarenes, alkenes, and water/alcohols to obtain diverse β-C(sp3) heteroarylated alcohols/ethers has been developed. Achieved under mild and simple conditions, this protocol is scalable and features broad substrate scope and functional group tolerance. Mechanistic studies demonstrate that the heteroarene can be served as a photocatalyst to engage single-electron transfer with persulfate.
Collapse
Affiliation(s)
- Chaodong Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shengjie Song
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhi Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dengjian Shen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhenhui Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiadi Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jingjing Guo
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, P. R. China
| | - Jianjun Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Research Institute, Zhejiang University of Technology, Taizhou 318000, P. R. China
| |
Collapse
|
11
|
Zheng P, Liu C, Zeng Q, Zhang Y, Liu Y, He J, Deng Y, Cao S. Fe-catalyzed hydroxytrifluoromethylation of α-(trifluoromethyl)styrenes with CF 3SO 2Na: facile access to α,β-bistrifluoromethyl tertiary alcohols. Org Biomol Chem 2022; 20:9302-9306. [PMID: 36399128 DOI: 10.1039/d2ob02035a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A mild and practical Fe-catalyzed hydroxytrifluoromethylation of α-(trifluoromethyl)styrenes with CF3SO2Na in the presence of K2S2O8 and air was developed. The reaction proceeded efficiently at room temperature without β-fluoride elimination and afforded the corresponding α,β-bistrifluoromethyl tertiary alcohols in good to excellent yields.
Collapse
Affiliation(s)
- Pai Zheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Chuan Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Qianding Zeng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Yi Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Ying Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Jingjing He
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Yupian Deng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
12
|
Ogundipe OO, Shoberu A, Xiao M, Zou JP. Copper-Catalyzed Radical Hydrazono-Phosphorylation of Alkenes. J Org Chem 2022; 87:15820-15829. [PMID: 36374155 DOI: 10.1021/acs.joc.2c01832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An efficient copper-catalyzed radical hydrazono-phosphorylation of alkenes with hydrazine derivatives and diarylphosphine oxides is described. The reaction provides a general and convenient method toward the synthesis of diverse β-hydrazonophosphine oxides in satisfactory yields. Based on conducted mechanistic experiments, a mechanism involving Ag-catalyzed oxidative generation of phosphinoyl radicals and subsequent addition to alkenes followed by Cu-assisted hydrazonation is proposed. Moreover, the practicability of the reaction is successfully demonstrated by its successful application on a gram scale.
Collapse
Affiliation(s)
- Olukayode Olamiji Ogundipe
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Adedamola Shoberu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Mei Xiao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Jian-Ping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| |
Collapse
|
13
|
Wang Z, Chang C, Chen Y, Wu X, Li J, Zhu C. Remote desaturation of hexenenitriles by radical-mediated cyano migration. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Kim M, Koo Y, Hong S. N-Functionalized Pyridinium Salts: A New Chapter for Site-Selective Pyridine C-H Functionalization via Radical-Based Processes under Visible Light Irradiation. Acc Chem Res 2022; 55:3043-3056. [PMID: 36166489 DOI: 10.1021/acs.accounts.2c00530] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The radical-mediated C-H functionalization of pyridines has attracted considerable attention as a powerful tool in synthetic chemistry for the direct functionalization of the C-H bonds of the pyridine scaffold. Classically, the synthetic methods for functionalized pyridines often involve radical-mediated Minisci-type reactions under strongly acidic conditions. However, the site-selective functionalization of pyridines in unbiased systems has been a long-standing challenge because the pyridine scaffold contains multiple competing reaction sites (C2 vs C4) to intercept free radicals. Therefore, prefunctionalization of the pyridine is required to avoid issues observed with the formation of a mixture of regioisomers and overalkylated side products.Recently, N-functionalized pyridinium salts have been attracting considerable attention in organic chemistry as promising radical precursors and pyridine surrogates. The notable advantage of N-functionalized pyridinium salts lies in their ability to enhance the reactivity and selectivity for synthetically useful reactions under acid-free conditions. This approach enables exquisite regiocontrol for