1
|
Petyuk MY, Meng L, Ma Z, Agafontsev AM, Bagryanskaya IY, Berezin AS, Zhang J, Chu A, Rakhmanova MI, Meng H, Tkachev AV, Yam VWW, Artem'ev AV. Outstanding Circularly Polarized TADF in Chiral Cu(I) Emitters: From Design to Application in CP-TADF OLEDs. Angew Chem Int Ed Engl 2024; 63:e202412437. [PMID: 39234791 DOI: 10.1002/anie.202412437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Low-cost molecular emitters that merge circularly polarized luminescence (CPL) and thermally activated delayed fluorescence (TADF) properties are attractive for many high-tech applications. However, the design of such emitters remains a difficult task. To address this challenge, here, we propose a simple and efficient strategy, demonstrated by the design of pseudochiral-at-metal complexes [Cu(L*)DPEPhos]PF6 bearing a (+)/(-)-menthol-derived 1,10-phenanthroline ligand (L*). These complexes exhibit a yellow CP-TADF with a record-high quantum yield (close to 100 %) and high dissymmetry factor (|glum|~1×10-2). Remarkably, the above compounds also show a negative thermal-quenching (NTQ) of luminescence in the 300-77 K range. Exploiting the designed Cu(I) emitters, we fabricated efficient CP-TADF OLEDs displaying mirror-imaged CPL bands with high |gEL| factors of 1.5×10-2 and the maximum EQE of 6.15 %. Equally important, using the (+)-[Cu(L*)DPEPhos]PF6 complex, we have discovered that an external magnetic field noticeably suppresses CP-TADF of Cu(I) emitters. These findings are an important contribution to the CPL phenomenon and provide access to highly efficient, low-cost and robust CP-TADF emitters.
Collapse
Affiliation(s)
- Maxim Yu Petyuk
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Lingqiang Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, 518055, Shenzhen, China
| | - Zihao Ma
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, 518055, Shenzhen, China
| | - Alexander M Agafontsev
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Irina Yu Bagryanskaya
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Alexey S Berezin
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Jingzhi Zhang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, 518055, Shenzhen, China
| | - Anlea Chu
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, 999077, Pokfulam Road, Hong Kong, China
| | - Mariana I Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, 518055, Shenzhen, China
| | - Alexey V Tkachev
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, 999077, Pokfulam Road, Hong Kong, China
| | - Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave., 630090, Novosibirsk, Russia
| |
Collapse
|
2
|
Xiao Y, Shi A, Yang G, Yu Y, Nie Q, Qi S, Xiang C, Zhang T. Induced Circularly Polarized Luminescence From 0D Quantum Dots by 2D Chiral Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404913. [PMID: 39235369 DOI: 10.1002/smll.202404913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Materials with circularly polarized luminescence (CPL) exhibit great application potential in biological scenes such as cell imaging, optical probes, etc. However, most developed materials are non-aqueous and toxic, which seriously restricts their compatibility with the life systems. Thus, it is necessary to explore a water-based CPL system with high biocompatibility so that to promote the biologic application process. Herein, a facile and efficient route to achieve the CPL properties of a functional aqueous solution is demonstrated by the combination of 0D quantum dots (QDs) and 2D chiral nanosheets. Benefited by the specific absorption ability of nanosheets for left/right-handed CPL, the QDs adsorbed onto the surface of nanosheets through hydrogen bond interactions showed apparent CPL features. In addition, this system has a good extensibility as the CPL property can be effectively regulated by changing the kind of emissive QDs. More importantly, this water-based nano-composite with facile fabrication process (one-step mixing) is suitable for the real applications, which is undoubtedly beneficial for the further progress of functional CPL materials.
Collapse
Affiliation(s)
- Yuqi Xiao
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Aiyan Shi
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Guojian Yang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Yang Yu
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, P. R. China
| | - Quan Nie
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuyan Qi
- Institute of Biomedical Engineering, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ting Zhang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
3
|
Zhou C, Chang W, Liu L, Li J. Recent Progress in Circularly Polarized Luminescent Materials Based on Cyclodextrins. Polymers (Basel) 2024; 16:2140. [PMID: 39125166 PMCID: PMC11313814 DOI: 10.3390/polym16152140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Circularly polarized luminescence (CPL) materials have been widely used in the fields of bioimaging, optoelectronic devices, and optical communications. The supramolecular interaction, involving harnessing non-covalent interactions between host and guest molecules to control their arrangements and assemblies, represents an advanced approach for facilitating the development of CPL materials and finely constructing and tuning the desired CPL properties. Cyclodextrins (CDs) are cyclic natural polysaccharides, which have also been ubiquitous in various fields such as molecular recognition, drug encapsulation, and catalyst separation. By adjusting the interactions between CDs and guest molecules precisely, composite materials with CPL properties can be facilely generated. This review aims to outline the design strategies and performance of CD-based CPL materials comprehensively and provides a detailed illustration of the interactions between host and guest molecules.
Collapse
Affiliation(s)
- Chengkai Zhou
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China; (C.Z.); (W.C.)
| | - Weixing Chang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China; (C.Z.); (W.C.)
| | - Lingyan Liu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China; (C.Z.); (W.C.)
- National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China
| | - Jing Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China; (C.Z.); (W.C.)
- National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Zhou YY, Ying YM, Jiang MZ, Dai HX, Zhao Z, Liu XG. Homochiral Tetraphenylethene-Based Metal-Organic Frameworks with Circularly Polarized Luminescence for Enantioselective Recognition. Inorg Chem 2024; 63:11566-11571. [PMID: 38848541 DOI: 10.1021/acs.inorgchem.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
A pair of water-stable and highly porous homochiral fluorescent silver-organic framework enantiomers, namely, R-Ag-BPA-TPyPE (R-1) and S-Ag-BPA-TPyPE (S-1), had been prepared as enantioselective fluorescence sensors. Combining homochiral 1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (BPA) with an AIE-based ligand tetrakis[4-(pyridin-4-yl)phenyl]ethene (TPyPE) in complexes R-1 and S-1 made them possess favorable circularly polarized luminescence (CPL) properties, and their CPL spectra were almost mirror images of each other. The luminescence dissymmetry factors (glum) are ±2.2 × 10-3 for R-1 and S-1, and the absolute fluorescence quantum yields (ΦFs) are 32.0% for R-1 and S-1, respectively. Complex R-1 could enantioselectively recognize two enantiomers of amino acids in water or DMF with high Stern-Volmer constants of 236-573 M-1 and enantioselectivity ratios of 1.40-1.78.
