1
|
Yang LY, Qin Y, Zhao Z, Zhao D. Nickel-Catalyzed Reductive Protocol to Access Silacyclobutanes with Unprecedented Functional Group Tolerance. Angew Chem Int Ed Engl 2024; 63:e202407773. [PMID: 39172049 DOI: 10.1002/anie.202407773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
While significant progress has been made in the area of transition metal-catalyzed ring-opening and formal cycloaddition reactions of 1,1-disubstituted silacyclobutanes (SCBs), synthesizing these SCBs-particularly those bearing additional functional groups-continues to present synthetic challenges. In this context, we present a novel Ni-catalyzed reductive coupling reaction that combines 1-chloro-substituted silacyclobutanes with aryl or vinyl halides and pseudohalides, thereby obviating the need for organometallic reagents. This method facilitates the generation of 1,1-disubstituted silacyclobutanes with a remarkable tolerance for various functional groups. This approach serves as a complementary and more step-economical alternative to the commonly used yet moisture- and air-sensitive nucleophilic substitution reactions involving Grignard or lithium reagents. Our initial mechanistic studies indicate that this reaction is initiated by oxidative cleavage of the Si-Cl bond in 1-chlorosilacyclobutanes, which represents a distinct mechanism from the previously documented reductive coupling processes involving carbon electrophiles and chlorosilanes.
Collapse
Affiliation(s)
- Ling-Yun Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Zhihan Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
2
|
Fu B, Wang L, Chen K, Yuan X, Yin J, Wang S, Shi D, Zhu B, Guan W, Zhang Q, Xiong T. Enantioselective Copper-Catalyzed Sequential Hydrosilylation of Arylmethylenecyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202407391. [PMID: 39023320 DOI: 10.1002/anie.202407391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Despite impressive advances in the construction of enantioenriched silacarbocycles featuring silicon-stereogenic centers via a selection of well-defined sila-synthons, the development of a more convenient and economic method with readily available starting materials is significantly less explored and remains a considerable challenge. Herein, we report the first example of copper-catalyzed sequential hydrosilylation of readily accessible methylenecyclopropanes (MCPs) and primary silanes, affording an efficient and convenient route to a wide range of chiral silacyclopentanes bearing consecutive silicon- and carbon-stereogenic centers with excellent enantio- and diastereoselectivities (generally ≥98 % ee, >25 : 1 dr). Mechanistic studies reveal that these reactions combine copper-catalyzed intermolecular ring-opening hydrosilylation of aryl MCPs and intramolecular asymmetric hydrosilylation of the resultant Z/E mixture of homoallylic silanes.
Collapse
Affiliation(s)
- Bin Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130024, China
| | - Lianghua Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Kexin Chen
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Simin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dazhen Shi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
3
|
Tang X, Tang Y, Peng J, Du H, Huang L, Gao J, Liu S, Wang D, Wang W, Gao L, Lan Y, Song Z. Ligand-Controlled Regiodivergent Ring Expansion of Benzosilacyclobutenes with Alkynes en Route to Axially Chiral Silacyclohexenyl Arenes. J Am Chem Soc 2024; 146:26639-26648. [PMID: 39305495 DOI: 10.1021/jacs.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
A ligand-controlled regiodivergent and enantioselective ring expansion of benzosilacyclobutenes with internal naphthyl alkynes has been achieved by adjusting the ligand cavity size. The ligand (S)-8H-binaphthyl phosphoramidite, featuring small methyl groups on its arms, provides a spacious cavity that favors sterically demanding Si-Csp3 ring expansion, predominantly yielding axially chiral (S)-1-silacyclohexenyl arenes. In contrast, the ligand (R)-spiro phosphoramidite, with bulky t-Bu groups on its arms, offers a compact cavity that facilitates less sterically demanding Si-Csp2 ring expansion, leading primarily to axially chiral (S)-2-silacyclohexenyl arenes. Density functional theory calculations delineate distinct mechanistic pathways for each ring expansion route and elucidate their regio- and enantioselectivity.
Collapse
Affiliation(s)
- Xiaoxiao Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yulang Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ju Peng
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Huimin Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liying Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiahui Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shiyang Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Dongxu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Mondal P, Mandal N, Pal AK, Datta A. Computational Insights into Palladium-Catalyzed Site-Selective Anilide and Benzamide-Type [3+2] Annulation via Double C-H Bond Activation. J Org Chem 2024; 89:11371-11379. [PMID: 39072638 DOI: 10.1021/acs.joc.4c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The mechanism of palladium-catalyzed annulation reactions of benzamide- and anilide-type aromatic systems with maleimides is investigated using density functional theory. Double C-H bond activation is key to forming the desired annulation product. The first C-H bond activation for anilide- and amide-type ligands can occur at the ortho and benzylic C-H bonds, while the second C-H activation occurs at the meta carbon of the aromatic rings. For the anilide-type system, ortho and benzylic C-H bond activations occur via four- and five-membered palladacycles, respectively. In contrast, for the benzamide-type system, ortho and benzylic C-H bond activations occur via five- and six-membered palladacycles, respectively. The energy span model suggests that the initial C-H bond activation step at the benzylic position determines the turnover frequency for both anilide- and benzamide-type systems. Energy decomposition analysis and distortion-interaction/activation-strain analyses are employed to understand the electronic and steric factors controlling the turnover frequency-determining transition state.