nonclassical Minisci-type reactions at the C2 and C4 positions under mild reaction conditions, which are suitable for the late-stage functionalization of bioactive molecules with greater complexity and diversity. Over the past five years, a variety of fascinating synthetic applications have been developed using various types of pyridinium salts under visible light conditions. In addition, a new platform for alkene difunctionalization using appropriately designed N-substituted pyridinium salts as bifunctional reagents has been reported, offering an innovative assembly process for complex organic architectures. Intriguingly, strategies involving light-absorbing electron donor-acceptor (EDA) complexes between pyridinium salts and suitable electron-rich donors further open up new reactivity under photocatalyst-free conditions. Furthermore, we developed enantioselective reactions using pyridinium salts to afford enantioenriched molecules bearing pyridines through single-electron N-heterocyclic carbene (NHC) catalysis.Herein, we provide a broad overview of our recent contributions to the development of N-functionalized pyridinium salts and summarize the cornerstones of organic reactions that successfully employ these pyridinium salts under visible light conditions. The major advances in the field are systematically categorized on the basis of the pyridines' N-substituent, N-X (X = O, N, C, and SO2CF3), and its reactivity patterns. Furthermore, the identification of new activation modes and their mechanistic aspects are discussed by providing representative contributions to each paradigm. We hope that this Account will inspire broad interest in the continued innovation of N-functionalized pyridinium salts in the exploration of new transformations.
Collapse
Affiliation(s)
- Myojeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Yejin Koo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
15
|
Li CK, Tao ZK, Shoberu A, Zhang W, Zou JP. Copper-Catalyzed Cross-Coupling of Alkyl and Phosphorus Radicals for C(sp 3)-P Bond Formation. Org Lett 2022; 24:6083-6087. [PMID: 35950907 DOI: 10.1021/acs.orglett.2c02454] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A CuI-catalyzed cross-coupling of alkyl- and phosphorus-centered radicals for C(sp3)-P bond formation is introduced. Diacyl peroxides, generated in situ from aliphatic acids and H2O2, serve as a source for alkyl radicals and also an initiator for the generation of phosphorus radicals from H-P(O) compounds.
Collapse
Affiliation(s)
- Cheng-Kun Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ze-Kun Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Adedamola Shoberu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Jian-Ping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
16
|
Prabhakar NS, Kumar S, Gupta PK, Singh KN. Visible-Light-Induced Photocatalytic Trifluoromethylation of Bunte Salts: Easy Access to Trifluoromethylthiolated Synthons. J Org Chem 2022; 87:11112-11120. [PMID: 35939799 DOI: 10.1021/acs.joc.2c01353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A metal-free visible-light-induced trifluoromethylation of Bunte salts of α-bromoketones/alkyl bromide/benzyl bromides/functionalized allyl (Baylis-Hillman) bromides has been accomplished using Langlois' reagent in the presence of inexpensive eosin Y as a photocatalyst to form the privileged trifluoromethylthiolated synthons. The method is straightforward, operationally simple, and endowed with broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Neha Sharma Prabhakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Saurabh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prince Kumar Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
17
|
Friedrich M, Manolikakes G. Base‐mediated C4‐selective C‐H‐sulfonylation of pyridine. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marius Friedrich
- University of Kaiserslautern: Technische Universitat Kaiserslautern Chemistry GERMANY
| | - Georg Manolikakes
- TU Kaiserslautern fachbereich Chemie Erwin-schrödinger-Str. Geb 54 67663 Kaiserslautern GERMANY
| |
Collapse
|
18
|
Xie D, Chen H, Wei D, Wei B, Li Z, Zhang J, Yu W, Han B. Regioselective Fluoroalkylphosphorylation of Unactivated Alkenes by Radical‐Mediated Alkoxyphosphine Rearrangement**. Angew Chem Int Ed Engl 2022; 61:e202203398. [DOI: 10.1002/anie.202203398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Dong‐Tai Xie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Hong‐Lei Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Dian Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Bang‐Yi Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Zheng‐Hu Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Jian‐Wu Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| |
Collapse
|
19
|
Nguyen QH, Hwang HS, Cho EJ, Shin S. Energy Transfer Photolysis of N-Enoxybenzotriazoles into Benzotriazolyl and α-Carbonyl Radicals. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Quynh H. Nguyen
