1
|
Zhu B, Chen ZC, Du W, Chen YC. Facile construction of benzofulvene frameworks via a palladium-catalysed three-component reaction. Org Biomol Chem 2024; 22:8397-8400. [PMID: 39329403 DOI: 10.1039/d4ob01414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Here we report a three-component reaction of 2-formylarylboronic acids, N-sulfonyl amines and 1,3-enynes, proceeding through a cascade imine formation/Pd0-catalysed vinylogous addition/intramolecular Suzuki coupling/isomerization process. This protocol exhibited broad substrate scope and good functionality tolerance, and a spectrum of multifunctionalised benzofulvene derivatives were furnished in moderate to good yields and E/Z-selectivity.
Collapse
Affiliation(s)
- Bo Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
2
|
Yuan C, Shi G, Zhang J, Zhang Z, He Y, Zhang W, Qiao X, Liu M, Pang X. Dual-Regulation of Supramolecular Chirality in Achiral Side-Chain Azobenzene Liquid-Crystalline Polymers. Chirality 2024; 36:e23701. [PMID: 39034270 DOI: 10.1002/chir.23701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Azobenzene (Azo) liquid-crystalline polymers are intriguing due to their unique photo-induced isomerization and supramolecular chirality. However, clarification on multicomponent chiral induction towards Azo polymers remains ambiguous and challenging. Herein, chiral solvents and amines were employed to control the chiroptical activity of achiral Azo polymers. Methyl L-/D-lactate was added as the poor solvent and chiral inducer to achieve the first chiral induction in Azo aggregates. Chiral amines were utilized for the second chiral induction based on the acid-base interactions between the carboxyl groups of polymers and amines. The chiral enhancement and inversion of Azo units could be observed through the synergistic or antagonistic effect between solvents and amines. The impacts of solvent, chemical structures, feed ratio, enantiomeric excess, and temperature on supramolecular chirality were systematically studied. Furthermore, this system displayed the chiroptical switching property and chiral recovery under reversible irradiation.
Collapse
Affiliation(s)
- Chenrong Yuan
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Junle Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
- Faculty of Engineering, Huanghe Science and Technology College, Zhengzhou, China
| | - Zhenqian Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Wenjie Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
3
|
Xie JQ, Wang BX, Liang RX, Jia YX. Copper-catalyzed asymmetric 1,2-arylboration of enamines: access to chiral borate-containing 3,3'-disubstituted isoindolinones. Org Biomol Chem 2024. [PMID: 39005048 DOI: 10.1039/d4ob00896k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
An enantioselective copper-catalyzed 1,2-arylboration reaction of enamines has been developed by employing (R)-xyl-BINAP as a chiral ligand. A number of chiral borate-containing 3,3'-disubstituted isoindolinones were obtained in moderate to good yields and good to excellent enantioselectivities from the reactions of N-(o-iodobenzoyl)enamines and bis(pinacolato)diboron (B2pin2) under mild reaction conditions. Synthetic transformations of the products were conducted to demonstrate the practicality of this reaction.
Collapse
Affiliation(s)
- Jia-Qi Xie
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Bing-Xia Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
4
|
Liang SY, Zhang TY, Chen ZC, Du W, Chen YC. Functional-Group-Directed Regiodivergent (3 + 2) Annulations of Electronically Distinct 1,3-Dienes and 2-Formyl Arylboronic Acids. Org Lett 2024; 26:1483-1488. [PMID: 38345825 DOI: 10.1021/acs.orglett.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Presented herein is a palladium-catalyzed asymmetric (3 + 2) annulation reaction between 1,3-dienes and 2-formylarylboronic acids, proceeding in a cascade vinylogous addition and Suzuki coupling process. Both electron-neutral and electron-deficient 1,3-dienes are compatible under similar catalytic conditions, and distinct regioselectivity is observed via functional-group control of 1,3-diene substrates. A collection of 1-indanols with dense functionalities is constructed stereoselectively.
