1
|
Li Y, Qu C, Ye Q, Meng F, Yang D, Wang L. Enhanced tetracycline degradation by novel Mn-FeOOH/CNNS photocatalysts in a visible-light-driven photocatalysis coupled peroxydisulfate system. ENVIRONMENTAL RESEARCH 2024; 257:119293. [PMID: 38838749 DOI: 10.1016/j.envres.2024.119293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Recently, photocatalysis combined peroxydisulfate activation under visible light (PC-PDS/Vis) was developed as a promising technology for removing antibiotics in water. Herein, Mn doped FeOOH (Mn-FeOOH) nanoclusters were grown in-situ on the surface of graphitic carbon nitride nanosheets (CNNS) using a wet chemical method, which served as a visible-light-driven photocatalyst for peroxydisulfate (PDS) activation. Photovoltaic property characterizations revealed that Mn-FeOOH/CNNS owned superior light capture ability and carrier separation efficiency. According to DFT calculations, the synergistic effect between Mn and Fe species was proved to enhance the adsorption and activation of PDS. 99.7% of tetracycline (TC) was rapidly removed in 50 min in the PC-PDS/Vis system. In addition, Mn-FeOOH/CNNS exhibited high recycling stability with low iron leaching, attributed to the interaction between Mn-FeOOH clusters and carbon species. Quenching experiments and electron spin resonance (ESR) tests unveiled that •O2- played a significant role in TC removal, while •OH and SO4•- acted as additional roles contributing to the overall process. These findings given a new strategy for antibiotics degradation by photocatalysis, offering deeper insights for the advancement of sustainable and cutting-edge wastewater treatment technologies.
Collapse
Affiliation(s)
- Yongqi Li
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Chao Qu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Qing Ye
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Fanwei Meng
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Decai Yang
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Lanyang Wang
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Chen Y, Shen Y, Dai L, Yao S, An C. Coordination Confined Thermolysis Synthesis of the Ni Single Atom Catalyst on the N-Doped Commercial Carbon for the Production of Syngas. Inorg Chem 2024; 63:2131-2137. [PMID: 38212991 DOI: 10.1021/acs.inorgchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The electrochemical conversion of CO2 into controllable syngas (CO/H2) over a wide potential range is challenging. The main electrocatalysts are based on the noble metals Au (Ag) or heavy metal Pb. The development of alternative nonprecious catalysts is of paramount importance for practice. In this work, a simple coordination confined thermal pyrolysis method has been developed for the synthesis of Ni single-atom catalyst loaded onto nitrogen-doped commercial carbon. The catalyst is in the form of NiN3-C, which exhibits a high-performance electrocatalytic reduction of CO2 toward producing syngas with Faraday efficiencies of 62.28% of CO and 36.7% of H2. The Gibbs free energies of COOH* and H* on the NiN3-C structure were estimated by using density functional theory (DFT). The formation of COOH* intermediate is the speed-limiting step in the process, with ΔG COOH* being 0.7 eV, while H* is the speed-limiting step in the hydrogen evolution, respectively. This work provides a feasible method for the achievement of nonprecious catalysts for the resourceful use of CO2.
Collapse
Affiliation(s)
- Yuping Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yongli Shen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Linxiu Dai
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shuang Yao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Changhua An
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
3
|
Zhu HL, Huang JR, Zhang MD, Yu C, Liao PQ, Chen XM. Continuously Producing Highly Concentrated and Pure Acetic Acid Aqueous Solution via Direct Electroreduction of CO 2. J Am Chem Soc 2024; 146:1144-1152. [PMID: 38164902 DOI: 10.1021/jacs.3c12423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
It is crucial to achieve continuous production of highly concentrated and pure C2 chemicals through the electrochemical CO2 reduction reaction (eCO2RR) for artificial carbon cycling, yet it has remained unattainable until now. Despite one-pot tandem catalysis (dividing the eCO2RR to C2 into two catalytical reactions of CO2 to CO and CO to C2) offering the potential for significantly enhancing reaction efficiency, its mechanism remains unclear and its performance is unsatisfactory. Herein, we selected different CO2-to-CO catalysts and CO-to-acetate catalysts to construct several tandem catalytic systems for the eCO2RR to acetic acid. Among them, a tandem catalytic system comprising a covalent organic framework (PcNi-DMTP) and a metal-organic framework (MAF-2) as CO2-to-CO and CO-to-acetate catalysts, respectively, exhibited a faradaic efficiency of 51.2% with a current density of 410 mA cm-2 and an ultrahigh acetate yield rate of 2.72 mmol m-2 s-1 under neutral conditions. After electrolysis for 200 h, 1 cm-2 working electrode can continuously produce 20 mM acetic acid aqueous solution with a relative purity of 95+%. Comprehensive studies revealed that the performance of tandem catalysts is influenced not only by the CO supply-demand relationship and electron competition between the two catalytic processes in the one-pot tandem system but also by the performance of the CO-to-C2 catalyst under diluted CO conditions.