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Ho Seong Hwang
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seunghoon Shin
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
20
|
Xie DT, Chen HL, Wei D, Wei BY, Li ZH, Zhang JW, Yu W, Han B. Regioselective Fluoroalkylphosphorylation of Unactivated Alkenes by Radical–Mediated Alkoxyphosphine Rearrangement. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dong-Tai Xie
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Hong-Lei Chen
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Dian Wei
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Bang-Yi Wei
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Zheng-Hu Li
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Jian-Wu Zhang
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Wei Yu
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Bing Han
- Lanzhou University Department of Chemistry 222 South Tianshui Rd. 730000 Lanzhou CHINA
| |
Collapse
|
21
|
He C, Zhang K, Wang DN, Wang M, Niu Y, Duan XH, Liu L. Visible-Light-Induced Alkylarylation of Unactivated Alkenes via Radical Addition/Truce-Smiles Rearrangement Cascade. Org Lett 2022; 24:2767-2771. [PMID: 35377660 DOI: 10.1021/acs.orglett.2c00875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We disclosed a visible-light-induced alkylarylation reaction of unactivated alkenes via a metal-free radical addition/aryl translocation cascade sequence. Distal olefinic sulfonate was designed as a unique molecular scaffold allowing for a domino process to synthesize valuable alkylarylated alcohols in good yields with excellent diastereoselectivity, featuring mild reaction conditions, broad substrate scope, and excellent functional group tolerance. The mechanism investigation suggests that a visible-light-induced radical chain process dominates the cascade transformation.
Collapse
Affiliation(s)
- Chonglong He
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Keyuan Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dan-Ning Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuejie Niu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
22
|
Wang Y, Bao Y, Tang M, Ye Z, Yuan Z, Zhu G. Recent advances in difunctionalization of alkenes using pyridinium salts as radical precursors. Chem Commun (Camb) 2022; 58:3847-3864. [PMID: 35257136 DOI: 10.1039/d2cc00369d] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we summarise the recent applications of pyridinium salts in the radical-mediated difunctionalization of alkenes. Pyridinium salts are a privileged class of compounds that show great utility in natural products and synthetic chemistry. Various organic transformations of pyridinium salts, especially in radical chemistry, have been developed in recent years. We prepared this review based on the two distinguished properties of pyridinium salts in radical transformation: (1) pyridinium salts can easily undergo single electron reduction to deliver X radicals. (2) Pyridinium salts are highly electrophilic so that alkyl radical intermediates can easily add to the pyridine core. Based on the role of pyridinium salts in difunctionalization of alkenes, the main body of this review is divided into three parts: (1) using pyridinium salts as X transfer reagents. (2) Using pyridinium salts as novel pyridine transfer reagents. (3) Using pyridinium salts as bifunctional reagents (X and pyridine). The C2 and C4 selectivity during pyridylation is discussed in detail. We hope that this review will provide a comprehensive overview of this topic and promote the wider development and application of pyridinium salts.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Yanyang Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Meifang Tang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Zhegao Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| |
Collapse
|
23
|
Guo K, Gu C, Li Y, Xie X, Zhang H, Chen K, Zhu Y. Photoredox Catalyzed Trifluoromethyl Radical‐Triggered Trifunctionalization of 5‐Hexenenitriles
via
Cyano Migration. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kang Guo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Chen Gu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Xiaofei Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Honglin Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Kang Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
24
|
Abstract
Radical aryl migrations are powerful techniques to forge new bonds in aromatic compounds. The growing popularity of photoredox catalysis has led to an influx of novel strategies to initiate and control aryl migration starting from widely available radical precursors. This review encapsulates progress in radical aryl migration enabled by photochemical methods─particularly photoredox catalysis─since 2015. Special attention is paid to descriptions of scope, mechanism, and synthetic applications of each method.