Collapse
Affiliation(s)
- Partha Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| | - Nilangshu Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| |
Collapse
|
5
|
Li J, Xu S, Liang J, Zheng J, Li P, Wang J, Li B. Ruthenium-Catalyzed Sequential Hydrosilylation/Dehydrogenation and C-H Silylation: Synthesis of Six-Membered Indole Silacycles and Pyrrole Silyl Ether Cycles. Org Lett 2024; 26:6142-6147. [PMID: 38995672 DOI: 10.1021/acs.orglett.4c01949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Selective dehydrogenative C-H silylation is one of the most powerful tools to synthesize silacycles. Herein, we developed Ru-catalyzed sequential hydrosilylation/C-H silylation of allyl-indoles and dehydrogenative O-H/C-H silylation of pyrrole phenols. Both six-membered indole silacycles and pyrrole silyl ether cycles were successfully synthesized with good functional group tolerance. Furthermore, the RuHCl(CO)(PPh3)3 catalyst exhibited high reaction compatibility in hydrosilylation of alkene, dehydrogenative O-H silylation, and C-H silylation.
Collapse
Affiliation(s)
- Jiefang Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Shanshan Xu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jieyu Liang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Juanjuan Zheng
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ping Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jun Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of People's Republic of China
| | - Bin Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong 515200, People's Republic of China
| |
Collapse
|
6
|
Sun ZH, Wang Q, Xu LP. Mechanism and Origins of Enantioselectivity in the Nickel-catalyzed Asymmetric Synthesis of Silicon-Stereogenic Benzosiloles. J Org Chem 2024; 89:5675-5682. [PMID: 38569117 DOI: 10.1021/acs.joc.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
As important π-skeletons, benzosiloles often possess unique electronic and optical properties and have been widely used in semiconductor materials. Therefore, great attention has been drawn to the area of developing novel synthetic methods for various benzosiloles. However, the synthesis of enantioenriched silicon-stereogenic benzosiloles is still at an early stage and remains to be explored. Herein, we performed systematic density functional theory studies on the recently reported nickel-catalyzed asymmetric synthesis of silicon-stereogenic benosiloles, which was enabled by an enantioselective desymmetrization of (2-alkenyl)aryl-substituted silacyclobutanes. Our computational study shows that the reaction mechanism involves ligand exchange, oxidative addition, alkene insertion, and hydrogen-transfer coupled reductive-demetalation steps. The proposed transmetalation and β-hydride elimination mechanism was not found, which might be due to the unfavorable ring strain of the multicyclic intermediates. The novel hydrogen-transfer coupled reductive-demetalation mechanism was shown to be reasonable for the generation of the silicon-stereogenic benzosilole. Noncovalent interactions (including C-H···π and hydrogen bonding) in the rate-determining alkene insertion transition state account for the origins of the enantioselectivity. Our computational study sheds light on the detailed reaction mechanism and also provides insights for the development of novel approaches for synthesis of high-value silicon-stereogenic compounds.
Collapse
Affiliation(s)
- Ze-Hua Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
7
|
Liu M, Yan N, Tian H, Li B, Zhao D. Ring Expansion toward Disila-carbocycles via Highly Selective C-Si/C-Si Bond Cross-Exchange. Angew Chem Int Ed Engl 2024; 63:e202319187. [PMID: 38388782 DOI: 10.1002/anie.202319187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Herein, we successfully inhibited the preferential homodimerization and C-Si/Si-H bond cross-exchange of benzosilacyclobutenes and monohydro-silacyclobutanes and achieved the first highly selective C-Si/C-Si bond cross-exchange reaction by deliberately tuning the Ni-catalytic system, which constitutes a powerful and atom-economical ring expansion method for preparing medium-sized cyclic compounds bearing two silicon atoms at the ring junction, which are otherwise inaccessible. The DFT calculation explicitly elucidated the pivotal role of Si-H bond at silacyclobutanes and the high ring strain of two substrates in realizing the two C-Si bonds cleavage and reformation in the catalytic cycle.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Nuo Yan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haowen Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Geng S, Pu Y, Wang S, Ji Y, Feng Z. Advances in disilylation reactions to access cis/ trans-1,2-disilylated and gem-disilylated alkenes. Chem Commun (Camb) 2024; 60:3484-3506. [PMID: 38469709 DOI: 10.1039/d4cc00288a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organosilane compounds are widely used in both organic synthesis and materials science. Particularly, 1,2-disilylated and gem-disilylated alkenes, characterized by a carbon-carbon double bond and multiple silyl groups, exhibit significant potential for subsequently diverse transformations. The versatility of these compounds renders them highly promising for applications in materials, enabling them to be valuable and versatile building blocks in organic synthesis. This review provides a comprehensive summary of methods for the preparation of cis/trans-1,2-disilylated and gem-disilylated alkenes. Despite notable advancements in this field, certain limitations persist, including challenges related to regioselectivity in the incorporation and chemoselectivity in the transformation of two nearly identical silyl groups. The primary objective of this review is to outline synthetic methodologies for the generation of these alkenes through disilylation reactions, employing silicon reagents, specifically disilanes, hydrosilanes, and silylborane reagents. The review places particular emphasis on investigating the practical applications of the C-Si bond of disilylalkenes and delves into an in-depth discussion of reaction mechanisms, particularly those reactions involving the activation of Si-Si, Si-H, and Si-B bonds, as well as the C-Si bond formation.
Collapse
Affiliation(s)
- Shasha Geng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Yu Pu
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| | - Siyu Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Yanru Ji
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| |
Collapse
|
9
|
Gan WE, Wu YS, Wu B, Fang CY, Cao J, Xu Z, Xu LW. Copper-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Benzoxasiloles. Angew Chem Int Ed Engl 2024; 63:e202317973. [PMID: 38179840 DOI: 10.1002/anie.202317973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
A Cu-catalyzed asymmetric synthesis of silicon-stereogenic benzoxasiloles has been realized via intramolecular Si-O coupling of [2-(hydroxymethyl)phenyl]silanes. Cu(I)/difluorphos is found to be an efficient catalytic system for enantioselective Si-C bond cleavage and Si-O bond formation. In addition, kinetic resolution of racemic substituted [2-(hydroxymethyl)phenyl]silanes using Cu(I)/ PyrOx (pyridine-oxazoline ligands) as the catalytic system is developed to afford carbon- and silicon-stereogenic benzoxasiloles. Ring-opening reactions of chiral benzoxasiloles with organolithiums and Grignard reagents yield various enantioenriched functionalized tetraorganosilanes.