Collapse
Affiliation(s)
- Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Meng-Di Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Can Yu
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515021, China
| |
Collapse
|
4
|
Bai J, Wang W, Liu J. Bioinspired Hydrophobicity for Enhancing Electrochemical CO 2 Reduction. Chemistry 2023; 29:e202302461. [PMID: 37702459 DOI: 10.1002/chem.202302461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Electrochemical carbon dioxide reduction (CO2 R) is a promising pathway for converting greenhouse gasses into valuable fuels and chemicals using intermittent renewable energy. Enormous efforts have been invested in developing and designing CO2 R electrocatalysts suitable for industrial applications at accelerated reaction rates. The microenvironment, specifically the local CO2 concentration (local [CO2 ]) as well as the water and ion transport at the CO2 -electrolyte-catalyst interface, also significantly impacts the current density, Faradaic efficiency (FE), and operation stability. In nature, hydrophobic surfaces of aquatic arachnids trap appreciable amounts of gases due to the "plastron effect", which could inspire the reliable design of CO2 R catalysts and devices to enrich gaseous CO2 . In this review, starting from the wettability modulation, we summarize CO2 enrichment strategies to enhance CO2 R. To begin, superwettability systems in nature and their inspiration for concentrating CO2 in CO2 R are described and discussed. Moreover, other CO2 enrichment strategies, compatible with the hydrophobicity modulation, are explored from the perspectives of catalysts, electrolytes, and electrolyzers, respectively. Finally, a perspective on the future development of CO2 enrichment strategies is provided. We envision that this review could provide new guidance for further developments of CO2 R toward practical applications.
Collapse
Affiliation(s)
- Jingwen Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| | - Wenshuo Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| |
Collapse
|
5
|
Yao Q, Yu Z, Li L, Huang X. Strain and Surface Engineering of Multicomponent Metallic Nanomaterials with Unconventional Phases. Chem Rev 2023; 123:9676-9717. [PMID: 37428987 DOI: 10.1021/acs.chemrev.3c00252] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Multicomponent metallic nanomaterials with unconventional phases show great prospects in electrochemical energy storage and conversion, owing to unique crystal structures and abundant structural effects. In this review, we emphasize the progress in the strain and surface engineering of these novel nanomaterials. We start with a brief introduction of the structural configurations of these materials, based on the interaction types between the components. Next, the fundamentals of strain, strain effect in relevant metallic nanomaterials with unconventional phases, and their formation mechanisms are discussed. Then the progress in surface engineering of these multicomponent metallic nanomaterials is demonstrated from the aspects of morphology control, crystallinity control, surface modification, and surface reconstruction. Moreover, the applications of the strain- and surface-engineered unconventional nanomaterials mainly in electrocatalysis are also introduced, where in addition to the catalytic performance, the structure-performance correlations are highlighted. Finally, the challenges and opportunities in this promising field are prospected.
Collapse
Affiliation(s)
- Qing Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhiyong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Zhao J, Huang Q, Xie Z, Liu Y, Liu F, Wei F, Wang S, Zhang Z, Yuan R, Wu K, Ding Z, Long J. Hierarchical Hollow-TiO 2@CdS/ZnS Hybrid for Solar-Driven CO 2-Selective Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24494-24503. [PMID: 37163238 DOI: 10.1021/acsami.3c03255] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Light-driven valorization conversion of CO2 is an encouraging carbon-negative pathway that shifts energy-reliance from fossil fuels to renewables. Herein, a hierarchical urchin-like hollow-TiO2@CdS/ZnS (HTO@CdS/ZnS) Z-scheme hybrid synthesized by an in situ self-assembly strategy presents superior photocatalytic CO2-to-CO activity with nearly 100% selectivity. Specifically, benefitting from the reasonable architectural and interface design, as well as surface modification, this benchmarked visible-light-driven photocatalyst achieves a CO output of 62.2 μmol·h-1 and a record apparent quantum yield of 6.54% with the Co(bpy)32+ (bpy = 2,2'-bipyridine) cocatalyst. It rivals all the incumbent selective photocatalytic conversion of CO2 to CO in the CH3CN/H2O/TEOA reaction systems. Specifically, the addition of HTO and stabilized ZnS enables the photocatalyst to effectively upgrade optical and electrical performances, contributing to efficient light-harvesting and photogenerated carrier separation, as well as interfacial charge transfer. The tremendous enhancement of photocatalytic performance reveals the superiority of the Z-scheme heterojunction assembled from HTO and CdS/ZnS, featuring the inner electric field derived from the band bending of HTO@CdS/ZnS make CdS resistant to photocorrosion. This study allows access to inspire studies on rationally modeling and constructing diverse heterostructures for the storage and conversion of renewables and chemicals.