Collapse
Affiliation(s)
- Anthony R. Allen
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Efrey A. Noten
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corey R. J. Stephenson
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
25
|
Vellakkaran M, Kim T, Hong S. Visible-Light-Induced C4-Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022; 61:e202113658. [PMID: 34734455 DOI: 10.1002/anie.202113658] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/12/2022]
Abstract
The site-selective C-H functionalization of heteroarenes is of considerable importance for streamlining the rapid modification of bioactive molecules. Herein, we report a general strategy for visible-light-induced β-carbonyl alkylation at the C4 position of pyridines with high site selectivity using various cyclopropanols and N-amidopyridinium salts. In this process, hydrogen-atom transfer between the generated sulfonamidyl radicals and O-H bonds of cyclopropanols generates β-carbonyl radicals, providing efficient access to synthetically valuable β-pyridylated (aryl)ketones, aldehydes, and esters with broad functional-group tolerance. In addition, the mild method serves as an effective tool for the site-selective late-stage functionalization of complex and medicinally relevant molecules.
Collapse
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
26
|
Vellakkaran M, Kim T, Hong S. Visible‐Light‐Induced C4‐Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
27
|
Wu Q, Zhao YH, Lu-Lu C, Li HY, Li HX. Metal-free photocleavage of C(non-acyl)-S bond of thioesters for regioselective pyridylthioesterification of styrenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformation of thioesters via transition-metal-mediated C(acyl)−S bond cleavage is an emerging method to forge C-C and C-heteroatom bonds. Herein, we report the first activation of stronger C(non-acyl)–S bond of thioesters...
Collapse
|
28
|
Lu J, Tong Y, Hao N, Zhang L, Wei J, Zhang Z, Fu Q, Yi D, Wang J, Mu Y, Pan X, Yang L, Wei S, Zhong L. Photocatalytic redox-neutral arylation of cyclopropanols with cyanoarenes via radical-mediated C–C and C–CN bond cleavage. Org Chem Front 2022. [DOI: 10.1039/d1qo01844b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-arylated ketones widely exist in many biologically active molecules and natural products. Herein, we disrcibled a photocatalytic redox-neutral arylation of cyclopropanols with cyanoarenes via radical-mediated C–C and C–CN bond cleavage...
Collapse
|
29
|
Yuan WQ, Liu YT, Ni YQ, Liu YZ, Pan F. Metal-free photocatalytic intermolecular trifluoromethylation- gem-difluoroallylation of unactivated alkenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00764a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient, transition-metal-free, photocatalytic three-component intermolecular trifluoromethylation-gem-difluoroallylation of unactivated alkenes has been achieved.
Collapse
Affiliation(s)
- Wan-Qiang Yuan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Yu-Tao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Yu-Qing Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Yong-Ze Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| |
Collapse
|
30
|
Chang C, Zhang H, Wu X, Zhu C. Radical trifunctionalization of hexenenitrile via remote cyano migration. Chem Commun (Camb) 2021; 58:1005-1008. [PMID: 34940775 DOI: 10.1039/d1cc06687k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel radical-mediated trifunctionalization of hexenenitriles via the strategy of remote functional group migration is disclosed. A portfolio of functionalized hexenenitriles are employed as substrates. After difunctionalization of the unactivated alkenyl part via remote cyano migration, the in situ formed radical intermediate is captured by an azido radical, thus enabling the trifunctionalization. The reaction features mild conditions and broad functional group compatibility, leading to valuable products bearing multiple useful groups. This protocol further extends the scope of remote functional group migration.
Collapse
Affiliation(s)
- Chenyang Chang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Huihui Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China. .,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
31
|
Kweon B, Kim C, Kim S, Hong S. Remote C−H Pyridylation of Hydroxamates through Direct Photoexcitation of
O
‐Aryl Oxime Pyridinium Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Byeongseok Kweon
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Changha Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seonyul Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
32
|
Kweon B, Kim C, Kim S, Hong S. Remote C-H Pyridylation of Hydroxamates through Direct Photoexcitation of O-Aryl Oxime Pyridinium Intermediates. Angew Chem Int Ed Engl 2021; 60:26813-26821. [PMID: 34636478 DOI: 10.1002/anie.202112364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 01/22/2023]
Abstract
Herein, we report an efficient strategy for the remote C-H pyridylation of hydroxamates with excellent ortho-selectivity by designing a new class of photon-absorbing O-aryl oxime pyridinium salts generated in situ from the corresponding pyridines and hydroxamates. When irradiated by visible light, the photoexcitation of oxime pyridinium intermediates generates iminyl radicals via the photolytic N-O bond cleavage, which does not require an external photocatalyst. The efficiency of light absorption and N-O bond cleavage of the oxime pyridinium salts can be modulated through the electronic effect of substitution on the O-aryl ring. The resultant iminyl radicals enable the installation of pyridyl rings at the γ-CN position, which yields synthetically valuable C2-substituted pyridyl derivatives. This novel synthetic approach provides significant advantages in terms of both efficiency and simplicity and exhibits broad functional group tolerance in complex settings under mild and metal-free conditions.