Collapse
Affiliation(s)
- Wan-Er Gan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Yong-Shun Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Bin Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Chun-Yuan Fang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Jian Cao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Zheng Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Li-Wen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, P. R. China
| |
Collapse
|
10
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
11
|
Huang WS, Xu H, Yang H, Xu LW. Catalytic Synthesis of Silanols by Hydroxylation of Hydrosilanes: From Chemoselectivity to Enantioselectivity. Chemistry 2024; 30:e202302458. [PMID: 37861104 DOI: 10.1002/chem.202302458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/21/2023]
Abstract
As a crucial class of functional molecules in organosilicon chemistry, silanols are found valuable applications in the fields of modern science and will be a potentially powerful framework for biologically active compounds or functional materials. It has witnessed an increasing demand for non-natural organosilanols, as well as the progress in the synthesis of these structural features. From the classic preparative methods to the catalytic selective oxidation of hydrosilanes, electrochemical hydrolysis of hydrosilanes, and then the construction of the most challenging silicon-stereogenic silanols. This review summarized the progress in the catalyzed synthesis of silanols via hydroxylation of hydrosilanes in the last decade, with a particular emphasis on the latest elegant developments in the desymmetrization strategy for the enantioselective synthesis of silicon-stereogenic silanols from dihydrosilanes.
Collapse
Affiliation(s)
- Wei-Sheng Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Hao Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
12
|
Hayashi D, Tsuda T, Shintani R. Palladium-Catalyzed Skeletal Rearrangement of Substituted 2-Silylaryl Triflates via 1,5-C-Pd/C-Si Bond Exchange. Angew Chem Int Ed Engl 2023; 62:e202313171. [PMID: 37935641 DOI: 10.1002/anie.202313171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
A palladium-catalyzed skeletal rearrangement of 2-(2-allylarylsilyl)aryl triflates has been developed to give highly fused tetrahydrophenanthrosilole derivatives via unprecedented 1,5-C-Pd/C-Si bond exchange. The reaction pathways can be switched toward 4-membered ring-forming C(sp2 )-H alkylation by tuning the reaction conditions to give completely different products, fused dihydrodibenzosilepin derivatives, from the same starting materials. The inspection of the reaction conditions revealed the importance of carboxylates in promoting the C-Pd/C-Si bond exchange.
Collapse
Affiliation(s)
- Daigo Hayashi
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Tomohiro Tsuda
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Lin Y, Shi H. Rhodium-Catalyzed Addition of (Trialkylsilyl)arenes to Electrophiles via π-Coordination-Driven C-Si Bond Activation. J Am Chem Soc 2023; 145:22753-22761. [PMID: 37787751 DOI: 10.1021/jacs.3c08603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Aromatic organosilicon compounds serve as valuable synthons due to their diverse reactivities, excellent compatibility with various functional groups, and ready availability. However, (trialkylsilyl)arenes, despite their potential utility, are generally considered unsuitable substrates for transition-metal-catalyzed cross-coupling due to the low polarity of their covalent C(aryl)-Si bonds and the significant steric hindrance imposed by alkyl substituents. These factors render them inert toward reactions with transition metals, such as transmetalation and oxidative addition. In this study, we present a method for the rhodium-catalyzed addition of (trialkylsilyl)arenes to electrophiles via π-coordination-driven desilylation. We propose that a dicationic rhodium species activates the unbiased C(aryl)-Si bond, increasing its polarity by forming an η6-arene complex, thereby facilitating heterolysis. The resulting phenyl anion complex readily engages in addition reactions with external electrophiles, effectively forming C-C bonds. Through comprehensive computational studies, we have unraveled an unexpected stepwise pathway for desilylation with fluoride. This pathway involves the addition of fluoride to the aromatic ring, followed by a 1,2-migration of fluoride, ultimately culminating in the departure of fluorotrimethylsilane.
Collapse
Affiliation(s)
- Yunzhi Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
14
|
Zhu WK, Zhu HJ, Fang XJ, Ye F, Cao J, Xu Z, Xu LW. Rhodium-Catalyzed Hydrolytic Cleavage of the Silicon-Carbon Bond of Silacyclobutanes to Access Silanols. Org Lett 2023; 25:7186-7191. [PMID: 37754348 DOI: 10.1021/acs.orglett.3c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Herein, we report the first rhodium-catalyzed hydrolytic cleavage of the silicon-carbon bond in silacyclobutanes using water as the reactant. A series of silacyclobutanes could be employed in this reaction in the presence of the Rh/BINAP complex, resulting in the corresponding silanols in good yields. Additionally, a chiral 1,1,4,4-tetraaryl-2,3-O-isopropylidene-l-threitol-derived phosphoramidite ligand could be used in this reaction to yield Si-stereogenic silanol with promising enantioselectivity.
Collapse
Affiliation(s)
- Wei-Ke Zhu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Hua-Jie Zhu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
15
|
Wu M, Chen YW, Lu Q, Wang YB, Cheng JK, Yu P, Tan B. Organocatalytic Si-C Aryl Bond Functionalization-Enabled Atroposelective Synthesis of Axially Chiral Biaryl Siloxanes. J Am Chem Soc 2023; 145:20646-20654. [PMID: 37695885 DOI: 10.1021/jacs.3c07839] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Chiral organosilanes are valuable chemical entities in the development of functional organic materials, asymmetric catalysis, and medicinal chemistry. As an important strategy for constructing chiral organosilanes, the asymmetric functionalization of the Si-CAryl bond typically relies on transition-metal catalysis. Herein, we present an efficient method for atroposelective synthesis of biaryl siloxane atropisomers via organocatalytic Si-C bond functionalization of dinaphthosiloles with silanol nucleophiles. The reaction proceeds through an asymmetric protonation and simultaneous Si-C bond cleavage/silanolysis sequence in the presence of a newly developed chiral Brønsted acid catalyst. The versatile nature of the Si-C bond streamlines the derivatization of axially chiral products into other functional atropisomers, thereby expanding the applicability of this method.