Collapse
Affiliation(s)
- Ying-Ying Zhou
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Yan-Mei Ying
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Mei-Zhu Jiang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Han-Xiao Dai
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Xun-Gao Liu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
5
|
Li J, Luo Q, Wei J, Zhou L, Chen P, Luo B, Chen Y, Pang Q, Zhang JZ. Circularly Polarized Luminescence Induced by Hydrogen-Bonding Networks in a One-Dimensional Hybrid Manganese(II) Chloride. Angew Chem Int Ed Engl 2024; 63:e202405310. [PMID: 38606567 DOI: 10.1002/anie.202405310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Chiral hybrid metal halides hold great potential as circularly polarized luminescence light sources. Herein, we have obtained two enantiomeric pairs of one-dimensional hybrid chiral manganese(II) chloride single crystals, R/S-(3-methyl piperidine)MnCl3 (R/S-1) and R/S-(3-hydroxy piperidine)MnCl3 (R/S-2), crystallizing in the non-centrosymmetric space group P212121. In comparison to R/S-1, R/S-2 single crystals not only show red emission with near-unity photoluminescence quantum yield (PLQY) and high resistance to thermal quenching but also exhibit circularly polarized luminescence with an asymmetry factor (glum) of 2.5×10-3, which can be attributed to the enhanced crystal rigidity resulting from the hydrogen bonding networks between R/S-(3-hydroxy piperidine) cations and [MnCl6]4- chains. The circularly polarized luminescence activities originate from the asymmetric [MnCl6]4- luminophores induced by N-H⋅⋅⋅Cl hydrogen bonding with R/S-(3-hydroxy piperidine). Moreover, these samples demonstrate great application potential in circularly polarized light-emitting diodes and X-ray scintillators. This work shows a highly efficient photoluminescent Mn-based halide and offers a strategy for designing multifunctional chiral metal halides.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Qiulian Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Jianwu Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Liya Zhou
- School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Peican Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Binbin Luo
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, Guangdong, P. R. China
| | - Yibo Chen
- Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, P. R. China
| | - Qi Pang
- School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz California, 95064, United States
| |
Collapse
|
6
|
Li TY, Zheng SJ, Djurovich PI, Thompson ME. Two-Coordinate Thermally Activated Delayed Fluorescence Coinage Metal Complexes: Molecular Design, Photophysical Characters, and Device Application. Chem Rev 2024; 124:4332-4392. [PMID: 38546341 DOI: 10.1021/acs.chemrev.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Since the emergence of the first green light emission from a fluorescent thin-film organic light emitting diode (OLED) in the mid-1980s, a global consumer market for OLED displays has flourished over the past few decades. This growth can primarily be attributed to the development of noble metal phosphorescent emitters that facilitated remarkable gains in electrical conversion efficiency, a broadened color gamut, and vibrant image quality for OLED displays. Despite these achievements, the limited abundance of noble metals in the Earth's crust has spurred ongoing efforts to discover cost-effective electroluminescent materials. One particularly promising avenue is the exploration of thermally activated delayed fluorescence (TADF), a mechanism with the potential to fully harness excitons in OLEDs. Recently, investigations have unveiled TADF in a series of two-coordinate coinage metal (Cu, Ag, and Au) complexes. These organometallic TADF materials exhibit distinctive behavior in comparison to their organic counterparts. They offer benefits such as tunable emissive colors, short TADF emission lifetimes, high luminescent quantum yields, and reasonable stability. Impressively, both vacuum-deposited and solution-processed OLEDs incorporating these materials have achieved outstanding performance. This review encompasses various facets on two-coordinate TADF coinage metal complexes, including molecular design, photophysical characterizations, elucidation of structure-property relationships, and OLED applications.
Collapse
Affiliation(s)
- Tian-Yi Li
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Shu-Jia Zheng
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
7
|
Ueno K, Konishi Y, Cui L, Harada T, Ishibashi K, Konta T, Muranaka A, Hisaeda Y, Hoshino Y, Ono T. Unraveling the Remarkable Influence of Substituents on the Emission Variation and Circularly Polarized Luminescence of Dinuclear Aluminum Triple-Stranded Helicates. Inorg Chem 2024; 63:6296-6304. [PMID: 38526299 DOI: 10.1021/acs.inorgchem.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
This study explored the development of functional dyes using aluminum, focusing on aluminum-based dinuclear triple-stranded helicates, and examined the effects of substituent variations on their structural and optical properties. Key findings revealed that the modification of methyl groups to the pyrrole positions significantly extended the conjugation system, resulting in a red shift in the absorption and emission spectra. Conversely, the modification of methyl groups at the methine positions due to steric hindrances increased the torsion angle of the ligands, leading to a blue shift in the absorption and emission spectra. A common feature across all complexes was that in the excited state, one of the three ligands underwent significant structural relaxation. This led to a pronounced Stokes shift and minimal spectra overlap with high photoluminescence behaviors. Moreover, our research extended to the optical resolution of the newly synthesized complexes by analyzing the chiroptical properties of the resulting enantiomers, including their circular dichroism and circularly polarized luminescence. These insights offer valuable contributions to the design and application of novel aluminum-based functional dyes, potentially influencing a range of fields, from materials science to optoelectronics.
Collapse
Affiliation(s)
- Kodai Ueno
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuto Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Luxia Cui
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takunori Harada
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Kohei Ishibashi
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Takeru Konta
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Atsuya Muranaka
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yoshio Hisaeda
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Toshikazu Ono
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Mitra M, Mrózek O, Putscher M, Guhl J, Hupp B, Belyaev A, Marian CM, Steffen A. Structural Control of Highly Efficient Thermally Activated Delayed Fluorescence in Carbene Zinc(II) Dithiolates. Angew Chem Int Ed Engl 2024; 63:e202316300. [PMID: 38063260 DOI: 10.1002/anie.202316300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 01/16/2024]
Abstract
Luminescent metal complexes based on earth abundant elements are a valuable target to substitute 4d/5d transition metal complexes as triplet emitters in advanced photonic applications. Whereas CuI complexes have been thoroughly investigated in the last two decades for this purpose, no structure-property-relationships for efficient luminescence involving triplet excited states from ZnII complexes are established. Herein, we report on the design of monomeric carbene zinc(II) dithiolates (CZT) featuring a donor-acceptor-motif that leads to highly efficient thermally activated delayed fluorescence (TADF) with for ZnII compounds unprecedented radiative rate constants kTADF =1.2×106 s-1 at 297 K. Our high-level DFT/MRCI calculations revealed that the relative orientation of the ligands involved in the ligand-to-ligand charge transfer (1/3 LLCT) states is paramount to control the TADF process. Specifically, a dihedral angle of 36-40° leads to very efficient reverse intersystem-crossing (rISC) on the order of 109 s-1 due to spin-orbit coupling (SOC) mediated by the sulfur atoms in combination with a small ΔES1-T1 of ca. 56 meV.
Collapse
Affiliation(s)
- Mousree Mitra
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Ondřej Mrózek
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Markus Putscher
- Institute of Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Jasper Guhl
- Institute of Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Benjamin Hupp
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Andrey Belyaev
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Andreas Steffen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
9
|
Muthig AMT, Wieland J, Lenczyk C, Koop S, Tessarolo J, Clever GH, Hupp B, Steffen A. Towards Fast Circularly Polarized Luminescence in 2-Coordinate Chiral Mechanochromic Copper(I) Carbene Complexes. Chemistry 2023; 29:e202300946. [PMID: 37272620 DOI: 10.1002/chem.202300946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
A series of chiral mechanochromic copper(I) cAAC (cAAC=cyclic (alkyl)(amino)carbene) complexes with a variety of amide ligands have been studied with regard to their photophysical and chiroptical properties to elucidate structure-property relationships for the design of efficient triplet exciton emitters exhibiting circularly polarized luminescence. Depending on the environment, which determines the excited state energies, either thermally activated delayed fluorescence (TADF) from 1/3 LLCT states or phosphorescence from 3 LLCT/LC states occurs. However, neither chiral moieties at the carbene nor at the carbazolate ligands provide detectable luminescence dissymmetries glum . An exception is [Cu(phenoxazinyl)(cAAC)], showing orange to deep red TADF with λmax =601-715 nm in solution, powders and in PMMA. In this case, the amide ligand can undergo distortions in the excited state. This design motif leads to the first linear, non-aggregated CPL-active copper(I) complex with glum of -3.4 ⋅ 10-3 combined with a high radiative rate constant of 6.7 ⋅ 105 s-1 .