Collapse
Affiliation(s)
- Byeongseok Kweon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Changha Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seonyul Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
33
|
Zhao Y, Wang X, Yao R, Li C, Xu Z, Zhang L, Han G, Hou J, Liu Y, Song Y. Iron‐Catalyzed Alkene Trifluoromethylation in Tandem with Phenol Dearomatizing Spirocyclization: Regioselective Construction of Trifluoromethylated Spirocarbocycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yilin Zhao
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Xue Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Ru Yao
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Chengwen Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Zelin Xu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Liming Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Guifang Han
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Jingli Hou
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Yangping Liu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Yuguang Song
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| |
Collapse
|
34
|
Yang M, Chang X, Ye S, Ding Q, Wu J. Generation of Heteroaryl-Substituted Sulfonyl Compounds from Sulfur Dioxide via Remote Heteroaryl ipso-Migration. J Org Chem 2021; 86:15177-15184. [PMID: 34636243 DOI: 10.1021/acs.joc.1c01778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The generation of heteroaryl-substituted sulfonyl compounds via a catalyst-, base-, and additive-free three-component reaction of heteroaryl-substituted tertiary alcohols, aryldiazonium tetrafluoroborates, and DABCO·(SO2)2 under mild conditions is developed. Various functional groups are tolerated well in this transformation, and a broad substrate scope is demonstrated. A preliminary mechanistic investigation shows that this reaction undergoes a radical process, including the insertion of sulfur dioxide, sulfonyl radical addition to unactivated alkene, and remote heteroaryl ipso-migration.
Collapse
Affiliation(s)
- Man Yang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Xiaotong Chang
- SchooSchool of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Shengqing Ye
- SchooSchool of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Qiuping Ding
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jie Wu
- SchooSchool of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
35
|
Wu X, Ma Z, Feng T, Zhu C. Radical-mediated rearrangements: past, present, and future. Chem Soc Rev 2021; 50:11577-11613. [PMID: 34661216 DOI: 10.1039/d1cs00529d] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rearrangement reactions, one of the most significant transformations in organic chemistry, play an irreplaceable role in improving synthetic efficiency and molecular complexity. Concomitant cleavage and reconstruction of chemical bonds can display the great artistry and the glamour of synthetic chemistry. Over the past century, ionic rearrangement reactions, in particular those involving cationic pathways, have represented most of the research. Alongside the renaissance of radical chemistry, radical-mediated rearrangements have recently seen a rapid increase of attention from the chemical community. Many new radical rearrangements that extensively reveal the migratory behaviour of functional groups have been unveiled in the last decade. This Review provides a comprehensive perspective on the area from the past to present achievements, and brings up the prospects that may inspire colleagues to develop more useful synthetic tools based on radical rearrangements.
Collapse
Affiliation(s)
- Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Zhigang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Tingting Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China. .,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
36
|
Dhungana RK, Sapkota RR, Wickham LM, Niroula D, Shrestha B, Giri R. Ni‐Catalyzed Arylbenzylation of Alkenylarenes: Kinetic Studies Reveal Autocatalysis by ZnX
2
**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Roshan K. Dhungana
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Rishi R. Sapkota
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Laura M. Wickham
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Doleshwar Niroula
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Bijay Shrestha
- Current address: Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Ramesh Giri
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| |
Collapse
|
37
|
Dhungana RK, Sapkota RR, Wickham LM, Niroula D, Shrestha B, Giri R. Ni-Catalyzed Arylbenzylation of Alkenylarenes: Kinetic Studies Reveal Autocatalysis by ZnX 2 *. Angew Chem Int Ed Engl 2021; 60:22977-22982. [PMID: 34427992 PMCID: PMC8490319 DOI: 10.1002/anie.202110459] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 11/08/2022]
Abstract
We report a Ni-catalyzed regioselective arylbenzylation of alkenylarenes with benzyl halides and arylzinc reagents. The reaction furnishes differently substituted 1,1,3-triarylpropyl structures that are reminiscent of the cores of oligoresveratrol natural products. The reaction is also compatible for the coupling of internal alkenes, secondary benzyl halides and variously substituted arylzinc reagents. Kinetic studies reveal that the reaction proceeds with a rate-limiting single-electron-transfer process and is autocatalyzed by in-situ-generated ZnX2 . The reaction rate is amplified by a factor of three through autocatalysis upon addition of ZnX2 .