Collapse
Affiliation(s)
- Ming Wu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi-Wei Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian Lu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong-Bin Wang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Kee Cheng
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
16
|
Chen F, Liu L, Zeng W. Synthetic strategies to access silacycles. Front Chem 2023; 11:1200494. [PMID: 37398981 PMCID: PMC10313416 DOI: 10.3389/fchem.2023.1200494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
In comparison with all-carbon parent compounds, the incorporation of Si-element into carboskeletons generally endows the corresponding sila-analogues with unique biological activity and physical-chemical properties. Silacycles have recently shown promising application potential in biological chemistry, pharmaceuticals industry, and material chemistry. Therefore, the development of efficient methodology to assemble versatile silacycles has aroused increasing concerns in the past decades. In this review, recent advances in the synthesis of silacycle-system are briefly summarized, including transition metal-catalytic and photocatalytic strategies by employing arylsilanes, alkylsilane, vinylsilane, hydrosilanes, and alkynylsilanes, etc. as starting materials. Moreover, a clear presentation and understanding of the mechanistic aspects and features of these developed reaction methodologies have been high-lighted.
Collapse
|
17
|
Qi L, Pan QQ, Wei XX, Pang X, Liu Z, Shu XZ. Nickel-Catalyzed Reductive [4 + 1] Sila-Cycloaddition of 1,3-Dienes with Dichlorosilanes. J Am Chem Soc 2023. [PMID: 37285283 DOI: 10.1021/jacs.3c04209] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transition-metal-catalyzed sila-cycloaddition has been a promising tool for accessing silacarbocycle derivatives, but the approach has been limited to a selection of well-defined sila-synthons. Herein, we demonstrate the potential of chlorosilanes, which are industrial feedstock chemicals, for this type of reaction under reductive nickel catalysis. This work extends the scope of reductive coupling from carbocycle to silacarbocycle synthesis and from single C-Si bond formation to sila-cycloaddition reactions. The reaction proceeds under mild conditions and shows good substrate scope and functionality tolerance, and it offers new access to silacyclopent-3-enes and spiro silacarbocycles. The optical properties of several spiro dithienosiloles as well as structural variations of the products are demonstrated.
Collapse
Affiliation(s)
- Liangliang Qi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qiu-Quan Pan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiao-Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
18
|
Sivaramakrishna A, Pete S, Mandar Mhaskar C, Ramann H, Venkata Ramanaiah D, Arbaaz M, Niyaz M, Janardan S, Suman P. Role of hypercoordinated silicon(IV) complexes in activation of carbon–silicon bonds: An overview on utility in synthetic chemistry. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
19
|
Liu MM, Xu Y, He C. Catalytic Asymmetric Dehydrogenative Si-H/N-H Coupling: Synthesis of Silicon-Stereogenic Silazanes. J Am Chem Soc 2023; 145:11727-11734. [PMID: 37204933 DOI: 10.1021/jacs.3c02263] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite growing progress in the construction of silazanes, the catalytic asymmetric synthesis of silicon-stereogenic silazanes is significantly less explored and remains a considerable challenge. Herein, we report a highly enantioselective synthesis of silicon-stereogenic silazanes via catalytic dehydrogenative coupling of dihydrosilanes with anilines. The reaction readily produces a wide range of chiral silazanes and bis-silazanes in excellent yields and stereoselectivities (up to 99% ee). Further utility of this process is demonstrated by the construction of polycarbosilazanes featuring configurational main chain silicon-stereogenic chirality. In addition, the straightforward transformation of the enantioenriched silazanes delivers various chiral silane compounds in a stereospecific fashion, illustrating their potential utilities as synthons for the synthesis of novel silicon-containing functional molecules.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yankun Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
20
|
Chen H, Zhang H, Du H, Kuang Y, Pang Q, Gao L, Wang W, Yang C, Song Z. Enantioselective Synthesis of 6/5-Spirosilafluorenes by Asymmetric Ring Expansion of 4/5-Spirosilafluorenes with Alkynes. Org Lett 2023; 25:1558-1563. [PMID: 36847236 DOI: 10.1021/acs.orglett.3c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A rhodium-catalyzed asymmetric ring expansion of 4/5-spirosilafluorenes with terminal alkynes has been developed using sterically demanding binaphthyl phosphoramidite ligand. The reaction is not only strategically distinct from cyclization or cycloaddition but also showcases the first enantioselective synthesis of axially chiral 6/5-spirosilafluorenes.
Collapse
Affiliation(s)
- Hua Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haixia Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huimin Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuzhong Kuang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qinjiao Pang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Ling FY, Ye F, Fang XJ, Zhou XH, Huang WS, Xu Z, Xu LW. An unusual autocatalysis with an air-stable Pd complex to promote enantioselective synthesis of Si-stereogenic enynes. Chem Sci 2023; 14:1123-1131. [PMID: 36756338 PMCID: PMC9891361 DOI: 10.1039/d2sc06181c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Given the powerful potential of chiral-at-silicon chemistry, enantioselective synthesis of Si-stereogenic centers has attracted substantial research interest in recent years. However, the catalytic asymmetric synthesis of Si-stereogenic organosilicon compounds remains an appealing venture and is a challenging subject because of the difficulty in achieving high reactivity and stereoselectivity for "silicon-center" transformations. Herein, we disclose a highly enantioselective palladium-catalyzed hydrosilylation of 1,3-diynes with dihydrosilanes, which enables the facile preparation of Si-stereogenic enynes and an enyne-linked chiral polymer (polyenyne) in good yields and excellent ees (up to >99%) by desymmetrization. The unusual stereoselectivity in this reaction is achieved by precisely controlling the steric hindrance and electronic effect of the newly developed chiral ligands, resulting in a wide range of chiral silanes and a Si-containing polymer bearing a Si-stereogenic center which is otherwise difficult to access. The key to the high enantioselectivity relies on catalyst aggregation-induced non-covalent interaction, which exerts a remarkably positive influence on the Si-H bond activation and enhancement of enantioselectivity, in which the palladium/P-ligand complex was proved to be air-stable and moisture-insensitive in this reaction.