Collapse
Affiliation(s)
- André M T Muthig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Justin Wieland
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Carsten Lenczyk
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Stefan Koop
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Benjamin Hupp
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
10
|
Ikeshita M, Hara N, Imai Y, Naota T. Chiroptical Response Control of Planar and Axially Chiral Polymethylene-Vaulted Platinum(II) Complexes Bearing 1,1'-Binaphthyl Frameworks. Inorg Chem 2023; 62:13964-13976. [PMID: 37581577 DOI: 10.1021/acs.inorgchem.3c01935] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In this study, the synthesis, structure, and chiroptical response control of planar chiral polymethylene-vaulted trans-bis[(β-iminomethyl)aryloxy]platinum(II) complexes bearing axially chiral 1,1'-binaphthyl ligands are described. A series of enantiopure polymethylene (n = 4-10)-vaulted complexes were prepared in 6 steps using commercially available (R)- or (S)-BINOL as the starting material without an optical resolution process. The trans-coordination and three-dimensional vaulted structures of the platinum complexes were elucidated from X-ray diffraction (XRD) studies. The complexes were found to show structural dependence of chiroptical responses in the dilute solution state such that the absolute values of [α]D, dissymmetry factors gabs in circular dichroism (CD), and glum in circularly polarized luminescence (CPL) increased upon shortening the length of the polymethylene bridges. The enhanced chiroptical responses were theoretically investigated using density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, and the results are discussed in terms of the molecular structures and transition dipole moments of the ground states. The structural dependence of the chiroptical responses was ascribed to the distortion of the coordination platforms caused by restriction of the vaulting methylene linkers.
Collapse
Affiliation(s)
- Masahiro Ikeshita
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan
| | - Nobuyuki Hara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
11
|
Semenov AV, Baykov SV, Soldatova NS, Geyl KK, Ivanov DM, Frontera A, Boyarskiy VP, Postnikov PS, Kukushkin VY. Noncovalent Chelation by Halogen Bonding in the Design of Metal-Containing Arrays: Assembly of Double σ-Hole Donating Halolium with Cu I-Containing O,O-Donors. Inorg Chem 2023; 62:6128-6137. [PMID: 37000904 DOI: 10.1021/acs.inorgchem.3c00229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Five new copper(I) complexes─composed of the paired dibenzohalolium and [CuL2]- (L = 1,2,4-oxadiazolate) counterions in which O,O-atoms of the anion are simultaneously linked to the halogen atom─were generated and isolated as the solid via the three-component reaction between [Cu(MeCN)4](BF4), sodium 1,2,4-oxadiazolates, and dibenzohalolium triflates (or trifluoroacetates). This reaction is different from the previously reported CuI-catalyzed arylation of 1,2,4-oxadiazolones by diaryliodonium salts. Inspection of the solid-state X-ray structures of the complexes revealed the strong three-center X···O,O (X = Br, I) halogen bonding occurred between the oxadiazolate moieties and dibenzohalolium cation. According to performed theoretical calculations, this noncovalent interaction (or noncovalent chelation) was recognized as the main force in the stabilization of the copper(I) complexes. An explanation for the different behavior of complexes, which provide either chelate or nonchelate binding, is based on the occurrence of additional -CH3···π interactions, which were also quantified.
Collapse
|
12
|
Muthig AMT, Mrózek O, Ferschke T, Rödel M, Ewald B, Kuhnt J, Lenczyk C, Pflaum J, Steffen A. Mechano-Stimulus and Environment-Dependent Circularly Polarized TADF in Chiral Copper(I) Complexes and Their Application in OLEDs. J Am Chem Soc 2023; 145:4438-4449. [PMID: 36795037 DOI: 10.1021/jacs.2c09458] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Molecular emitters that combine circularly polarized luminescence (CPL) and high radiative rate constants of the triplet exciton decay are highly attractive for electroluminescent devices (OLEDs) or next-generation photonic applications, such as spintronics, quantum computing, cryptography, or sensors. However, the design of such emitters is a major challenge because the criteria for enhancing these two properties are mutually exclusive. In this contribution, we show that enantiomerically pure {Cu(CbzR)[(S/R)-BINAP]} [R = H (1), 3,6-tBu (2)] are efficient thermally activated delayed fluorescence (TADF) emitters with high radiative rate constants of kTADF up to 3.1 × 105 s-1 from 1/3LLCT states according to our temperature-dependent time-resolved luminescence studies. The efficiency of the TADF process and emission wavelengths are highly sensitive to environmental hydrogen bonding of the ligands, which can be disrupted by grinding of the crystalline materials. The origin of this pronounced mechano-stimulus photophysical behavior is a thermal equilibrium between the 1/3LLCT states and a 3LC state of the BINAP ligand, which depends on the relative energetic order of the excited states and is prone to inter-ligand C-H···π interactions. The copper(I) complexes are also efficient CPL emitters displaying exceptional dissymmetry values glum of up to ±0.6 × 10-2 in THF solution and ±2.1 × 10-2 in the solid state. Importantly for application in electroluminescence devices, the C-H···π interactions can also be disrupted by employing sterically bulky matrices. Accordingly, we have investigated various matrix materials for successful implementation of the chiral copper(I) TADF emitters in proof-of-concept CP-OLEDs.
Collapse
Affiliation(s)
- André Martin Thomas Muthig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Ondřej Mrózek
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Thomas Ferschke
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Rödel
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Björn Ewald
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Julia Kuhnt
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Carsten Lenczyk
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Jens Pflaum
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
13
|
Wang YJ, Shi XY, Xing P, Zang SQ. Metallophilic Interactions Drive Supramolecular Chirality Evolution and Amplify Circularly Polarized Luminescence. JACS AU 2023; 3:565-574. [PMID: 36873685 PMCID: PMC9976340 DOI: 10.1021/jacsau.2c00653] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Metallophilic interactions, which are ubiquitous among d10 metal complexes with linear coordination geometries, can direct one-dimensional assembly. However, the ability of these interactions to manipulate chirality at the hierarchical level largely remains unknown. In this work, we unveiled the role of Au···Cu metallophilic interactions in directing the chirality of multicomponent assemblies. N-heterocyclic carbene-Au(I) complexes bearing amino acid residues formed chiral co-assemblies with [CuI2]- anions via Au···Cu interactions. These metallophilic interactions changed the molecular packing modes of the co-assembled nanoarchitectures from lamellar to columnar chiral packing. This transformation initiated the emergence, inversion, and evolution of supramolecular chirality, thereby affording helical superstructures, depending on the geometry of building units. In addition, the Au···Cu interactions altered the luminescence properties and induced the emergence and amplification of circularly polarized luminescence. This work, for the first time, revealed the role of Au···Cu metallophilic interactions in modulating supramolecular chirality, paving the way for the construction of functional chiroptical materials based on d10 metal complexes.