Collapse
Affiliation(s)
| | | | | | | | | | - Ramesh Giri
- Department of Chemistry Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
38
|
McConnell DL, Blades AM, Rodrigues DG, Keyes PV, Sonberg JC, Anthony CE, Rachad S, Simone OM, Sullivan CF, Shapiro JD, Williams CC, Schafer BC, Glanzer AM, Hutchinson HL, Thayaparan AB, Krevlin ZA, Bote IC, Haffary YA, Bhandari S, Goodman JA, Majireck MM. Synthesis of Bench-Stable N-Quaternized Ketene N, O-Acetals and Preliminary Evaluation as Reagents in Organic Synthesis. J Org Chem 2021; 86:13025-13040. [PMID: 34498466 DOI: 10.1021/acs.joc.1c01764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
N-Quaternized ketene N,O-acetals are typically an unstable, transient class of compounds most commonly observed as reactive intermediates. In this report, we describe a general synthetic approach to a variety of bench-stable N-quaternized ketene N,O-acetals via treatment of pyridine or aniline bases with acetylenic ethers and an appropriate Brønsted or Lewis acid (triflic acid, triflimide, or scandium(III) triflate). The resulting pyridinium and anilinium salts can be used as reagents or synthetic intermediates in multiple reaction types. For example, N-(1-ethoxyvinyl)pyridinium or anilinium salts can thermally release highly reactive O-ethyl ketenium ions for use in acid catalyst-free electrophilic aromatic substitutions. N-(1-Ethoxyvinyl)-2-halopyridinium salts can be employed in peptide couplings as a derivative of Mukaiyama reagents or react with amines in nucleophilic aromatic substitutions under mild conditions. These preliminary reactions illustrate the broad potential of these currently understudied compounds in organic synthesis.
Collapse
Affiliation(s)
- Danielle L McConnell
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Alisha M Blades
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Danielle Gomes Rodrigues
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Phoebe V Keyes
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Justin C Sonberg
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Caitlin E Anthony
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Sofia Rachad
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Olivia M Simone
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Caroline F Sullivan
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Jonathan D Shapiro
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Christopher C Williams
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Benjamin C Schafer
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Amy M Glanzer
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Holly L Hutchinson
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Ashley B Thayaparan
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Zoe A Krevlin
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Isabella C Bote
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Yasin A Haffary
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Sambat Bhandari
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Jack A Goodman
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Max M Majireck
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| |
Collapse
|
39
|
Zhang H, Wang Q, Wang Y, Yuan Z, Gao F, Britton R. Selective Trifluoromethylthiolation of Unactivated C(sp
3
)−H Bonds Enabled by Excited Ketones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Han Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Qing Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical isotope research center School of basic medical sciences Cheeloo College of Medicine Shandong University Jinan Shandong 250012 P. R. China
| | - Robert Britton
- Department of Chemistry Simon Fraser University Burnaby British Columbia V5 A 1S6 Canada
| |
Collapse
|
40
|
Dhungana RK, Aryal V, Niroula D, Sapkota RR, Lakomy MG, Giri R. Nickel‐Catalyzed Regioselective Alkenylarylation of γ,δ‐Alkenyl Ketones via Carbonyl Coordination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Roshan K. Dhungana
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Vivek Aryal
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Doleshwar Niroula
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Rishi R. Sapkota
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Margaret G. Lakomy
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Ramesh Giri
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
41
|
Dhungana RK, Aryal V, Niroula D, Sapkota RR, Lakomy MG, Giri R. Nickel-Catalyzed Regioselective Alkenylarylation of γ,δ-Alkenyl Ketones via Carbonyl Coordination. Angew Chem Int Ed Engl 2021; 60:19092-19096. [PMID: 34115911 PMCID: PMC8373804 DOI: 10.1002/anie.202104871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/27/2021] [Indexed: 11/07/2022]
Abstract
We disclose a nickel-catalyzed reaction, which enabled us to difunctionalize unactivated γ,δ-alkenes in ketones with alkenyl triflates and arylboronic esters. The reaction was made feasible by the use of 5-chloro-8-hydroxyquinoline as a ligand along with NiBr2 ⋅DME as a catalyst and LiOtBu as base. The reaction proceeded with a wide range of cyclic, acyclic, endocyclic and exocyclic alkenyl ketones, and electron-rich and electron-deficient arylboronate esters. The reaction also worked with both cyclic and acyclic alkenyl triflates. Control experiments indicate that carbonyl coordination is required for the reaction to proceed.