Collapse
Affiliation(s)
- Jiwu Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Qiuying Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Zidong Xie
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yuan Liu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Fengkai Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Fen Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Rusheng Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Zhengxin Ding
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
7
|
Sheng Y, Guo Y, Yu H, Deng K, Wang Z, Li X, Wang H, Wang L, Xu Y. Engineering Under-Coordinated Active Sites with Tailored Chemical Microenvironments over Mosaic Bismuth Nanosheets for Selective CO 2 Electroreduction to Formate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207305. [PMID: 36670091 DOI: 10.1002/smll.202207305] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Selective electrochemical reduction of CO2 into fuels or chemical feedstocks is a promising avenue to achieve carbon-neutral goal, but its development is severely limited by the lack of highly efficient electrocatalysts. Herein, cation-exchange strategy is combined with electrochemical self-reconstruction strategy to successfully develop diethylenetriamine-functionalized mosaic Bi nanosheets (mBi-DETA NSs) for selective electrocatalytic CO2 reduction to formate, delivering a superior formate Faradaic efficiency of 96.87% at a low potential of -0.8 VRHE . Mosaic nanosheet morphology of Bi can sufficiently expose the under-coordinated Bi active sites and promote the activation of CO2 molecules to form the OCHO- * intermediate. Moreover, in situ attenuated total reflectance infrared spectra further corroborate that surface chemical microenvironment modulation of mosaic Bi nanosheets via DETA functionalization can improve CO2 adsorption on the catalyst surface and stabilize the key intermediate (OCHO- *) due to the presence of amine groups, thus facilitate the CO2 -to-HCOO- reaction kinetics and promote formate formation.
Collapse
Affiliation(s)
- Youwei Sheng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yiyi Guo
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
8
|
Polyaniline Anchoring Environment Facilitates Highly Efficient CO2 Electroreduction of Cobalt Phthalocyanine over a Wide Potential Window. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Zhang B, Wu Y, Zhai P, Wang C, Sun L, Hou J. Rational design of bismuth-based catalysts for electrochemical CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Ali T, Wang H, Iqbal W, Bashir T, Shah R, Hu Y. Electro-Synthesis of Organic Compounds with Heterogeneous Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205077. [PMID: 36398622 PMCID: PMC9811472 DOI: 10.1002/advs.202205077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Electro-organic synthesis has attracted a lot of attention in pharmaceutical science, medicinal chemistry, and future industrial applications in energy storage and conversion. To date, there has not been a detailed review on electro-organic synthesis with the strategy of heterogeneous catalysis. In this review, the most recent advances in synthesizing value-added chemicals by heterogeneous catalysis are summarized. An overview of electrocatalytic oxidation and reduction processes as well as paired electrocatalysis is provided, and the anodic oxidation of alcohols (monohydric and polyhydric), aldehydes, and amines are discussed. This review also provides in-depth insight into the cathodic reduction of carboxylates, carbon dioxide, CC, C≡C, and reductive coupling reactions. Moreover, the electrocatalytic paired electro-synthesis methods, including parallel paired, sequential divergent paired, and convergent paired electrolysis, are summarized. Additionally, the strategies developed to achieve high electrosynthesis efficiency and the associated challenges are also addressed. It is believed that electro-organic synthesis is a promising direction of organic electrochemistry, offering numerous opportunities to develop new organic reaction methods.
Collapse
Affiliation(s)
- Tariq Ali
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della CalabriaRendeCS87036Italy
| | - Tariq Bashir
- Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhou215006China
| | - Rahim Shah
- Institute of Chemical SciencesUniversity of SwatSwatKhyber Pakhtunkhwa19130Pakistan
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
- Hangzhou Institute of Advanced StudiesZhejiang Normal UniversityHangzhou311231China
| |
Collapse
|
11
|
Mo J, Chen X, Li M, Liu W, Zhao W, Lim LY, Tilley RD, Gooding JJ, Li Q. Upconversion Nanoparticle-Based Cell Membrane-Coated cRGD Peptide Bioorthogonally Labeled Nanoplatform for Glioblastoma Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49454-49470. [PMID: 36300690 DOI: 10.1021/acsami.2c11284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glioblastoma is hard to be eradicated partly because of the obstructive blood-brain barrier (BBB) and the dynamic autophagy activities of glioblastoma. Here, hydroxychloroquine (HDX)-loaded yolk-shell upconversion nanoparticle (UCNP)@Zn0.5Cd0.5S nanoparticle coating with the cyclic Arg-Gly-Asp (cRGD)-grafted glioblastoma cell membrane for near-infrared (NIR)-triggered treatment of glioblastoma is prepared for the first time. UCNPs@Zn0.5Cd0.5S (abbreviated as YSN, yolk-shell nanoparticle) under NIR radiation will generate reactive oxygen species for imposing cytotoxicity. HDX, the only available autophagy inhibitor in clinical studies, can enhance cytotoxicity by preventing damaged organelles from being recycled. The cRGD-decorated cell membrane allowed the HDX-loaded nanoparticles to efficiently bypass the BBB and specifically target glioblastoma cells. Exceptional treatment efficacy of the NIR-triggered chemotherapy and photodynamic therapy was achieved in U87 cells and in the mouse glioblastoma model as well. Our results provided proof-of-concept evidence that HDX@YSN@CCM@cRGD could overcome the delivery barriers and achieve targeted treatment of glioblastoma.