Collapse
Affiliation(s)
- Ya-Jie Wang
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou450001, People’s Republic
of China
| | - Xiao-Yan Shi
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou450001, People’s Republic
of China
| | - Pengyao Xing
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan250100, People’s Republic
of China
| | - Shuang-Quan Zang
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou450001, People’s Republic
of China
| |
Collapse
|
14
|
Amouri H. Luminescent Complexes of Platinum, Iridium, and Coinage Metals Containing N-Heterocyclic Carbene Ligands: Design, Structural Diversity, and Photophysical Properties. Chem Rev 2023; 123:230-270. [PMID: 36315851 DOI: 10.1021/acs.chemrev.2c00206] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The employment of N-heterocyclic carbenes (NHCs) to design luminescent metal compounds has been the focus of recent intense investigations because of the strong σ-donor properties, which bring stability to the whole system and tend to push the d-d dark states so high in energy that they are rendered thermally inaccessible, thereby generating highly emissive complexes for useful applications such as organic light-emitting diodes (OLEDs), or featuring chiroptical properties, a field that is still in its infancy. Among the NHC complexes, those containing organic chromophores such as naphthalimide, pyrene, and carbazole exhibit rich emission behavior and thus have attracted extensive interest in the past five years, especially carbene coinage metal complexes with carbazolate ligands. In this review, the design strategies of NHC-based luminescent platinum and iridium complexes with large spin-orbit-coupling (SOC) are described first. Subsequent paragraphs illustrate the recent advances of luminescent coinage metal complexes with nucleophilic- and electrophilic-based carbenes based on silver, gold, and copper metal complexes that have the ability to display rich excited state emissions in particular via thermally activated delayed fluorescence (TADF). The luminescence mechanism and excited state dynamics are also described. We then summarize the advance of NHC-metal complexes in the aforementioned fields in recent years. Finally, we propose the development trend of this fast-growing field of luminescent NHC-metal complexes.
Collapse
Affiliation(s)
- Hani Amouri
- CNRS, IPCM (UMR 8232), Sorbonne Université-Faculté des Sciences et Ingénerie Campus Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, Cedex 05, France
| |
Collapse
|
15
|
Gao X, Zhao B, Deng J. Chirality Transfer from Polylactide to Achiral Fluorophore in Hierarchical Crystallization for Realizing Handedness-Tunable and Nonreciprocal Circularly Polarized Luminescence. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xinhui Gao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
16
|
Muthig AMT, Wieland J, Koop S, Lenczyk C, Kerner F, Hupp B, Steffen A. Synthesis and Photophysical Studies of Copper(I) CAAC Half-Sandwich Complexes as a Highly Modifiable Class of Emitters. Inorg Chem 2022; 61:17427-17437. [DOI: 10.1021/acs.inorgchem.2c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- André M. T. Muthig
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| | - Justin Wieland
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| | - Stefan Koop
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| | - Carsten Lenczyk
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| | - Florian Kerner
- Institute of Inorganic Chemistry, University of Würzburg, Am Hubland, 97074Würzburg, Germany
| | - Benjamin Hupp
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| | - Andreas Steffen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| |
Collapse
|
17
|
Morikubo J, Tsubomura T. Circularly Polarized Luminescence of Cyclometalated Platinum(II) Complex Excimers: Large Difference between Isomers. Inorg Chem 2022; 61:17154-17165. [PMID: 36260480 DOI: 10.1021/acs.inorgchem.2c02662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of platinum(II) complexes bearing a chiral β-diketonato ligand and a cyclometalated ligand have been prepared. The platinum(II) complexes, (SP-4-3)-[Pt(ppy)(D-tac)] (ppy = 2-phenylpyridine, D-tac = 3-trifluoroacetyl-(D)-camphor), (SP-4-4)-[Pt(ppy)(D-tac)], (SP-4-3)-[Pt(ppy)(D-pbc)] (D-pbc = 3-perfluorobutyryl-(D)-camphor), and (SP-4-4)-[Pt(ppy)(D-pbc)], and their enantiomers were isolated and characterized by elemental analysis, NMR, and X-ray structural analysis. Photoisomerization between SP-4-3 (trans) and SP-4-4 (cis) isomers was observed. Green emission due to the monomer was observed in diluted solutions for all complexes. Higher quantum yields and longer lifetimes of green emission were observed in nonpolar solvents compared to polar solvents. The two geometrical isomers had surprisingly different excimer formation efficiencies. For the trans isomers, orange emission due to the excimers was observed in nonpolar solvents at high concentrations, whereas negligible intensities of the excimer emission were observed for the cis isomers. The formation of the excimers was evaluated by emission decay and time-resolved emission spectra. For the trans isomers, the green emission due to the monomer showed negligible CPL signals, but the orange emission gave pronounced CPL signals. The dissymmetry factors, g-values, of the excimer CPL (glum = 0.002) were enhanced over those of the circular dichroism (gabs = 0.0002, glum/gabs = 10). The intensities of the emission and the CPL of the excimer under oxygen were very small, although those under an argon atmosphere were very strong. Therefore, the emission color of the trans-isomers was changed from green to orange by deoxygenation.
Collapse
Affiliation(s)
- Jun Morikubo
- Department of Materials and Life Science, Seikei University, Musashino, Tokyo1808633, Japan
| | - Taro Tsubomura
- Department of Materials and Life Science, Seikei University, Musashino, Tokyo1808633, Japan
| |
Collapse
|
18
|
|
19
|
Gauthier ES, Kaczmarczyk D, Del Fré S, Favereau L, Caytan E, Cordier M, Vanthuyne N, Williams JAG, Srebro-Hooper M, Crassous J. Helicenic N-heterocyclic carbene copper(I) complex displaying circularly polarized blue fluorescence. Dalton Trans 2022; 51:15571-15578. [PMID: 36169005 DOI: 10.1039/d2dt01925f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enantiopure copper(I) chloride complexes bearing a monodentate N-(carbo[6]helicenyl)-NHC ligand have been prepared and characterized experimentally and computationally. Their high stability enables the stereochemistry to be probed by X-ray crystallography and NMR spectroscopy. The resolved enantiomeric complexes emit circularly polarized blue fluorescence with glum ∼1.3 × 10-3 in solution. The photophysical and chiroptical properties of these systems, with their helicene-centred origin, are similar to those of the organic helicene-benzimidazole precursor proligand, although the reverse axial chirality configuration is preferentially observed for the complex compared to the ligand.