Collapse
Affiliation(s)
- Fang-Ying Ling
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Xiao-Hua Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Wei-Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences P. R. China
| |
Collapse
|
22
|
Fan Y, Jing J, Tong R, Tu X, Gao L, Wang W, Song Z. Intramolecular Ring Expansion of 3-Silaazetidine with Alkynes Enabled by Pd-Catalyzed Si-C Bond Activation. Org Lett 2023; 25:455-460. [PMID: 36472378 DOI: 10.1021/acs.orglett.2c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An intramolecular ring expansion of in situ formed 3-silaazetidine with internal alkynes has been developed via Pd-catalyzed Si-C bond activation. The reaction gives rise to 6,5- and 6,6-fused bicyclic 1,3-azasilines, in which the silicon atom locates at the ring junction position.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jun Jing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruiqi Tong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Tu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
23
|
Zhu W, Xu L. Enantioselective Rhodium-Catalyzed Dual Ring Expansion of Spirosilabicyclobutane with Alkynes. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
24
|
Zeng Y, Fang XJ, Tang RH, Xie JY, Zhang FJ, Xu Z, Nie YX, Xu LW. Rhodium-Catalyzed Dynamic Kinetic Asymmetric Hydrosilylation to Access Silicon-Stereogenic Center. Angew Chem Int Ed Engl 2022; 61:e202214147. [PMID: 36328976 DOI: 10.1002/anie.202214147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Indexed: 11/06/2022]
Abstract
Strategies on the construction of enantiomerically pure silicon-stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh-catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with "silicon-centered" racemic hydrosilanes that enables the facile preparation of silicon-stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non-diastereopure-type mixed phosphine-phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the SN 2 substitution of chloride ion to realize the chiral inversion of silicon center.
Collapse
Affiliation(s)
- Yan Zeng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Ren-He Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Jing-Yu Xie
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Feng-Jiao Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Yi-Xue Nie
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| |
Collapse
|
25
|
Fourteen-member silacycle built by cascade reactions induced by a platinum catalyst. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Chen H, Peng J, Pang Q, Du H, Huang L, Gao L, Lan Y, Yang C, Song Z. Enantioselective Synthesis of Spirosilabicyclohexenes by Asymmetric Dual Ring Expansion of Spirosilabicyclobutane with Alkynes. Angew Chem Int Ed Engl 2022; 61:e202212889. [DOI: 10.1002/anie.202212889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Hua Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Ju Peng
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 China
| | - Qinjiao Pang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Huimin Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Liying Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Yu Lan
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 China
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology College of Chemistry Sichuan University Chengdu 610064 China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| |
Collapse
|
27
|
Liu H, Zhou H, Chen X, Xu J. N-Heterocyclic Carbene-Catalyzed Desymmetrization of Siladials To Access Silicon-Stereogenic Organosilanes. J Org Chem 2022; 87:16127-16137. [DOI: 10.1021/acs.joc.2c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hao Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Hongwei Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Xingkuan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Jianfeng Xu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
28
|
Shi Y, Shi X, Zhang J, Qin Y, Li B, Zhao D. Sila-spirocyclization involving unstrained C(sp 3)-Si bond cleavage. Nat Commun 2022; 13:6697. [PMID: 36335183 PMCID: PMC9637223 DOI: 10.1038/s41467-022-34466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022] Open
Abstract
C - Si Bond cleavage is one of the key elemental steps for a wide variety of silicon-based transformations. However, the cleavage of unstrained Si-C(sp3) bonds catalyzed by transition metal are still in their infancy. They generally involve the insertion of a M - C(sp2) species into the C - Si bond and consequent intramolecular C(sp2)‒Si coupling to exclusively produce siloles. Here we report the Pd-catalyzed sila-spirocyclization, in which the Si-C(sp3) bond is activated by the insertion of a M - C(sp3) species and followed by the formation of a new C(sp3)‒Si bond, allowing the construction of diverse spirosilacycles. This reactivity mode, which is strongly supported by DFT calculations may open an avenue for the Si-C(sp3) bond cleavage and silacycle synthesis.
Collapse
Affiliation(s)
- Yufeng Shi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaonan Shi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bo Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91106, USA.