Collapse
Affiliation(s)
- Jingxin Mo
- Guangxi Clinical Research Center for Neurological Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
- Laboratory of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Xianjue Chen
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Meiying Li
- Guangxi Clinical Research Center for Neurological Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- School of Pharmacy, Guilin Medical University, Guilin 541001, China
| | - Wenxu Liu
- Guangxi Clinical Research Center for Neurological Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- School of Pharmacy, Guilin Medical University, Guilin 541001, China
| | - Wei Zhao
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Lee Yong Lim
- School of Allied Health, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Richard D Tilley
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Qinghua Li
- Guangxi Clinical Research Center for Neurological Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Department of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Key Laboratory of Brain and Cognition of Guangxi Province, Guilin Medical University, Guilin 541001, China
- Guangxi Engineering Research Center for Digital Medicine and Clinical Translation, Guilin Medical University, Guilin 541001, China
- Guangxi Key Laboratory of Big Data Intelligent Cloud Management for Neurological Diseases, Guilin Medical University, Guilin 541001, China
| |
Collapse
|
12
|
Huang C, Song B, Wang P, Zhang L. S-Scheme efficient charge transfer interface between solid solution Mn0.5Cd0.5S and ultrathin 2D nanomaterial SnNb2O6 boosts photocatalytic CO2 reduction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
In situ Electrochemical Restructuring Integrating Corrosion Engineering to Fabricate Zn Nanosheets for Efficient CO2 Electroreduction. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Liu W, Bai P, Wei S, Yang C, Xu L. Gadolinium Changes the Local Electron Densities of Nickel 3d Orbitals for Efficient Electrocatalytic CO
2
Reduction. Angew Chem Int Ed Engl 2022; 61:e202201166. [DOI: 10.1002/anie.202201166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Weiqi Liu
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Peiyao Bai
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Shilin Wei
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Chuangchuang Yang
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Lang Xu
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| |
Collapse
|
15
|
Liu W, Bai P, Wei S, Yang C, Xu L. Gadolinium Changes the Local Electron Densities of Nickel 3d Orbitals for Efficient Electrocatalytic CO
2
Reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weiqi Liu
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Peiyao Bai
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Shilin Wei
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Chuangchuang Yang
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Lang Xu
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| |
Collapse
|
16
|
Wei B, Hao J, Ge B, Luo W, Chen Y, Xiong Y, Li L, Shi W. Highly efficient electrochemical carbon dioxide reduction to syngas with tunable ratios over pyridinic- nitrogen rich ultrathin carbon nanosheets. J Colloid Interface Sci 2022; 608:2650-2659. [PMID: 34774319 DOI: 10.1016/j.jcis.2021.10.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/16/2022]
Abstract
Developing nonmetallic carbon-based electrocatalysts that are affordable and have high activity and stability for carbon dioxide (CO2) reduction to syngas is a new and challenging strategy for solving the energy crisis. Here, we prepared a highly active ultrathin nitrogen (N)-doped carbon nanosheet (UNCN) electrocatalyst. By tuning the applied potential of the UNCN-900 (900 represents the carbonization temperature) electrode, we could tune the H2/CO ratio in clean syngas within a wide range with extra-high Faradic efficiency (FE). The maximum FECO reached 91%, which represented the highest value among the reported nonmetallic carbon-based electrocatalysts for CO2 reduction to syngas. According to the results of experiments and density functional theory calculations, we proved that pyridinic-N in UNCNs-900 is the active site of the CO2 reduction reaction (CO2RR) and that graphitic-N may be the active site for the hydrogen evolution reaction. These results provide a useful case for electrochemical CO2 reduction to syngas with a tunable H2/CO ratio using nonmetallic carbon-based electrocatalysts.
Collapse
Affiliation(s)
- Bing Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinhui Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Baoxin Ge
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yongfu Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yusong Xiong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
17
|
Rong H, Meng L, Zhang E, Peng H, Wang Y, Wang D, Zhang J. Bi/Zn dual single‐atom catalysts for electroreduction of CO2 to syngas. ChemCatChem 2022. [DOI: 10.1002/cctc.202101801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hongpan Rong
- Beijing Institute of Technology School of Materials No.5 Nandajie, Zhongguancun, Haidian District Beijing 100081, China 100081 Beijing CHINA
| | - Lingzhe Meng
- Beijing Institute of Technology School of Materials Science & Engineering CHINA
| | - Erhuan Zhang
- Beijing Institute of Technology School of Materials Science & Engineering CHINA
| | - Haoyu Peng
- Beijing Institute of Technology School of Materials Science & Engineering CHINA
| | - Yu Wang
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai Synchrotron Radiation Facilities CHINA
| | | | - Jiatao Zhang
- Beijing Institute of Technology School of Materials Science & Engineering CHINA
| |
Collapse
|
18
|
Wang X, Chen T, Yu K, Dong C, Yuan X, Gong X, Lian J, Cao X, Li M, Zhou L, Hu B, He R, Zhu W. Advanced Photocatalysts for Uranium Extraction: Elaborate Design and Future Perspectives. SSRN ELECTRONIC JOURNAL 2022. [DOI: doi.org/10.2139/ssrn.4048706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
19
|
Hu X, Xu Y, Wang J, Ma J, Wang L, Jiang W. Ligand-modified synthesis of shape-controllable and highly luminescent CsPbBr 3 perovskite nanocrystals under ambient conditions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01640k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The intrinsic insights of ligand-modified shape-transformation of CsPbBr3 nanocrystals between nanocubes and nanorods are revealed systematically, which can accelerate their practical applications in the optoelectronic field.