Collapse
Affiliation(s)
- Roshan K. Dhungana
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Vivek Aryal
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Doleshwar Niroula
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rishi R. Sapkota
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Margaret G. Lakomy
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ramesh Giri
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
42
|
Kulthe AD, Mainkar PS, Akondi SM. Intermolecular trifluoromethyl-alkenylation of alkenes enabled by metal-free photoredox catalysis. Chem Commun (Camb) 2021; 57:5582-5585. [PMID: 33969856 DOI: 10.1039/d1cc01806j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-component and redox-neutral trifluoromethylative alkenylation of unactivated alkenes with β-nitrostyrenes has been developed under visible-light. This metal-free protocol utilizes the easy to handle Langlois reagent (CF3SO2Na) as the CF3 source and is suitable for various unactivated alkenes and β-nitrostyrenes, affording a series of trifluoromethylated aromatic alkenes under mild conditions in good to excellent yields.
Collapse
Affiliation(s)
- Arun D Kulthe
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srirama Murthy Akondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
43
|
Bosveli A, Montagnon T, Kalaitzakis D, Vassilikogiannakis G. Eosin: a versatile organic dye whose synthetic uses keep expanding. Org Biomol Chem 2021; 19:3303-3317. [PMID: 33899893 DOI: 10.1039/d1ob00301a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organic dyes, which absorb light in the visible region of the electromagnetic spectrum, offer a lower cost, greener alternative to precious metals in photocatalysis. In this context, the organic dye eosin's uses are currently expanding at a significant rate. For a long time, its action as an energy transfer agent dominated, more recently, however, there has been a growing interest in its potential as an electron transfer agent. In this short review, we highlight some recent (from 2016 onwards) contributions to the field with a focus on the breadth of the reactions eosin can catalyse.
Collapse
Affiliation(s)
- Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | | |
Collapse
|
44
|
Kim M, You E, Park S, Hong S. Divergent reactivity of sulfinates with pyridinium salts based on one- versus two-electron pathways. Chem Sci 2021; 12:6629-6637. [PMID: 34040737 PMCID: PMC8132931 DOI: 10.1039/d1sc00776a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/30/2021] [Indexed: 01/04/2023] Open
Abstract
One of the main goals of modern synthesis is to develop distinct reaction pathways from identical starting materials for the efficient synthesis of diverse compounds. Herein, we disclose the unique divergent reactivity of the combination sets of pyridinium salts and sulfinates to achieve sulfonative pyridylation of alkenes and direct C4-sulfonylation of pyridines by controlling the one- versus two-electron reaction manifolds for the selective formation of each product. Base-catalyzed cross-coupling between sulfinates and N-amidopyridinium salts led to the direct introduction of a sulfonyl group into the C4 position of pyridines. Remarkably, the reactivity of this set of compounds is completely altered upon exposure to visible light: electron donor-acceptor complexes of N-amidopyridinium salts and sulfinates are formed to enable access to sulfonyl radicals. In this catalyst-free radical pathway, both sulfonyl and pyridyl groups could be incorporated into alkenes via a three-component reaction, which provides facile access to a variety of β-pyridyl alkyl sulfones. These two reactions are orthogonal and complementary, achieving a broad substrate scope in a late-stage fashion under mild reaction conditions.