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
29
|
Liu H, He P, Liao X, Zhou Y, Chen X, Ou W, Wu Z, Luo C, Yang L, Xu J. Stereoselective Access to Silicon-Stereogenic Silacycles via the Carbene-Catalyzed Desymmetric Benzoin Reaction of Siladials. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hao Liu
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Pengyu He
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Xuanlong Liao
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yipeng Zhou
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Xingkuan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Wenpiao Ou
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Zhenhong Wu
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Cong Luo
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Limin Yang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Jianfeng Xu
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
30
|
Esteruelas MA, López AM, Oñate E, Raga E. Metathesis between E-C(sp n ) and H-C(sp 3 ) σ-Bonds (E=Si, Ge; n=2, 3) on an Osmium-Polyhydride. Angew Chem Int Ed Engl 2022; 61:e202204081. [PMID: 35544362 PMCID: PMC9401005 DOI: 10.1002/anie.202204081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 01/12/2023]
Abstract
The silylation of a phosphine of OsH6 (Pi Pr3 )2 is performed via net-metathesis between Si-C(spn ) and H-C(sp3 ) σ-bonds (n=2, 3). Complex OsH6 (Pi Pr3 )2 activates the Si-H bond of Et3 SiH and Ph3 SiH to give OsH5 (SiR3 )(Pi Pr3 )2 , which yield OsH4 {κ1 -P,η2 -SiH-[i Pr2 PCH(Me)CH2 SiR2 H]}(Pi Pr3 ) and R-H (R=Et, Ph), by displacement of a silyl substituent with a methyl group of a phosphine. Such displacement is a first-order process, with activation entropy consistent with a rate determining step occurring via a highly ordered transition state. It displays selectivity, releasing the hydrocarbon resulting from the rupture of the weakest Si-substituent bond, when the silyl ligand bears different substituents. Accordingly, reactions of OsH6 (Pi Pr3 )2 with dimethylphenylsilane, and 1,1,1,3,5,5,5-heptamethyltrisiloxane afford OsH5 (SiR2 R')(Pi Pr3 )2 , which evolve into OsH4 {κ1 -P,η2 -GeH-[i Pr2 PCH(Me)CH2 SiR2 H]}(Pi Pr3 ) (R=Me, OSiMe3 ) and R'-H (R'=Ph, Me). Exchange reaction is extended to Et3 GeH. The latter reacts with OsH6 (Pi Pr3 )2 to give OsH5 (GeEt3 )(Pi Pr3 )2 , which loses ethane to form OsH4 {κ1 -P,η2 -GeH-[i Pr2 PCH(Me)CH2 GeEt2 H]}(Pi Pr3 ).
Collapse
Affiliation(s)
- Miguel A. Esteruelas
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Ana M. López
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Enrique Oñate
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Esther Raga
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universidad de Zaragoza-CSIC50009ZaragozaSpain
| |
Collapse
|
31
|
Wang XC, Li B, Ju CW, Zhao D. Nickel(0)-catalyzed divergent reactions of silacyclobutanes with internal alkynes. Nat Commun 2022; 13:3392. [PMID: 35697690 PMCID: PMC9192776 DOI: 10.1038/s41467-022-31006-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/23/2022] [Indexed: 12/29/2022] Open
Abstract
Transition metal-catalyzed reactions of silacyclobutanes with a variety of π units have attracted much attention and become one of the most straightforward and efficient approaches to rapidly access structurally diverse organosilicon compounds. However, the reaction of silacyclobutanes with alkynes still suffers from some limitations: (1) internal alkynes remain challenging substrates; (2) expensive Pd- or Rh-based catalysts have been employed in all existing systems; (3) controlling chemodivergence has not yet been realized. Herein we realize Ni-catalyzed chemodivergent reactions of silacyclobutanes with alkynes. In comparison with the previous Pd or Rh catalytic systems, our Ni-catalytic system features: 1) complementary substrate scope; 2) ligand-controlled chemodivergence; 3) low cost. The ligand precisely dictates the pathway selectivity, leading to the divergent formation of (benzo)silacyclohexenes and allyl vinylsilanes. Moreover, we demonstrate that employment of a chiral phosphine ligand is capable of forming silicon-stereogenic allyl vinylsilanes in high yields and enantioselectivities. In addition, DFT calculation is performed to elucidate the origin of the switchable selectivities, which is mainly attributed to different ligand steric effects.
Collapse
Affiliation(s)
- Xi-Chao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Cheng-Wei Ju
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
32
|
Esteruelas MA, López AM, Oñate E, Raga E. Metathesis between E−C(sp
n
) and H−C(sp
3
) σ‐Bonds (E=Si, Ge;
n
=2, 3) on an Osmium‐Polyhydride. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Miguel A. Esteruelas
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Ana M. López
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Esther Raga
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| |
Collapse
|
33
|
Huo J, Zhong K, Xue Y, Lyu M, Ping Y, Ouyang W, Liu Z, Lan Y, Wang J. Ligand-Controlled Site- and Enantioselective Carbene Insertion into Carbon-Silicon Bonds of Benzosilacyclobutanes. Chemistry 2022; 28:e202200191. [PMID: 35285989 DOI: 10.1002/chem.202200191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 12/20/2022]
Abstract
We report herein a highly efficient palladium-catalyzed carbene insertion into strained Si-C bonds of benzosilacyclobutanes, which provides an efficient method to access α-chiral silanes. With a sterically hindered ligand, carbene insertion into the C(sp3 )-Si bond of benzosilacyclobutanes occurred in excellent site- and enantioselectivity, while C(sp2 )-Si bond insertion occurred selectively with less sterically hindered ligands. Reaction mechanism, in particular the roles of the chiral ligands in controlling the site-selectivity of the insertion reactions, are elucidated by using hybrid density functional theory.
Collapse
Affiliation(s)
- Jingfeng Huo
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering, of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China
| | - Yazhen Xue
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering, of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - MyeeMay Lyu
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering, of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Yifan Ping
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering, of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Wenbai Ouyang
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering, of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Zhenxing Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering, of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
34
|
Zhou G, Shen X. Visible-Light-Induced Organocatalyzed [2+1] Cyclization of Alkynes and Trifluoroacetylsilanes. Synlett 2022. [DOI: 10.1055/a-1840-5199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The synthesis of common cyclopropenes has been widely studied, but the synthesis of cyclopropenols is a significant challenge. Herein, we highlight our recent work on the synthesis of trifluoromethylated cyclopropenols through [2+1] cycloaddition reaction between alkynes and trifluoroacetylsilanes under visible-light-induced organocatalysis. The novel amphiphilic donor-acceptor carbenes derived from trifluoroacetylsilanes can react effectively with both activated and unactivated alkynes. Broad substrate scope and good functional group tolerance have been achieved. Besides, the synthetic potential of this reaction was highlighted by a gram-scale reaction and the one-pot diastereoselective synthesis of trifluoromethylated cyclopropanols.