Collapse
Affiliation(s)
- Xiaobo Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and the College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yanqiao Xu
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic Institute, Jingdezhen 333000, PR China
| | - Jiancheng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and the College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Jiaxin Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and the College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and the College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, PR China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and the College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
20
|
Xin ZK, Gao YJ, Gao Y, Song HW, Zhao J, Fan F, Xia AD, Li XB, Tung CH, Wu LZ. Rational Design of Dot-on-Rod Nano-Heterostructure for Photocatalytic CO 2 Reduction: Pivotal Role of Hole Transfer and Utilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106662. [PMID: 34695250 DOI: 10.1002/adma.202106662] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Inspired by green plants, artificial photosynthesis has become one of the most attractive approaches toward carbon dioxide (CO2 ) valorization. Semiconductor quantum dots (QDs) or dot-in-rod (DIR) nano-heterostructures have gained substantial research interest in multielectron photoredox reactions. However, fast electron-hole recombination or sluggish hole transfer and utilization remains unsatisfactory for their potential applications. Here, the first application of a well-designed ZnSe/CdS dot-on-rods (DORs) nano-heterostructure for efficient and selective CO2 photoreduction with H2 O as an electron donor is presented. In-depth spectroscopic studies reveal that surface-anchored ZnSe QDs not only assist ultrafast (≈2 ps) electron and hole separation, but also promote interfacial hole transfer participating in oxidative half-reactions. Surface photovoltage (SPV) spectroscopy provides a direct image of spatially separated electrons in CdS and holes in ZnSe. Therefore, ZnSe/CdS DORs photocatalyze CO2 to CO with a rate of ≈11.3 µmol g-1 h-1 and ≥85% selectivity, much higher than that of ZnSe/CdS DIRs or pristine CdS nanorods under identical conditions. Obviously, favored energy-level alignment and unique morphology balance the utilization of electrons and holes in this nano-heterostructure, thus enhancing the performance of artificial photosynthetic solar-to-chemical conversion.
Collapse
Affiliation(s)
- Zhi-Kun Xin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu-Ji Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuying Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Hong-Wei Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiaqing Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - An-Dong Xia
- School of Science, Beijing University of Posts and Communications, Beijing, 100876, China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Zhang W, Zhu N, Ding L, Hu Y, Wu Z. Efficacious CO 2 Adsorption and Activation on Ag Nanoparticles/CuO Mesoporous Nanosheets Heterostructure for CO 2 Electroreduction to CO. Inorg Chem 2021; 60:19356-19364. [PMID: 34839663 DOI: 10.1021/acs.inorgchem.1c03183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
It is an ongoing pursuit for researchers to precisely control the catalyst's surface for high-performance CO2 electrochemical reduction (CO2ER). In this work, CuO mesoporous nanosheets (CuO MNSs) with rough edges decorated by small Ag nanoparticles (Ag NPs) with a tunable amount of Ag were synthesized on a Cu foil at normal atmospheric temperature through two-step solution-phase reactions for CO2ER to CO. In this special Ag NPs/CuO MNSs heterostructure, the mesoporous CuO NSs with rough edges favored gas infiltration, while decorated Ag NPs expanded the active sites for CO2 molecule adsorption. Ag NPs endowed Ag NPs/CuO MNSs with good electrical conductivity and promoted the adsorbed CO2 molecules to obtain electrons from the catalyst. Especially, the Ag-CuO interface stabilized the *COOH intermediate with strong bonding, which is important in boosting CO2ER to CO. The optimal Ag1.01%/CuO can catalyze CO2ER to CO with a Faradaic efficiency of 91.2% and a partial current density of 10.5 mA cm-2 at -0.7 V. Moreover, it exhibited prominent catalytic stability, retaining 97.8% of the initial current density and 97.6% of the original Faradaic efficiency for CO after 12 h of testing at -0.7 V. Notably, the Faradaic efficiency of CO on Ag1.01%/CuO can retain over 80% in the potential area from -0.6 to -0.9 V, embodying its high selectivity for CO. This work develops precious metal/metal oxide heterostructures with a low precious metal loading for efficacious CO2ER to CO and beyond.
Collapse
Affiliation(s)
- Wuzhengzhi Zhang
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Nannan Zhu
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Lianchun Ding
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yan Hu
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Zhengcui Wu
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
22
|
Shi R, Liu KS, Liu F, Yang X, Hou CC, Chen Y. Electrocatalytic reforming of waste plastics into high value-added chemicals and hydrogen fuel. Chem Commun (Camb) 2021; 57:12595-12598. [PMID: 34724523 DOI: 10.1039/d1cc05032j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The upcycling of waste plastic offers an attractive way to protect the environment and turn waste into value-added chemicals and H2 fuel. Herein, we report a novel electroreforming strategy to upcycle waste polyethylene terephthalate into high value-added chemicals, such as terephthalate and carbonate, over a Pd modified Ni foam catalyst. This system exhibits excellent electrocatalytic activity (400 mA cm-2 at 0.7 V vs. RHE) and high selectivity (95%)/faradaic efficiency (93%) for the product carbonate. Our work demonstrates a technology that can not only transform waste polyethylene terephthalate into value-added chemicals but also generate H2 fuel via an all-in-one electro-driven process.