Collapse
Affiliation(s)
- Myojeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Euna You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Seongjin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
45
|
Photocatalyst-controlled and visible light-enabled selective oxidation of pyridinium salts. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9958-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Shin S, Lee S, Choi W, Kim N, Hong S. Visible‐Light‐Induced 1,3‐Aminopyridylation of [1.1.1]Propellane with
N
‐Aminopyridinium Salts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sanghoon Shin
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seojin Lee
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Wonjun Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Namhoon Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
47
|
Shin S, Lee S, Choi W, Kim N, Hong S. Visible-Light-Induced 1,3-Aminopyridylation of [1.1.1]Propellane with N-Aminopyridinium Salts. Angew Chem Int Ed Engl 2021; 60:7873-7879. [PMID: 33403785 DOI: 10.1002/anie.202016156] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 01/16/2023]
Abstract
Through the formation of an electron donor-acceptor (EDA) complex, strain-release aminopyridylation of [1.1.1]propellane with N-aminopyridinium salts as bifunctional reagents enabled the direct installation of amino and pyridyl groups onto bicyclo[1.1.1]pentane (BCP) frameworks in the absence of an external photocatalyst. The robustness of this method to synthesize 1,3-aminopyridylated BCPs under mild and metal-free conditions is highlighted by the late-stage modification of structurally complex biorelevant molecules. Moreover, the strategy was extended to P-centered and CF3 radicals for the unprecedented incorporation of such functional groups with pyridine across the BCP core in a three-component coupling. This practical method lays the foundation for the straightforward construction of new valuable C4-pyridine-functionalized BCP chemical entities, thus significantly expanding the range of accessibility of BCP-type bioisosteres for applications in drug discovery.
Collapse
Affiliation(s)
- Sanghoon Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seojin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Wonjun Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Namhoon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
48
|
Lee W, Jung S, Kim M, Hong S. Site-Selective Direct C–H Pyridylation of Unactivated Alkanes by Triplet Excited Anthraquinone. J Am Chem Soc 2021; 143:3003-3012. [DOI: 10.1021/jacs.1c00549] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wooseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Minseok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
49
|
Chen L, Ma P, Yang B, Zhao X, Huang X, Zhang J. Photocatalyst and additive-free visible light induced trifluoromethylation-arylation of N-arylacrylamides with Umemoto's reagent. Chem Commun (Camb) 2021; 57:1030-1033. [PMID: 33406204 DOI: 10.1039/d0cc07502g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A visible light induced highly convenient and practical method for the trifluoromethyl-arylation of N-arylmethacrylamides has been developed using Umemoto's reagent as the trifluoromethyl source. This user-friendly approach can proceed under visible light irradiation without any transition metal, photocatalyst and additive at room temperature. The strategy presented here provides access to trifluoromethylated oxindoles in good to excellent yields with a broad functional group tolerance. Preliminary mechanistic experiments indicated that the reaction process involves a homolytic cleavage of Umemoto's reagent irradiated by visible light.
Collapse
Affiliation(s)
- Lingling Chen
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Pengju Ma
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Bo Yang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Xu Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuan Huang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Junmin Zhang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
50
|
Wen J, Yang X, Yan K, Qin H, Ma J, Sun X, Yang J, Wang H. Electroreductive C3 Pyridylation of Quinoxalin-2(1 H)-ones: An Effective Way to Access Bidentate Nitrogen Ligands. Org Lett 2021; 23:1081-1085. [PMID: 33439657 DOI: 10.1021/acs.orglett.0c04296] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The construction of functional N-containing active biomolecules and bidentate nitrogen ligands by electroreductive pyridylation of N-heteroaromatics is an eye-catching task and challenge. A simple and practical electroreductive-induced C3 pyridylation of quinoxalin-2(1H)-ones with readily available cyanopyridines is reported. More than 36 examples are supplied, and the reaction performed in >95% yield. The present protocol provides a convenient, efficient, and gram-scale synthesis strategy for a series of new types of potential bidentate nitrogen ligands.
Collapse
Affiliation(s)
- Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Xiaoting Yang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Hongyun Qin
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jing Ma
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Xuejun Sun
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jianjing Yang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Hua Wang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|