Collapse
|
35
|
Tang X, Zhang Y, Tang Y, Li Y, Zhou J, Wang D, Gao L, Su Z, Song Z. Ring Expansion of Silacyclobutanes with Allenoates to Selectively Construct 2- or 3-( E)-Enoate-Substituted Silacyclohexenes. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoxiao Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yulang Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiajing Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Duyang Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
36
|
Wang Q, Zhong KB, Xu H, Li SN, Zhu WK, Ye F, Xu Z, Lan Y, Xu LW. Enantioselective Nickel-Catalyzed Si–C(sp 2) Bond Activation and Migratory Insertion to Aldehydes: Reaction Scope and Mechanism. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qing Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Kang-Bao Zhong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Hao Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shi-Nan Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Wei-Ke Zhu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
37
|
Zhou G, Shen X. Synthesis of Cyclopropenols Enabled by Visible-Light-Induced Organocatalyzed [2+1] Cyclization. Angew Chem Int Ed Engl 2022; 61:e202115334. [PMID: 34994996 DOI: 10.1002/anie.202115334] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 12/28/2022]
Abstract
Although the synthesis of common cyclopropenes has been well studied, the access to cyclopropenols is rather limited. Herein, we report the first synthesis of α-trifluoromethylated cyclopropenols via 2+1 cycloaddition reactions between alkynes and trifluoroacylsilanes, enabled by visible-light-induced organocatalysis. The novel ambiphilic donor-acceptor carbenes derived from trifluoroacetylsilanes reacted efficiently with both activated and non-activated alkynes. The reaction features simple operation, mild conditions, broad substrate scope and good functional group tolerance. The synthetic potential of the reaction is highlighted by the gram-scale reactions and first synthesis of α-trifluoromethylated cyclopropanols through the combination of the 2+1 cyclization and high diastereoselective hydrogenation reaction in one pot.
Collapse
Affiliation(s)
- Gang Zhou
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Xiao Shen
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| |
Collapse
|
38
|
Rhodium hydride enabled enantioselective intermolecular C–H silylation to access acyclic stereogenic Si–H. Nat Commun 2022; 13:847. [PMID: 35165278 PMCID: PMC8844420 DOI: 10.1038/s41467-022-28439-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The tremendous success of stereogenic carbon compounds has never ceased to inspire researchers to explore the potentials of stereogenic silicon compounds. Intermolecular C–H silylation thus represents the most versatile and straightforward strategy to construct C–Si bonds, however, its enantioselective variant has been scarcely reported to date. Herein we report a protocol that allows for the enantioselective intermolecular C–H bond silylation, leading to the construction of a wide array of acyclic stereogenic Si–H compounds under simple and mild reaction conditions. Key to the success is (1) a substrate design that prevents the self-reaction of prochiral silane and (2) the employment of a more reactive rhodium hydride ([Rh]-H) catalyst as opposed to the commonly used rhodium chloride ([Rh]-Cl) catalyst. This work unveils opportunities in converting simple arenes into value-added stereogenic silicon compounds. Construction of chiral organosilicon compounds could have implications in photophysical, biological, and chemical fields, as silicon is isoelectronic with carbon, and can mimic carbon atoms while providing slightly different properties. Here the authors present an intermolecular, enantioselective C–H silylation of heterocycles via rhodium catalysis.
Collapse
|
39
|
Wang S, Zhang Q, Niu J, Guo X, Xiong T, Zhang Q. Copper‐Catalyzed Asymmetric Hydroallylation of Vinylsilanes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Simin Wang
- Northeast Normal University Department of Chemistry CHINA
| | - Qiao Zhang
- Northeast Normal University Department of Chemistry CHINA
| | - Junbo Niu
- Northeast Normal University Department of Chemistry CHINA
| | - Xiaobing Guo
- Northeast Normal University Department of Chemistry CHINA
| | - Tao Xiong
- Northeast Normal University Department of Chemistry Renmin ST. 5268 130024 ChangChun CHINA
| | - Qian Zhang
- Northeast Normal University Department of Chemistry CHINA
| |
Collapse
|
40
|
Zhou G, Shen X. Synthesis of Cyclopropenols Enabled by Visible‐Light‐Induced Organocatalyzed [2+1] Cyclization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gang Zhou
- Wuhan University Institute for Advanced Studies CHINA
| | - Xiao Shen
- Wuhan University Institute for Advanced Studies 299 Bayi Road 430072 Wuhan CHINA
| |
Collapse
|
41
|
Xu H, Fang XJ, Huang WS, Xu Z, Li L, Ye F, Cao J, Xu LW. Catalytic regio- and stereoselective silicon–carbon bond formations on unsymmetric gem-difluorocyclopropenes by capture of silyl metal species. Org Chem Front 2022. [DOI: 10.1039/d2qo00943a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly regioselective silylation of unsymmetric gem-difluorocyclopropenes was achieved by the capture of in-situ formed silyl metal intermediates, which gave structurally diverse silyldifluorocyclopropanes with good yields and stereoselectivity.
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Wei-Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, P. R. China
| |
Collapse
|
42
|
Zhou XH, Fang XJ, Ling FY, Xu Z, Hong LQ, Ye F, Xu LW. Catalytic C(sp)–Si cross-coupling silylation of alkynyl bromides with hydrosilanes by palladium catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo01253g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented and convenient Si–C(sp) bond-forming cross-coupling of alkynyl bromides with hydrosilanes has been established for the facile synthesis of alkynylsilanes in good yields and with excellent chemoselectivity.