Collapse
Affiliation(s)
- Rui Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Ke-Sheng Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Fulai Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Xiao Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Chun-Chao Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
23
|
Arcudi F, Đorđević L, Nagasing B, Stupp SI, Weiss EA. Quantum Dot-Sensitized Photoreduction of CO 2 in Water with Turnover Number > 80,000. J Am Chem Soc 2021; 143:18131-18138. [PMID: 34664969 DOI: 10.1021/jacs.1c06961] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Climate change and global energy demands motivate the search for sustainable transformations of carbon dioxide (CO2) to storable liquid fuels. Photocatalysis is a pathway for direct conversion of CO2 to CO, one step within light-powered reaction networks that could, if efficient enough, transform the solar energy conversion landscape. To date, the best performing photocatalytic CO2 reduction systems operate in nonaqueous solvents, but technologically viable solar fuels networks will likely operate in water. Here we demonstrate catalytic photoreduction of CO2 to CO in pure water at pH 6-7 with an unprecedented combination of performance parameters: turnover number (TON(CO)) = 72,484-84,101, quantum yield (QY) = 0.96-3.39%, and selectivity (SCO) > 99%, using CuInS2 colloidal quantum dots (QDs) as photosensitizers and a Co-porphyrin catalyst. At higher catalyst concentration, the system reaches QY = 3.53-5.23%. The performance of the QD-driven system greatly exceeds that of the benchmark aqueous system (926 turnovers with a quantum yield of 0.81% and selectivity of 82%), due primarily to (i) electrostatic attraction of the QD to the catalyst, which promotes fast multielectron delivery and colocalization of protons, CO2, and catalyst at the source of photoelectrons, and (ii) termination of the QD's ligand shell with free amines, which capture CO2 as carbamic acid that serves as a reservoir for CO2, effectively increasing its solubility in water, and lowers the onset potential for catalytic CO2 reduction by the Co-porphyrin. The breakthrough efficiency achieved in this work represents a nonincremental step in the realization of reaction networks for direct solar-to-fuel conversion.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States
| | - Benjamin Nagasing
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
24
|
Liu L, Dai K, Zhang J, Li L. Plasmonic Bi-enhanced ammoniated α-MnS/Bi 2MoO 6 S-scheme heterostructure for visible-light-driven CO 2 reduction. J Colloid Interface Sci 2021; 604:844-855. [PMID: 34303177 DOI: 10.1016/j.jcis.2021.07.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Low redox ability and severe photocorrosion limit the photocatalytic activity of metal sulfides. Herein, step-scheme (S-scheme) heterojunction composited by diethylenetriamine (DETA) ammoniated MnS (α-MnS) and Bi2MoO6 with Bi surface plasmon resonance (SPR) was successfully fabricated (Bi-5 %M/BMO). This special electron transport structure effectively suppresses the photocorrosion of α-MnS and makes photocatalysts with high redox ability. DETA was protonated to form positively charged ammonium ions and they are easy to combine with acid gas CO2, reducing the activation energy of CO2, building an efficient catalytic reaction system, and improving CO2 reduction efficiency. The CO evolution rate of Bi-5 %M/BMO (61.11 μmol g-1h-1) is 2.42, 7.89 and 5.01 times greater than that of 5 %M/BMO, pure α-MnS hollow spheres and Bi2MoO6, respectively. This indicates that Bi SPR effect can promote the separation of photon-generated electron-hole pairs dramatically. The ammoniated S-scheme heterostructure decorated with the SPR effect may provide a new perspective to design heterojunction.
Collapse
Affiliation(s)
- Lizhong Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, PR China
| | - Kai Dai
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, PR China.
| | - Jinfeng Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, PR China.
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, PR China.
| |
Collapse
|
25
|
Dai M, Wang R. Synthesis and Applications of Nanostructured Hollow Transition Metal Chalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006813. [PMID: 34013648 DOI: 10.1002/smll.202006813] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Nanostructures with well-defined structures and rich active sites occupy an important position for efficient energy storage and conversion. Recent studies have shown that a transition metal chalcogenide (TMC) has a unique structure, such as diverse structural morphology, excellent stability, high efficiency, etc., and is used in the fields of electrochemistry and catalysis. The nanohollow structure metal chalcogenide has broad application prospects due to the existence of a large number of active sites and a wide internal space, allowing a large number of ions and electrons to be transported. Summarizing synthetic strategies of nanostructured hollow transition metal sulfides (HTMC) and their applications in the field of energy storage and conversion is discussed here. Through some representative examples, the fabrication and properties of various hollow structures are analyzed, which prompt some emerging nanoengineering designs to be applied to transition metal chalcogenides. It is hoped that the construction of the HTMC will lead to a deeper understanding for the further exploration of energy storage and conversion.