Collapse
Affiliation(s)
| | | | - Samuel Del Fré
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland.
| | | | - Elsa Caytan
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS Centrale Marseille, iSm2, 13284 Marseille, France
| | | | | | | |
Collapse
|
20
|
Wang Y, Gong J, Wang X, Li W, Wang X, He X, Wang W, Yang H. Multistate Circularly Polarized Luminescence Switching through Stimuli‐Induced Co‐Conformation Regulations of Pyrene‐Functionalized Topologically Chiral [2]Catenane. Angew Chem Int Ed Engl 2022; 61:e202210542. [DOI: 10.1002/anie.202210542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Jiacheng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xianwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming Shanghai 202162 China
| |
Collapse
|
21
|
Wang Y, Gong J, Wang X, Li WJ, Wang XQ, He X, Wang W, Yang HB. Multistate Circularly Polarized Luminescence Switching through Stimuli‐induced Co‐conformation Regulations of Pyrene‐functionalized Topologically Chiral [2]Catenane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Jiacheng Gong
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xianwei Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Wei-Jian Li
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xu-Qing Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xiao He
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Wei Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Hai-Bo Yang
- East China Normal University Department of Chemistry 3663 N. Zhongshan Road 200062 Shanghai CHINA
| |
Collapse
|
22
|
Gao PF, Jiang YY, Liu H, Zhou MS, Li T, Fu HR, Ma LF, Li DS. Pillar-Layer Chiral MOFs as a Crystalline Platform for Circularly Polarized Luminescence and Single-Phase White-Light Emission. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16435-16444. [PMID: 35357115 DOI: 10.1021/acsami.2c01615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The construction of circularly polarized luminescence (CPL) materials with high porosity and high rigidity is still challenging. Herein, we propose a chiral reticular chemistry strategy to prepare the homochiral porous metal-organic frameworks (MOFs) as CPL-active materials. Two pairs of enantiomeric MOFs are synthesized through the self-assembly of chiral D/L-cam (DL-camphorates) and achiral fluorescent ligand TPB (1,2,4,5-tetra(pyridin-4-yl)benzene). The glum values of Cd-CMOF-D and Cd-CMOF-L were up to 0.010 and 0.009; the high glum values could be compared to those of the partially pure multicomponent self-assembly systems obtained by the complicated process. We further trace the generation and transfer of the hierarchical chirality from chiral molecule to 3D framework, demonstrating that the CPL was dominated by the original molecular chirality rather than the global chirality of the hierarchical structure. Moreover, the single-phase white-light materials with nearly ideal CIE coordinates (0.33, 0.33) were constructed through the introduction of dye emitters into Zn-CMOF (Zn-based chiral MOF). This work provided not only an insightful view of the chirality transfer and disappearance mechanism but also an efficient method for the preparation of the highly porous CPL materials.
Collapse
Affiliation(s)
- Peng-Fu Gao
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yu-Ying Jiang
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Meng-Shu Zhou
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Ting Li
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, China
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
23
|
Zhang T, Tang C, Wang Y, Wang C, Zhang Y, Qi W, Su R, He Z. Circularly Polarized Luminescent Chiral Photonic Films Based on the Coassembly of Cellulose Nanocrystals and Gold Nanoclusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4147-4155. [PMID: 35315273 DOI: 10.1021/acs.langmuir.2c00376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we studied the formation and properties of composite films coassembled by cellulose nanocrystals (CNCs) and bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs). The influences of the BSA-AuNC concentration on the structure and optical properties of CNC-based composite films were further studied. It was found that the composite film retained the chiral nematic structure and optical activity. The self-assembled CNC and BSA-AuNC helical superstructures can produce strong, left-handed, circularly polarized luminescence with dissymmetry factors up to 0.287. Meanwhile, the third component, polyethylene glycol, was introduced without affecting the structural color and fluorescence characteristics of the composite film to enhance the flexibility of the film. The simplicity of the film preparation, the abundance of CNCs, and the flexibility and stability of the composite films pave the way for the production of functional materials with integrated functions.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Chuanmei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Chaoxuan Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yiwen Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
24
|
Cyclic (alkyl)(amino)carbene (CAAC) ligands: Electronic structure and application as chemically- and redox-non-innocent ligands and chromophores. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Takaishi K, Nakatsuka Y, Asano H, Yamada Y, Ema T. Ruthenium Complexes Bearing Axially Chiral Bipyridyls: The Mismatched Diastereomer Showed Red Circularly Polarized Phosphorescence. Chemistry 2021; 28:e202104212. [PMID: 34837262 DOI: 10.1002/chem.202104212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 12/21/2022]
Abstract
RutheniumII complexes bearing three axially chiral bipyridyl ligands were synthesized as a new family of chiral complex dyes, and Δ-(S)- and Λ-(S)-diastereomers were obtained. The X-ray crystal structure analyses, spectroscopy, and DFT calculations suggested that all the bipyridyls maintained chirality in both the ground and excited states, and the Δ-(S)- and Λ-(S)-isomers are the matched (more relaxed) and mismatched (more constrained) pairs, respectively. The mismatched Λ-(S)-isomer exhibited red circularly polarized phosphorescence (CPP) both in solution and in the solid state. The solution state CPP is the most intense of ruthenium complexes, while the solid state CPP is the first example of them. It is supposed that, for the Λ-(S)-isomer, the six cumulative CH/π interactions suppress further distortion in the T1 state.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| | - Yusuke Nakatsuka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| | - Hitomi Asano
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| | - Yuya Yamada
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
26
|
Gong ZL, Zhu X, Zhou Z, Zhang SW, Yang D, Zhao B, Zhang YP, Deng J, Cheng Y, Zheng YX, Zang SQ, Kuang H, Duan P, Yuan M, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu M. Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1146-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Wang Z, Hao A, Xing P. Transpositional Circularly Polarized Luminescence from Transient Charge-Transfer Coassembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104499. [PMID: 34608747 DOI: 10.1002/smll.202104499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Charge-transfer (CT) complexation between electron-rich and deficient aromatics has been widely applied in functional optical and photovoltaic materials. The selective complexation and spontaneous disassociation behavior of a dynamic charge-transfer coassembly possess potential in designing smart and dynamic luminescent materials, which however have not been addressed so far. In this work, the transient charge-transfer driven coassembly between π-conjugated amino acids and tetracyanobenzene, showing dynamic luminescent transition and circularly polarized luminescence (CPL) evolution property, is illustrated. Transient coassembly behaviors are independent to the diverse binding sites covering fluorene, naphthalene, and anthracene, attributed to the intramolecular CH…π interaction. Incorporation of fluorescent dyes enables a transient light harvesting process with hyperchromic CPL properties. Spontaneous green-to-red CPL transition hydrogels are also fabricated by embedding a competitive CT donor. Using a polymeric matrix treated by organic solvents, charge-transfer coassembly is immobilized with diverse circularly polarized luminescence. Such sensitive complexation shows applications in moisture-responsive luminescent materials and multiple luminescent color evolutions are realized.