Collapse
Affiliation(s)
- Shu-Yuan Liang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tian-Ying Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610041, China
| |
Collapse
|
5
|
Dikova YM, Yufit DS, Williams JAG. Platinum(IV) Complexes with Tridentate, NNC-Coordinating Ligands: Synthesis, Structures, and Luminescence. Inorg Chem 2023; 62:1306-1322. [PMID: 36644812 PMCID: PMC9890496 DOI: 10.1021/acs.inorgchem.2c04116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Platinum(II) complexes of NNC-cyclometalating ligands based on 6-phenyl-2,2'-bipyridine (HL1) have been widely investigated for their luminescence properties. We describe how PtL1Cl and five analogues with differently substituted aryl rings, PtL2-6Cl, can be oxidized with chlorine and/or iodobenzene dichloride to generate Pt(IV) compounds of the form Pt(NNC-Ln)Cl3 (n = 1-6). The molecular structures of several of them have been determined by X-ray diffraction. These PtLnCl3 compounds react with 2-arylpyridines to give a new class of Pt(IV) complex of the form [Pt(NNC)(NC)Cl]+. Elevated temperatures are required, and the reaction is accompanied by competitive reduction processes and generation of side-products; however, four examples of such complexes have been isolated and their molecular structures determined. Reaction of PtL1Cl3 with HL1 similarly generates [Pt(NNC-L1)2]2+, which we believe to be the first example of a bis-tridentate Pt(IV) complex. The lowest-energy bands in the UV-vis absorption spectra of all the PtLnCl3 compounds are displaced to higher energy relative to the Pt(II) precursors, but they red-shift with the electron richness of the aryl ring, consistent with predominantly 1[πAr → π*NN] character to the pertinent excited state. A similar trend is observed for the [Pt(NNC)(NC)Cl]+ complexes. They display phosphorescence in solution at room temperature, centered around 500 nm for [PtL1(ppy)Cl]+ and [Pt(L1)2]2+, and 550 nm for methoxy-substituted derivatives. The lifetimes are in the microsecond range, rising to hundreds of microseconds at 77 K, consistent with triplet excited states of primarily 3[πAr → π*NN] character with relatively little participation of the metal.
Collapse
|
6
|
Ohmura T. Development of Catalytic Reactions that Enable Efficient Conversions of sp<sup>3</sup> Carbon-Hydrogen and Carbon-Boron Bonds. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Toshimichi Ohmura
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| |
Collapse
|
7
|
Bhosale VA, Císařová I, Kamlar M, Veselý J. Catalytic asymmetric addition to cyclic N-acyl-iminium: access to sulfone-bearing contiguous quaternary stereocenters. Chem Commun (Camb) 2022; 58:9942-9945. [PMID: 35983733 DOI: 10.1039/d2cc02667h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the first chiral phosphoric acid (CPA)-catalyzed asymmetric addition of α-fluoro(phenylsulfonyl)methane (FSM) derivatives to in situ generated cyclic N-acyliminium. This process enables metal-free expeditious access to sulfone and fluorine incorporating contiguous all substituted quaternary stereocenters ingrained in biorelevant isoindolinones in excellent stereoselectivities (up to 99% ee and up to 50 : 1 dr).
Collapse
Affiliation(s)
- Viraj A Bhosale
- Department of Organic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Martin Kamlar
- Department of Organic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| |
Collapse
|
8
|
Akagawa H, Tsuchiya N, Morinaga A, Katayama Y, Sumimoto M, Nishikata T. Carboxamide-Directed Stereospecific Couplings of Chiral Tertiary Alkyl Halides with Terminal Alkynes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroki Akagawa
- Graiduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Naoki Tsuchiya
- Graiduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Asuka Morinaga
- Graiduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Yu Katayama
- Graiduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Michinori Sumimoto
- Graiduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Takashi Nishikata
- Graiduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
9
|
Sheppard TD, Nishikata T, Tsuchiya N. Tertiary Alkylative Suzuki–Miyaura Couplings. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1732-4597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractSuzuki–Miyaura coupling is an extremely useful way to construct Csp2–Csp2 carbon bonds. On the other hand, Csp2–Csp3 coupling reactions do not work well, and tert-alkylative Suzuki–Miyaura coupling is particularly challenging due to problematic oxidative addition and β-hydride elimination side reactions. In this short review, we will introduce recent examples of tert-alkylative Suzuki–Miyaura couplings with tert-alkyl electrophiles or -boron reagents. The review will mainly focus on catalyst and product structures and on the proposed mechanisms.1 Introduction2 Ni-Catalyzed tert-Alkylative Couplings3 Pd-Catalyzed tert-Alkylative Couplings4 Fe-Catalyzed tert-Alkylative Couplings5 tert-Alkylative Couplings with 1-Alkenyl Borons6 tert-Alkylative Couplings under Photoirradiation7 Stereospecific tert-Alkylative Couplings8 Conclusion