Collapse
Affiliation(s)
- Meng Dai
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
26
|
Wang S, Zhou P, Zhou L, Lv F, Sun Y, Zhang Q, Gu L, Yang H, Guo S. A Unique Gas-Migration, Trapping, and Emitting Strategy for High-Loading Single Atomic Cd Sites for Carbon Dioxide Electroreduction. NANO LETTERS 2021; 21:4262-4269. [PMID: 33962514 DOI: 10.1021/acs.nanolett.1c00432] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-atom catalysts (SACs) exhibit great potential in heterogeneous catalysis. However, the achievement of obtaining high-loading SACs remains a bottleneck. Herein, we first demonstrate a unique gas-migration, trapping, and emitting strategy for building a kind of Cd-based SAC for CO2 reduction (CO2RR). The gas-migration and trapping processes (≤750 °C) endows the material with an ultrahigh Cd loading amount of 30.3 wt %, while the emitting process can facilely modulate the loading amount from 30.3 to 1.4 wt %. For the CO2RR, the Cd-NC SACs with a loading amount of 18.4 wt % exhibits the maximum Faraday efficiency of 91.4% for CO at -0.728 V. The operando infrared spectroscopy studies prove the presence of main intermediates *COO-, *COOH, and *CO on Cd-NC-5M SACs during the catalytic process, indicating that the CO2RR follows the proton-decoupled electron-transfer mechanism. Density functional theory simulations reveal that the Cd-N4 structure reduces the Gibbs free energy of the rate-determining step (the hydrogenation step of *COOH).
Collapse
Affiliation(s)
- Shuguang Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Peng Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lei Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yingjun Sun
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- The Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Wang Q, Wang W, Zhu C, Wu C, Yu H. A novel strategy to achieve simultaneous efficient formate production and p-nitrophenol removal in a co-electrolysis system of CO2 and p-nitrophenol. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Ling Y, Ma Q, Yu Y, Zhang B. Optimization Strategies for Selective CO2 Electroreduction to Fuels. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s12209-021-00283-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractCapturing CO2 from the atmosphere and converting it into fuels are an efficient strategy to stop the deteriorating greenhouse effect and alleviate the energy crisis. Among various CO2 conversion approaches, electrocatalytic CO2 reduction reaction (CO2RR) has received extensive attention because of its mild operating conditions. However, the high onset potential, low selectivity toward multi-carbon products and poor cruising ability of CO2RR impede its development. To regulate product distribution, previous studies performed electrocatalyst modification using several universal methods, including composition manipulation, morphology control, surface modification, and defect engineering. Recent studies have revealed that the cathode and electrolytes influence the selectivity of CO2RR via pH changes and ionic effects, or by directly participating in the reduction pathway as cocatalysts. This review summarizes the state-of-the-art optimization strategies to efficiently enhance CO2RR selectivity from two main aspects, namely the cathode electrocatalyst and the electrolyte.
Collapse
|
29
|
Zhao Y, Cong H, Li P, Wu D, Chen S, Luo W. Hexagonal RuSe
2
Nanosheets for Highly Efficient Hydrogen Evolution Electrocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuanmeng Zhao
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Peng Li
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Dean Wu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Shengli Chen
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| |
Collapse
|
30
|
Zhao Y, Cong H, Li P, Wu D, Chen S, Luo W. Hexagonal RuSe
2
Nanosheets for Highly Efficient Hydrogen Evolution Electrocatalysis. Angew Chem Int Ed Engl 2021; 60:7013-7017. [DOI: 10.1002/anie.202016207] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/17/2021] [Indexed: 12/31/2022]
Affiliation(s)
- Yuanmeng Zhao
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Peng Li
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Dean Wu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Shengli Chen
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| |
Collapse
|
31
|
Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev 2021; 50:4993-5061. [DOI: 10.1039/d0cs00071j] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This timely and comprehensive review mainly summarizes advances in heterogeneous electroreduction of CO2: from fundamentals to value-added products.
Collapse
|
32
|
Li SH, Qi MY, Tang ZR, Xu YJ. Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chem Soc Rev 2021; 50:7539-7586. [PMID: 34002737 DOI: 10.1039/d1cs00323b] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal phosphides (MPs) with unique and desirable physicochemical properties provide promising potential in practical applications, such as the catalysis, gas/humidity sensor, environmental remediation, and energy storage fields, especially for transition metal phosphides (TMPs) and MPs consisting of group IIIA and IVA metal elements. Most studies, however, on the synthesis of MP nanomaterials still face intractable challenges, encompassing the need for a more thorough understanding of the growth mechanism, strategies for large-scale synthesis of targeted high-quality MPs, and practical achievement of functional applications. This review aims at providing a comprehensive update on the controllable synthetic strategies for MPs from various metal sources. Additionally, different passivation strategies for engineering the structural and electronic properties of MP nanostructures are scrutinized. Then, we showcase the implementable applications of MP-based materials in emerging sustainable catalytic fields including electrocatalysis, photocatalysis, mild thermocatalysis, and related hybrid systems. Finally, we offer a rational perspective on future opportunities and remaining challenges for the development of MPs in the materials science and sustainable catalysis fields.