Collapse
Affiliation(s)
- Zhuoer Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
28
|
Poncet M, Benchohra A, Jiménez J, Piguet C. Chiral Chromium(III) Complexes as Promising Candidates for Circularly Polarized Luminescence. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Maxime Poncet
- Department of Inorganic and Analytical Chemistry University of Geneva Quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Amina Benchohra
- Department of Inorganic and Analytical Chemistry University of Geneva Quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Juan‐Ramón Jiménez
- Department of Inorganic and Analytical Chemistry University of Geneva Quai E. Ansermet 30 1211 Geneva 4 Switzerland
- Department of Inorganic Chemistry University of Granada Unidad de Excelencia en Química (UEQ) Avda. Fuentenueva S/N 18071 Granada Spain
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry University of Geneva Quai E. Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
29
|
Gauthier ES, Cordier M, Dorcet V, Vanthuyne N, Favereau L, Williams JAG, Crassous J. Helically Chiral NHC‐Gold(I) Complexes: Synthesis, Chiroptical Properties and Electronic Features of the [5]Helicene‐Imidazolylidene Ligand. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Marie Cordier
- Univ Rennes CNRS, ISCR – UMR 6226 35000 Rennes France
| | | | - Nicolas Vanthuyne
- Aix Marseille University CNRS Centrale Marseille, iSm2 13284 Marseille France
| | | | | | | |
Collapse
|
30
|
Yuan W, Wang C, Wu M, Zhang Z, Chen Z, Liu M, Xie T, He W, Li L, Wang F, Chen Y. Supramolecular Polymerization of C3-Symmetric, Triphenylene-Cored Aza-Polycyclic Aromatic Hydrocarbons with Excellent and Switchable Circularly Polarized Luminescence Performance. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Department of Chemistry, Institute of Molecular Plus, Tianjin University, Tianjin 300354, P. R. China
| | - Cong Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mengjiao Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Department of Chemistry, Institute of Molecular Plus, Tianjin University, Tianjin 300354, P. R. China
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ze Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mingyang Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Titi Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Department of Chemistry, Institute of Molecular Plus, Tianjin University, Tianjin 300354, P. R. China
| | - Weiye He
- Department of Chemistry, Institute of Molecular Plus, Tianjin University, Tianjin 300354, P. R. China
| | - Lin Li
- Department of Chemistry, Institute of Molecular Plus, Tianjin University, Tianjin 300354, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yulan Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Department of Chemistry, Institute of Molecular Plus, Tianjin University, Tianjin 300354, P. R. China
| |
Collapse
|
31
|
|
32
|
Braker EE, Mukthar NFM, Schley ND, Ung G. Substituent Effect on the Circularly Polarized Luminescence of
C
1
‐Symmetric Carbene‐Copper(I) Complexes. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Erin E. Braker
- Department of Chemistry University of Connecticut Storrs Connecticut 06269 USA
| | | | - Nathan D. Schley
- Department of Chemistry Vanderbilt University Nashville Tennessee 37235 USA
| | - Gaël Ung
- Department of Chemistry University of Connecticut Storrs Connecticut 06269 USA
| |
Collapse
|
33
|
|
34
|
Horiuchi S, Moon S, Ito A, Tessarolo J, Sakuda E, Arikawa Y, Clever GH, Umakoshi K. Multinuclear Ag Clusters Sandwiched by Pt Complex Units: Fluxional Behavior and Chiral-at-Cluster Photoluminescence. Angew Chem Int Ed Engl 2021; 60:10654-10660. [PMID: 33617126 DOI: 10.1002/anie.202101460] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 11/10/2022]
Abstract
Multinuclear Ag clusters sandwiched by Pt complex units were synthesized and characterized by single crystal X-ray diffraction and NMR studies. The sandwich-shaped multinuclear Ag complexes showed two different types of fluxional behavior in solution: rapid slippage of Pt complex units on the Ag3 core and a reversible demetalation-metalation reaction by the treatment with Cl anion and Ag ion, respectively. The Ag2 complex obtained by demetalation reaction from the Ag3 complex displayed U to Z isomerization. These multinuclear Ag complexes showed strong photoluminescence whose properties depended on the existence of Pt→Ag dative bonds. The Ag3 complex, identified to be "chiral-at-cluster", was optically resolved by the formation of a diastereomeric salt with a chiral anion. The enantiomers show circular dichroism (CD) and circularly polarized luminescence (CPL) properties which is unprecedented for compounds based on a chiral sandwich structure. Theoretical calculations allow to understand their structural features and photophysical properties.
Collapse
Affiliation(s)
- Shinnosuke Horiuchi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan.,Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Sangjoon Moon
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Akitaka Ito
- School of Environmental Science and Engineering, Graduate School of Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Eri Sakuda
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan.,Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Yasuhiro Arikawa
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Keisuke Umakoshi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
35
|
Deng Y, Wang M, Zhuang Y, Liu S, Huang W, Zhao Q. Circularly polarized luminescence from organic micro-/nano-structures. LIGHT, SCIENCE & APPLICATIONS 2021; 10:76. [PMID: 33840811 PMCID: PMC8039044 DOI: 10.1038/s41377-021-00516-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/16/2021] [Accepted: 03/21/2021] [Indexed: 05/17/2023]
Abstract
Circularly polarized light exhibits promising applications in future displays and photonic technologies. Circularly polarized luminescence (CPL) from chiral luminophores is an ideal approach to directly generating circularly polarized light, in which the energy loss induced by the circularly polarized filters can be reduced. Among various chiral luminophores, organic micro-/nano-structures have attracted increasing attention owing to the high quantum efficiency and luminescence dissymmetry factor. Herein, the recent progress of CPL from organic micro-/nano-structures is summarized. Firstly, the design principles of CPL-active organic micro-/nano-structures are expounded from the construction of micro-/nano-structure and the introduction of chirality. Based on these design principles, several typical organic micro-/nano-structures with CPL activity are introduced in detail, including self-assembly of small molecules, self-assembly of π-conjugated polymers, and self-assembly on micro-/nanoscale architectures. Subsequently, we discuss the external stimuli that can regulate CPL performance, including solvents, pH value, metal ions, mechanical force, and temperature. We also summarize the applications of CPL-active materials in organic light-emitting diodes, optical information processing, and chemical and biological sensing. Finally, the current challenges and prospects in this emerging field are presented. It is expected that this review will provide a guide for the design of excellent CPL-active materials.
Collapse
Affiliation(s)
- Yongjing Deng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China
| | - Mengzhu Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China
| | - Yanling Zhuang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China.
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, 710072, Xi'an, Shaanxi, China.
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China.
- College of Electronic and Optical Engineering & College of Microelectronics, Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China.