Collapse
Affiliation(s)
- Xiao-Hua Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Fang-Ying Ling
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Quan Hong
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Deqing Third People's Hospital and The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute (SRI), Lanzhou Institute of Chemical Physics (LICP), University of the Chinese Academy of Sciences (UCAS), Lanzhou 730000, P. R. China
| |
Collapse
|
43
|
Huang J, Liu F, Wu X, Chen JQ, Wu J. Recent advance in the reactions of silacyclobutanes and their applications. Org Chem Front 2022. [DOI: 10.1039/d2qo00410k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silacyclobutanes (SCBs), as a key member of organosilicon family, have received considerable attention in synthetic chemistry since the silicon-carbon bond can be activated. Followed by ring-opening and ring expansion process,...
Collapse
|
44
|
Bai D, Cheng R, Yang J, Xu W, Chen X, Chang J. Regiodivergent hydrosilylation in the nickel(0)-catalyzed cyclization of 1,6-enynes. Org Chem Front 2022. [DOI: 10.1039/d2qo01266a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The divergent nickel(0)-catalyzed hydrosilylation/cyclization of 1,6-enynes has been developed, providing an efficient synthetic route for vinyl silanes or alkyl silanes from the same starting materials.
Collapse
Affiliation(s)
- Dachang Bai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China
| | - Ruoshi Cheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jiaxin Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Wenjie Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xingge Chen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
45
|
Cui H, Xu G, Zhu J, Sun J. Rhodium-Catalyzed Dearomative Rearrangement of 2-Oxypyridines with Cyclopropenes: Access to N-Alkylated 2-Pyridones. Org Chem Front 2022. [DOI: 10.1039/d1qo01937f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rhodium-catalyzed dearomative O-to-N rearrangement reaction of 2-oxypyridines has been developed by using cyclopropenes as the carbene precursors. This protocol features broad substrate scope and mild reaction conditions, providing a...
Collapse
|
46
|
Cui D, Feng Y, Gan Y, Yin J, Wang W, Fan Y, Gao L, Ke B, Song Z. (3 + 2)-Annulation of 1,3- N, Si-tetraorganosilane reagents TsHNCH 2SiBnR 1R 2 with arynes for efficient synthesis of 3-silaindolines. Org Chem Front 2022. [DOI: 10.1039/d2qo01075e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,3-N,Si-Tetraorganosilane reagents TsHNCH2SiBnR1R2 were developed as robust synthons to prepare 3-silaindolines via a Cs2CO3-promoted (3 + 2)-annulation reaction with arynes.
Collapse
Affiliation(s)
- Deyun Cui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ying Feng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Gan
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan university, Chengdu, 610041, China
| | - Jiaqi Yin
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan university, Chengdu, 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan university, Chengdu, 610041, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
47
|
Zhang J, Yan N, Ju C, Zhao D. Nickel(0)‐Catalyzed Asymmetric Ring Expansion Toward Enantioenriched Silicon‐Stereogenic Benzosiloles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Nuo Yan
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Cheng‐Wei Ju
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
48
|
Zhang J, Yan N, Ju CW, Zhao D. Nickel(0)-Catalyzed Asymmetric Ring Expansion Toward Enantioenriched Silicon-Stereogenic Benzosiloles. Angew Chem Int Ed Engl 2021; 60:25723-25728. [PMID: 34590411 DOI: 10.1002/anie.202111025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 01/06/2023]
Abstract
The development of a straightforward strategy to obtain enantioenriched silicon-stereogenic benzosiloles remains a challenging yet appealing synthesis venture due to their potential future application in chiral electronic and optoelectronic devices. In this context, all of the existing methods rely on Rh-catalyzed systems and are somewhat limited in scope. Herein, we disclose the first Ni0 -catalyzed ring expansion process that enables the preparation of benzosiloles possessing tetraorganosilicon stereocenters in excellent yields and enantioselectivities. The presented catalysis strategy is further applied to the asymmetric synthesis of silicon-stereogenic bis-silicon-bridged π-extended systems. Preliminary studies reveal that such compounds exhibit fluorescence emission, Cotton effects and circularly polarized luminescence (CPL) activity.
Collapse
Affiliation(s)
- Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Nuo Yan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Cheng-Wei Ju
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
49
|
Qin Y, Li L, Liang JY, Li K, Zhao D. Silacyclization through palladium-catalyzed intermolecular silicon-based C(sp 2)-C(sp 3) cross-coupling. Chem Sci 2021; 12:14224-14229. [PMID: 34760208 PMCID: PMC8565370 DOI: 10.1039/d1sc04180k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Silicon-based cross-coupling has been recognized as one of the most reliable alternatives for constructing carbon–carbon bonds. However, the employment of such reaction as an efficient ring expansion strategy for silacycle synthesis is comparatively little known. Herein, we develop the first intermolecular silacyclization strategy involving Pd-catalyzed silicon-based C(sp2)–C(sp3) cross-coupling. This method allows the modular assembly of a vast array of structurally novel and interesting sila-benzo[b]oxepines with good functional group tolerance. The key to success for this reaction is that silicon atoms have a stronger affinity for oxygen nucleophiles than carbon nucleophiles, and silacyclobutanes (SCBs) have inherent ring-strain-release Lewis acidity. Herein, we develop the first silacyclization between 2-halophenols and SCBs, which allows the modular assembly of sila-benzo[b]oxepines with good functional group tolerance and can be applied for the late-stage modification of biologically active molecules.![]()
Collapse
Affiliation(s)
- Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| | - Lianghui Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| | - Jin-Yuan Liang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| | - Kailong Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
50
|
Li H, Huang W, Yang K, Ye F, Yin G, Xu Z, Xu L. Asymmetric Disilylation of Spirocyclic Palladacyclopentanes via Tandem Heck/C−H Activation of Aryl Iodides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Wei‐Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Ke‐Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Guan‐Wu Yin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Li‐Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| |
Collapse
|