Collapse
Affiliation(s)
- Shao-Hai Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
33
|
Wang J, Sun J, Liu D, Jiang L. Visible‐Light‐Driven CO
2
Reduction Catalyzed by a Dinuclear Nickel Complex. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jia‐Wei Wang
- KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat‐sen University 510275 Guangzhou China
| | - Jia‐Kai Sun
- KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat‐sen University 510275 Guangzhou China
| | - Dong‐Cheng Liu
- School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 541004 Guilin China
| | - Long Jiang
- KLGHEI of Environment and Energy Chemistry School of Chemistry Sun Yat‐sen University 510275 Guangzhou China
| |
Collapse
|
34
|
Unveiling in situ evolved In/In 2O 3-x heterostructure as the active phase of In 2O 3 toward efficient electroreduction of CO 2 to formate. Sci Bull (Beijing) 2020; 65:1547-1554. [PMID: 36738072 DOI: 10.1016/j.scib.2020.04.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/01/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Uncovering the structure evolution and real active species of energy catalytic materials under reaction conditions is important for both understanding structure-activity relationship and constructing electrocatalysts for CO2 electroreduction (CO2ER). And integrating CO2ER with an anodic organic transformation to replace the oxygen evolution reaction is highly desirable. Here, In2O3 is selected as the model material to reveal the surface reconstruction under CO2ER condition. In situ and ex situ results reveal that the electrochemical in situ reconstruction of crystalline In2O3 leads to the formation of crystalline-In/amorphous-In2O3-x heterostructure (In/In2O3-x). In/In2O3-x acts as the real active phase with Faradaic efficiency of ~ 89.2% for the formate, outperforming In (~67.5%). The improved performance can be ascribed to electron-rich In rectified by Schottky effect of In/In2O3-x heterostructure. Impressively, formate and high-value octanenitrile can be simultaneously achieved by integrating CO2ER with octylamine oxidation in an In/In2O3-x‖Ni2P two-electrode electrolyzer.
Collapse
|
35
|
Xiao YH, Gu ZG, Zhang J. Surface-coordinated metal-organic framework thin films (SURMOFs) for electrocatalytic applications. NANOSCALE 2020; 12:12712-12730. [PMID: 32584342 DOI: 10.1039/d0nr03115a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design and development of highly efficient electrocatalysts are very important in energy storage and conversion. As a kind of inorganic organic hybrid material, metal-organic frameworks (MOFs) have been used as electrocatalysts in electrocatalytic reactions due to their structural diversities and fascinating functionalities. Particularly, MOF thin films are coordinated on substrate surfaces by a liquid phase epitaxial (LPE) layer by layer (LBL) growth method (called surface-coordinated MOF thin films, SURMOFs), and recently have been studied in various applications due to their precisely controlled thickness, preferred growth orientation and homogeneous surface. In this review, we will summarize the preparation and electrocatalysis of SURMOFs and their derived thin films (SURMOF-D). The SURMOF based thin films possess diverse topological structures and flexible properties, providing abundant catalytically active sites and fast charge transfer for efficient electrocatalytic performance in the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CRR), supercapacitors, tandem electrocatalysis and so on. The research challenges and problems of SURMOFs for electrocatalytic applications are also discussed at the end of the review.
Collapse
Affiliation(s)
- Yi-Hong Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | | | | |
Collapse
|
36
|
Xu H, You S, Lang Z, Sun Y, Sun C, Zhou J, Wang X, Kang Z, Su Z. Highly Efficient Photoreduction of Low‐Concentration CO
2
to Syngas by Using a Polyoxometalates/Ru
II
Composite. Chemistry 2020; 26:2735-2740. [DOI: 10.1002/chem.201905155] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Hui Xu
- Department College of ChemistryJilin University Changchun 130012 P. R. China
| | - Siqi You
- Local & United Engineering Lab for Power Batteries Key Lab of, Polyoxometalate Science of Ministry of EducationNortheast Normal University Changchun 130024 Jilin P. R. China
| | - Zhongling Lang
- Local & United Engineering Lab for Power Batteries Key Lab of, Polyoxometalate Science of Ministry of EducationNortheast Normal University Changchun 130024 Jilin P. R. China
| | - Yue Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow University Suzhou 215123 P. R. China
| | - Chunyi Sun
- Local & United Engineering Lab for Power Batteries Key Lab of, Polyoxometalate Science of Ministry of EducationNortheast Normal University Changchun 130024 Jilin P. R. China
| | - Jie Zhou
- Local & United Engineering Lab for Power Batteries Key Lab of, Polyoxometalate Science of Ministry of EducationNortheast Normal University Changchun 130024 Jilin P. R. China
| | - Xinlong Wang
- Local & United Engineering Lab for Power Batteries Key Lab of, Polyoxometalate Science of Ministry of EducationNortheast Normal University Changchun 130024 Jilin P. R. China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow University Suzhou 215123 P. R. China
| | - Zhongmin Su
- Department College of ChemistryJilin University Changchun 130012 P. R. China
| |
Collapse
|
37
|
Zhao T, Tian Y, Yan L, Su Z. Heteroatom-doped C 3N as a promising metal-free catalyst for a high-efficiency carbon dioxide reduction reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj02318c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Converting CO2 into useful fuels and chemicals offers a promising strategy for mitigating the issues of energy crisis and global warming.
Collapse
Affiliation(s)
- Tingting Zhao
- Institute of Functional Materials Chemistry and Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Yu Tian
- Institute for Interdisciplinary Quantum Information Technology
- Jilin Engineering Normal University
- Changchun
- China
| | - Likai Yan
- Institute of Functional Materials Chemistry and Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Zhongmin Su
- Institute of Functional Materials Chemistry and Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| |
Collapse
|