Collapse
Affiliation(s)
- Tom D. Sheppard
- Department of Chemistry, University College London, Christopher Ingold Laboratories
| | | | - Naoki Tsuchiya
- Graduate School of Science and Engineering, Yamaguchi University
| |
Collapse
|
10
|
Ming W, Soor HS, Liu X, Trofimova A, Yudin AK, Marder TB. α-Aminoboronates: recent advances in their preparation and synthetic applications. Chem Soc Rev 2021; 50:12151-12188. [PMID: 34585200 DOI: 10.1039/d1cs00423a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
α-Aminoboronic acids and their derivatives are useful as bioactive agents. Thus far, three compounds containing an α-aminoboronate motif have been approved by the Food and Drug Administration (FDA) as protease inhibitors, and more are currently undergoing clinical trials. In addition, α-aminoboronic acids and their derivatives have found applications in organic synthesis, e.g. as α-aminomethylation reagents for the synthesis of chiral nitrogen-containing molecules, as nucleophiles for preparing valuable vicinal amino alcohols, and as bis-nucleophiles in the construction of valuable small molecule scaffolds. This review summarizes new methodology for the preparation of α-aminoboronates, including highlights of asymmetric synthetic methods and mechanistic explanations of reactivity. Applications of α-aminoboronates as versatile synthetic building blocks are also discussed.
Collapse
Affiliation(s)
- Wenbo Ming
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Harjeet S Soor
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Xiaocui Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Alina Trofimova
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
11
|
Eitzinger A, Otevrel J, Haider V, Macchia A, Massa A, Faust K, Spingler B, Berkessel A, Waser M. Enantioselective Bifunctional Ammonium Salt-Catalyzed Syntheses of 3-CF 3S-, 3-RS-, and 3-F-Substituted Isoindolinones. Adv Synth Catal 2021; 363:1955-1962. [PMID: 33897314 PMCID: PMC8050839 DOI: 10.1002/adsc.202100029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Indexed: 01/12/2023]
Abstract
We herein report the ammonium salt-catalyzed synthesis of chiral 3,3-disubstituted isoindolinones bearing a heteroatom functionality in the 3-position. A broad variety of differently substituted CF3S- and RS-derivatives were obtained with often high enantioselectivities when using Maruoka's bifunctional chiral ammonium salt catalyst. In addition, a first proof-of-concept for the racemic synthesis of the analogous F-containing products was obtained as well, giving access to one of the rare examples of a fairly stable α-F-α-amino acid derivative.
Collapse
Affiliation(s)
- Andreas Eitzinger
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Jan Otevrel
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
- Department of Chemical DrugsFaculty of PharmacyMasaryk UniversityPalackeho 1946/1612 00BrnoCzechia
| | - Victoria Haider
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Antonio Macchia
- Dipartimento di Chimica e BiologiaUniversità di SalernoVia Giovanni Paolo II, 13284084FiscianoSAItaly
| | - Antonio Massa
- Dipartimento di Chimica e BiologiaUniversità di SalernoVia Giovanni Paolo II, 13284084FiscianoSAItaly
| | - Kirill Faust
- Institute of CatalysisJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Bernhard Spingler
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Albrecht Berkessel
- Department of ChemistryCologne UniversityGreinstrasse 450939CologneGermany
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| |
Collapse
|
12
|
Savela R, Méndez‐Gálvez C. Isoindolinone Synthesis via One-Pot Type Transition Metal Catalyzed C-C Bond Forming Reactions. Chemistry 2021; 27:5344-5378. [PMID: 33125790 PMCID: PMC8048987 DOI: 10.1002/chem.202004375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/30/2020] [Indexed: 11/06/2022]
Abstract
Isoindolinone structure is an important privileged scaffold found in a large variety of naturally occurring as well as synthetic, biologically and pharmaceutically active compounds. Owing to its crucial role in a number of applications, the synthetic methodologies for accessing this heterocyclic skeleton have received significant attention during the past decade. In general, the synthetic strategies can be divided into two categories: First, direct utilization of phthalimides or phthalimidines as starting materials for the synthesis of isoindolinones; and second, construction of the lactam and/or aromatic rings by different catalytic methods, including C-H activation, cross-coupling, carbonylation, condensation, addition and formal cycloaddition reactions. Especially in the last mentioned, utilization of transition metal catalysts provides access to a broad range of substituted isoindolinones. Herein, the recent advances (2010-2020) in transition metal catalyzed synthetic methodologies via formation of new C-C bonds for isoindolinones are reviewed.