| |
Collapse
|
36
|
Horiuchi S, Moon S, Ito A, Tessarolo J, Sakuda E, Arikawa Y, Clever GH, Umakoshi K. Multinuclear Ag Clusters Sandwiched by Pt Complex Units: Fluxional Behavior and Chiral‐at‐Cluster Photoluminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shinnosuke Horiuchi
- Division of Chemistry and Materials Science Graduate School of Engineering Nagasaki University 1–14, Bunkyo-machi Nagasaki 852-8521 Japan
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Sangjoon Moon
- Division of Chemistry and Materials Science Graduate School of Engineering Nagasaki University 1–14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Akitaka Ito
- School of Environmental Science and Engineering Graduate School of Engineering Kochi University of Technology 185 Miyanokuchi Tosayamada, Kami Kochi 782-8502 Japan
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Eri Sakuda
- Division of Chemistry and Materials Science Graduate School of Engineering Nagasaki University 1–14, Bunkyo-machi Nagasaki 852-8521 Japan
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Yasuhiro Arikawa
- Division of Chemistry and Materials Science Graduate School of Engineering Nagasaki University 1–14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Guido H. Clever
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Keisuke Umakoshi
- Division of Chemistry and Materials Science Graduate School of Engineering Nagasaki University 1–14, Bunkyo-machi Nagasaki 852-8521 Japan
| |
Collapse
|
37
|
Jiménez J, Poncet M, Míguez‐Lago S, Grass S, Lacour J, Besnard C, Cuerva JM, Campaña AG, Piguet C. Bright Long‐Lived Circularly Polarized Luminescence in Chiral Chromium(III) Complexes. Angew Chem Int Ed Engl 2021; 60:10095-10102. [DOI: 10.1002/anie.202101158] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Juan‐Ramón Jiménez
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Maxime Poncet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Sandra Míguez‐Lago
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Stéphane Grass
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Jérôme Lacour
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Céline Besnard
- Laboratory of Crystallography University of Geneva quai E. Ansermet 24 1211 Geneva 4 Switzerland
| | - Juan M. Cuerva
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Araceli G. Campaña
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
38
|
Jiménez J, Poncet M, Míguez‐Lago S, Grass S, Lacour J, Besnard C, Cuerva JM, Campaña AG, Piguet C. Bright Long‐Lived Circularly Polarized Luminescence in Chiral Chromium(III) Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Juan‐Ramón Jiménez
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Maxime Poncet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Sandra Míguez‐Lago
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Stéphane Grass
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Jérôme Lacour
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Céline Besnard
- Laboratory of Crystallography University of Geneva quai E. Ansermet 24 1211 Geneva 4 Switzerland
| | - Juan M. Cuerva
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Araceli G. Campaña
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
39
|
Lin J, Xie M, Zhang X, Gao Q, Chang X, Zou C, Lu W. Helically chiral Pd(ii) complexes containing intramolecular PdPd metallophilicity as circularly polarized molecular phosphors. Chem Commun (Camb) 2021; 57:1627-1630. [PMID: 33459300 DOI: 10.1039/d0cc08188d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon-centred chirality of the pincer-type cyclometalated ligands is transferred to the helical chirality of dinuclear and tetranuclear Pd(ii) arylacetylide complexes, and hence phosphorescence with quantum yields up to 50% and dissymmetry factors in the 10-3 scale from the metal-metal-to-ligand charge-transfer excited states has been recorded in diluted solutions.
Collapse
Affiliation(s)
- Jinqiang Lin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhao J, Hao A, Xing P. Enhancing Optical Activities of Benzimidazole Derivatives through Coassembly for High-Efficiency Synthesis of Chiroptical Nanomaterials and Accurate ee % Detection of Natural Acids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6830-6843. [PMID: 33502861 DOI: 10.1021/acsami.0c20735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing efficient protocols to enhance the optical activities of chiral self-assemblies is a key to realizing their chiroptical functions such as chiral sensing and displays. Here, we have reported a coassembly protocol to efficiently boost the chiroptical responses, whereby the synthesis of chiroptical nanomaterials and highly accurate detection of enantiomeric excess (ee %) were achieved. A series of benzimidazole derivatives with different topologies underwent spontaneous aggregation and symmetry breaking in solution, generating silent Cotton effects, yet exclusive weak left-handed circularly polarized luminescence (CPL). The coassembly with natural hydroxyl acids via complementary H bonds afforded chiral nanostructures with emerged Cotton effects and enhanced CPL. Dissymmetry g-factors were dramatically boosted (glum from 1 × 10-3 to 5.5 × 10-2, gabs from 0 to 6.7 × 10-3). In addition, proof of concept of recognition and detection of natural chiral molecules was realized with high accuracy.
Collapse
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
41
|
Kim H, Kim M, Song H, Lee E. Indol‐2‐ylidene (IdY): Ambiphilic N‐Heterocyclic Carbene Derived from Indole**. Chemistry 2021; 27:3849-3854. [DOI: 10.1002/chem.202004879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Hyunho Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| | - Minseop Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| | - Hayoung Song
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| | - Eunsung Lee
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| |
Collapse
|
42
|
Gauthier ES, Hellou N, Caytan E, Del Fré S, Dorcet V, Vanthuyne N, Favereau L, Srebro-Hooper M, Williams JAG, Crassous J. Triskelion-shaped iridium-helicene NHC complex. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00527h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Triskelion-shaped cycloiridiated complexes with three N-[6]helicenyl-NHC ligands were prepared with uncommon diastereoselectivities and their configurations were assigned using NMR analyses. They show strong ECD and OR, and yellow CP phosphorescence.
Collapse
Affiliation(s)
| | | | | | - Samuel Del Fré
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | | | - Nicolas Vanthuyne
- Aix Marseille University
- CNRS Centrale Marseille
- 13284 Marseille
- France
| | | | | | | | | |
Collapse
|
43
|
Ono T, Ishihama K, Taema A, Harada T, Furusho K, Hasegawa M, Nojima Y, Abe M, Hisaeda Y. Dinuclear Triple‐Stranded Helicates Composed of Tetradentate Ligands with Aluminum(III) Chromophores: Optical Resolution and Multi‐color Circularly Polarized Luminescence Properties. Angew Chem Int Ed Engl 2020; 60:2614-2618. [DOI: 10.1002/anie.202011450] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Toshikazu Ono
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu Univerisy 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kohei Ishihama
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu Univerisy 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Ai Taema
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu Univerisy 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Takunori Harada
- Department of Integrated Science and Technology Faculty of Science and Technology Oita University Dannoharu 700 Oita City 870-1192 Japan
| | - Kiyonao Furusho
- Department of Integrated Science and Technology Faculty of Science and Technology Oita University Dannoharu 700 Oita City 870-1192 Japan
| | - Masashi Hasegawa
- Department of Chemistry Graduate School of Science Kitasato University 1-15-1 Kitasato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Yuki Nojima
- Department of Chemistry Graduate School of Science Kitasato University 1-15-1 Kitasato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Masaaki Abe
- Department of Material Science University of Hyogo 3-2-1 Kouto Kamigori-cho Hyogo 678-1297 Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu Univerisy 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
44
|
Ono T, Ishihama K, Taema A, Harada T, Furusho K, Hasegawa M, Nojima Y, Abe M, Hisaeda Y. Dinuclear Triple‐Stranded Helicates Composed of Tetradentate Ligands with Aluminum(III) Chromophores: Optical Resolution and Multi‐color Circularly Polarized Luminescence Properties. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Toshikazu Ono
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu Univerisy 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kohei Ishihama
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu Univerisy 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Ai Taema
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu Univerisy 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Takunori Harada
- Department of Integrated Science and Technology Faculty of Science and Technology Oita University Dannoharu 700 Oita City 870-1192 Japan
| | - Kiyonao Furusho
- Department of Integrated Science and Technology Faculty of Science and Technology Oita University Dannoharu 700 Oita City 870-1192 Japan
| | - Masashi Hasegawa
- Department of Chemistry Graduate School of Science Kitasato University 1-15-1 Kitasato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Yuki Nojima
- Department of Chemistry Graduate School of Science Kitasato University 1-15-1 Kitasato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Masaaki Abe
- Department of Material Science University of Hyogo 3-2-1 Kouto Kamigori-cho Hyogo 678-1297 Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu Univerisy 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
45
|
Doistau B, Jiménez JR, Piguet C. Beyond Chiral Organic (p-Block) Chromophores for Circularly Polarized Luminescence: The Success of d-Block and f-Block Chiral Complexes. Front Chem 2020; 8:555. [PMID: 32850617 PMCID: PMC7399180 DOI: 10.3389/fchem.2020.00555] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Chiral molecules are essential for the development of advanced technological applications in spintronic and photonic. The best systems should produce large circularly polarized luminescence (CPL) as estimated by their dissymmetry factor (g lum), which can reach the maximum values of -2 ≤ g lum ≤ 2 when either pure right- or left-handed polarized light is emitted after standard excitation. For matching this requirement, theoretical considerations indicate that optical transitions with large magnetic and weak electric transition dipole moments represent the holy grail of CPL. Because of their detrimental strong and allowed electric dipole transitions, popular chiral emissive organic molecules display generally moderate dissymmetry factors (10-5 ≤ g lum ≤ 10-3). However, recent efforts in this field show that g lum can be significantly enhanced when the chiral organic activators are part of chiral supramolecular assemblies or of liquid crystalline materials. At the other extreme, chiral EuIII- and SmIII-based complexes, which possess intra-shell parity-forbidden electric but allowed magnetic dipole transitions, have yielded the largest dissymmetry factor reported so far with g lum ~ 1.38. Consequently, 4f-based metal complexes with strong CPL are currently the best candidates for potential technological applications. They however suffer from the need for highly pure samples and from considerable production costs. In this context, chiral earth-abundant and cheap d-block metal complexes benefit from a renewed interest according that their CPL signal can be optimized despite the larger covalency displayed by d-block cations compared with 4f-block analogs. This essay thus aims at providing a minimum overview of the theoretical aspects rationalizing circularly polarized luminescence and their exploitation for the design of chiral emissive metal complexes with strong CPL. Beyond the corroboration that f-f transitions are ideal candidates for generating large dissymmetry factors, a special attention is focused on the recent attempts to use chiral CrIII-based complexes that reach values of g lum up to 0.2. This could pave the way for replacing high-cost rare earths with cheap transition metals for CPL applications.