Collapse
Affiliation(s)
- Risto Savela
- Johan Gadolin Process Chemistry CentreLaboratory of Molecular Science and TechnologyÅbo Akademi UniversityBiskopsgatan 820500TurkuFinland
| | - Carolina Méndez‐Gálvez
- Johan Gadolin Process Chemistry CentreLaboratory of Molecular Science and TechnologyÅbo Akademi UniversityBiskopsgatan 820500TurkuFinland
| |
Collapse
|
13
|
Mu QQ, Nie YX, Li H, Bai XF, Liu XW, Xu Z, Xu LW. Catalytic asymmetric oxidative carbonylation-induced kinetic resolution of sterically hindered benzylamines to chiral isoindolinones. Chem Commun (Camb) 2021; 57:1778-1781. [PMID: 33475103 DOI: 10.1039/d0cc07218d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A highly enantioselective kinetic resolution of sterically hindered benzylamines has been achieved for the first time through transition-metal-catalyzed oxidative carbonylation, in which the new KR strategy offered a new approach to afford chiral isoindolinones (er up to 97 : 3) and the origin of chemoselectivity and stereoselectivity was confirmed by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Qiu-Qi Mu
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China, Yangtze River Delta Research Institute of NPU, Taicang, Jiangsu 215400, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Huang W, Shrestha M, Wang C, Fang K, Teng Y, Qu J, Chen Y. Asymmetric synthesis of 3-benzyl and allyl isoindolinones by Pd-catalyzed dicarbofunctionalization of 1,1-disubstituted enamides. Org Chem Front 2021. [DOI: 10.1039/d1qo00589h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Pd-catalyzed enantioselective Heck/Suzuki reaction of 1,1-disubstituted enamides with aryl/vinyl boronic acids has been developed to access 3-benzyl/allyl substituted isoindolinones bearing a tetrasubstituted stereogenic carbon center.
Collapse
Affiliation(s)
- Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Mohini Shrestha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Ke Fang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Yaxin Teng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| |
Collapse
|
15
|
Kadu BS. Suzuki–Miyaura cross coupling reaction: recent advancements in catalysis and organic synthesis. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02059a] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Suzuki–Miyaura cross coupling reaction (SMCR) – A milestone in the synthesis of C–C coupled compounds.
Collapse
|
16
|
Haibach MC, Ickes AR, Wilders AM, Shekhar S. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Alison M. Wilders
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
17
|
Yoshinaga Y, Yamamoto T, Suginome M. Enantioconvergent Cu-Catalyzed Intramolecular C-C Coupling at Boron-Bound C(sp 3) Atoms of α-Aminoalkylboronates Using a C1-Symmetrical 2,2'-Bipyridyl Ligand Attached to a Helically Chiral Macromolecular Scaffold. J Am Chem Soc 2020; 142:18317-18323. [PMID: 33063989 DOI: 10.1021/jacs.0c09080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enantioconvergent intramolecular coupling of α-(2-bromobenzoylamino)benzylboronic esters was achieved using a copper catalyst having helically chiral macromolecular bipyridyl ligand, PQXbpy. Racemic α-(2-bromobenzoylamino)benzylboronic esters were converted into (R)-configured 3-arylisoindolinones with high enantiopurity using right-handed helical PQXbpy as a chiral ligand in a toluene/CHCl3 mixed solvent. When enantiopure (R)- and (S)-configured boronates were separately reacted under the same reaction conditions, both afforded (R)-configured products through formal stereoinvertive and stereoretentive processes, respectively. From these results, a mechanism involving deracemization of organocopper intermediates in the presence of PQXbpy is assumed. PQXbpy switched its helical sense to left-handed when a toluene/1,1,2-trichloroethane mixed solvent was used, resulting in the formation of the corresponding (S)-products from the racemic starting material.
Collapse
Affiliation(s)
- Yukako Yoshinaga
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takeshi Yamamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|