Collapse
Affiliation(s)
- Benjamin Doistau
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, Switzerland
| | - Juan-Ramón Jiménez
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
46
|
Xu L, Wang C, Li Y, Xu X, Zhou L, Liu N, Wu Z. Crystallization‐Driven Asymmetric Helical Assembly of Conjugated Block Copolymers and the Aggregation Induced White‐light Emission and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lei Xu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Chao Wang
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Yan‐Xiang Li
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Xun‐Hui Xu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Li Zhou
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Na Liu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Zong‐Quan Wu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| |
Collapse
|
47
|
Xu L, Wang C, Li YX, Xu XH, Zhou L, Liu N, Wu ZQ. Crystallization-Driven Asymmetric Helical Assembly of Conjugated Block Copolymers and the Aggregation Induced White-light Emission and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020; 59:16675-16682. [PMID: 32543000 DOI: 10.1002/anie.202006561] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Controlling the self-assembly morphology of π-conjugated block copolymer is of great interesting. Herein, amphiphilic poly(3-hexylthiophene)-block-poly(phenyl isocyanide)s (P3HT-b-PPI) copolymers composed of π-conjugated P3HT and optically active helical PPI segments were readily prepared. Taking advantage of the crystallizable nature of P3HT and the chirality of the helical PPI segment, crystallization-driven asymmetric self-assembly (CDASA) of the block copolymers lead to the formation of single-handed helical nanofibers with controlled length, narrow dispersity, and well-defined helicity. During the self-assembly process, the chirality of helical PPI was transferred to the supramolecular assemblies, giving the helical assemblies large optical activity. The single-handed helical assemblies of the block copolymers exhibited interesting white-light emission and circularly polarized luminescence (CPL). The handedness and dissymmetric factor of the induced CPL can be finely tuned through the variation on the helicity and length of the helical nanofibers.
Collapse
Affiliation(s)
- Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Chao Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Yan-Xiang Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| |
Collapse
|
48
|
Zhao J, Xing P. Helical Nanostructures with Circularly Polarized Luminescence from the Multicomponent Assembly of π-Conjugated N-terminal Amino Acids. Chempluschem 2020; 85:1511-1522. [PMID: 32644303 DOI: 10.1002/cplu.202000397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/22/2020] [Indexed: 11/06/2022]
Abstract
Self-assembled structures with circularly polarized luminescence (CPL) have attracted great attention in recent years. π-conjugated N-terminal amino acids with chiral amino acid residues and luminophores are capable of forming self-assembled structures at hierarchical levels, whereby chirality can be transferred to the macroscopic scale with easily modulated CPL properties. Due to the presence of multiple noncovalent binding sites, including hydrogen bonding and aromatic interactions, π-conjugated N-terminal amino acids are emerging core candidates for incorporation into multicomponent self-assembled architectures, accomplishing rational control over supramolecular chirality as well as showing rich chiroptical properties. In this Minireview, we provide a brief summary of multiple-component coassembled systems comprising π-conjugated N-terminal amino acids, small organic species and metal ions. The synthesis of helical structures and manipulation of supramolecular chirality by controlling the self-assembled species is introduced, and the CPL properties of multiple-component π-conjugated N-terminal amino acids are also briefly summarized.
Collapse
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
49
|
Ayers KM, Schley ND, Ung G. Circularly Polarized Luminescence from Enantiopure C2-Symmetrical Tetrakis(2-pyridylmethyl)-1,2-diaminocyclohexane Lanthanide Complexes. Inorg Chem 2020; 59:7657-7665. [DOI: 10.1021/acs.inorgchem.0c00628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kaitlynn M. Ayers
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Nathan D. Schley
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Gaël Ung
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
50
|
Yang QY, Zhang HH, Han XL, Weng SD, Chen Y, Wu JL, Han LZ, Zhang XP, Shi ZF. Enhanced Circularly Polarized Luminescence Activity in Chiral Platinum(II) Complexes With Bis- or Triphenylphosphine Ligands. Front Chem 2020; 8:303. [PMID: 32391328 PMCID: PMC7193082 DOI: 10.3389/fchem.2020.00303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
Distinct circularly polarized luminescence (CPL) activity was observed in chiral (C∧N∧N)Pt(II) [(C∧N∧N) = 4,5-pinene-6'-phenyl-2,2'-bipyridine] complexes with bis- or triphenylphosphine ligands. Compared to the pseudo-square-planar geometry of chiral (C∧N∧N)Pt(II) complexes with chloride, phenylacetylene (PPV) and 2,6-dimethylphenyl isocyanide (Dmpi) ligands, the coordination configuration around the Pt(II) nucleus of chiral (C∧N∧N)Pt(II) complexes with bulk phosphine ligands is far more distorted. The geometry is straightforwardly confirmed by X-ray crystallography. The phosphines' participation enhanced the CPL signal of Pt(II) complexes profoundly, with the dissymmetry factor (g lum) up to 10-3. The distorted structures and enhanced chiroptical signals were further confirmed by time-dependent density functional theory (TD-DFT) calculations.
Collapse
Affiliation(s)
- Qian-Ying Yang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Hua-Hong Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Xue-Ling Han
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Shi-Dao Weng
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Yuan Chen
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Jia-Li Wu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Li-Zhi Han
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Xiao-Peng Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Zai-Feng Shi
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| |
Collapse
|