1
|
Mahale SD, Yadav V, Gonnade RG, Mhaske SB. Regio- and Stereoselective Construction of 1,3,5-Triaroylcyclohexanes via KO tBu-Mediated Cyclotrimerization of Aryl Vinyl Ketones. J Org Chem 2024; 89:17207-17212. [PMID: 39535148 DOI: 10.1021/acs.joc.4c01695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we disclose a simple one-pot method for an efficient regio- and stereoselective synthesis of 1,3,5-triaroylcyclohexanes from aryl vinyl ketones using potassium tert-butoxide. The developed protocol allows the construction of various symmetrically substituted cyclohexanes in good to excellent yields. The major product 2 also can be converted to the product 3 (all equatorial) conveniently by acid catalysis. This protocol features a good substrate scope and functional group compatibility.
Collapse
Affiliation(s)
- Sachin D Mahale
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vinita Yadav
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajesh G Gonnade
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh B Mhaske
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Wang W, Hu Y, Yang J, Zhang S, Zhang Y, Jin Q, Xu M, Wang Q, Shao Y, Zhang F. LuCl 3/B(C 6F 5) 3 Cocatalyzed Reductive Deoxygenation of Ketones, Aldehydes, Alcohols, and Ethers to Alkanes with Pinacolborane. Org Lett 2024; 26:8468-8474. [PMID: 39347629 DOI: 10.1021/acs.orglett.4c02863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This report describes the LuCl3/B(C6F5)3 cocatalyzed reductive deoxygenation of 67 ketones, aldehydes, alcohols, and ethers to alkanes under mild conditions. The strategy tolerates reactive amino, hydroxyl, nitro, halogen, vinyl, and ester functional groups, and the results demonstrate rare chemoselective deoxygenation of α,β-unsaturated ketones. Isotopic labeling experiments, control experiments, and derivatization studies are used to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Wenli Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Yuanling Hu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jianing Yang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Shuyuan Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuqing Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qian Jin
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Moke Xu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Qi Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
3
|
Li M, Sun G, Wang Z, Zhang X, Peng J, Jiang F, Li J, Tao S, Liu Y, Pan Y. Structural Design of Single-Atom Catalysts for Enhancing Petrochemical Catalytic Reaction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313661. [PMID: 38499342 DOI: 10.1002/adma.202313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhidong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiatian Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
4
|
Louis Anandaraj SJ, Kang L, DeBeer S, Bordet A, Leitner W. Catalytic Hydrogenation of CO 2 to Formate Using Ruthenium Nanoparticles Immobilized on Supported Ionic Liquid Phases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206806. [PMID: 36709493 DOI: 10.1002/smll.202206806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/14/2023] [Indexed: 05/04/2023]
Abstract
Ruthenium nanoparticles (NPs) immobilized on imidazolium-based supported ionic liquid phases (Ru@SILP) act as effective heterogeneous catalysts for the hydrogenation of carbon dioxide (CO2 ) to formate in a mixture of water and triethylamine (NEt3 ). The structure of the imidazolium-based molecular modifiers is varied systematically regarding side chain functionality (neutral, basic, and acidic) and anion to assess the influence of the IL-type environment on the NPs synthesis and catalytic properties. The resulting Ru@SILP materials contain well-dispersed Ru NPs with diameters in the range 0.8-2.9 nm that are found 2 to 10 times more active for CO2 hydrogenation than a reference Ru@SiO2 catalyst under identical conditions. Introduction of sulfonic acid groups in the IL modifiers results in a greatly increased turnover number (TON) and turnover frequency (TOF) at reduced metal loadings. As a result, excellent productivity with TONs up to 16 100 at an initial TOF of 1430 h-1 can be achieved with the Ru@SILP(SO3 H-OAc) catalyst. H/D exchange and other control experiments suggest an accelerated desorption of the formate species from the Ru NPs promoted by the presence of ammonium sulfonate species on Ru@SILP(SO3 H-X) materials, resulting in enhanced catalyst activity and productivity.
Collapse
Affiliation(s)
- Savarithai Jenani Louis Anandaraj
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Liqun Kang
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
5
|
Qiao W, Fan X, Liu W, Khan FN, Zhang D, Han F, Yue H, Li Y, Dimitratos N, Albonetti S, Wen X, Yang Y, Besenbacher F, Li Y, Niemantsverdriet H, Lin H, Su R. Creating and Stabilizing an Oxidized Pd Surface under Reductive Conditions for Photocatalytic Hydrogenation of Aromatic Carbonyls. J Am Chem Soc 2023; 145:5353-5362. [PMID: 36853085 DOI: 10.1021/jacs.2c13196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Photocatalysis provides an eco-friendly route for the hydrogenation of aromatic carbonyls to O-free aromatics, which is an important refining process in the chemical industry that is generally carried out under high pressure of hydrogen at elevated temperatures. However, aromatic carbonyls are often only partially hydrogenated to alcohols, which readily desorbs and are hardly further deoxygenated under ambient conditions. Here, we show that by constructing an oxide surface over the Pd cocatalyst supported on graphitic carbon nitride, an alternative hydrogenation path of aromatic carbonyls becomes available via a step-wise acetalization and hydrogenation, thus allowing efficient and selective production of O-free aromatics. The PdO surface allows for optimum adsorption of reactants and intermediates and rapid abstraction of hydrogen from the alcohol donor, favoring fast acetalization of the carbonyls and their consecutive hydrogenation to O-free hydrocarbons. The photocatalytic hydrogenation of benzaldehyde into toluene shows a high selectivity of >90% and a quantum efficiency of ∼10.2% under 410 nm irradiation. By adding trace amounts of HCl to the reaction solution, the PdO surface remains stable and active for long-term operation at high concentrations, offering perspective for practical applications.
Collapse
Affiliation(s)
- Wei Qiao
- Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou 215006, China.,SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No. 1, Beijing 101407, China
| | - Xing Fan
- Research Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Weifeng Liu
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Bologna 40136, Italy
| | - Fahir Niaz Khan
- Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou 215006, China
| | - Dongsheng Zhang
- Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou 215006, China.,SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No. 1, Beijing 101407, China
| | - Feiyu Han
- Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou 215006, China.,SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No. 1, Beijing 101407, China
| | - Huiyu Yue
- Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou 215006, China
| | - Yajiao Li
- Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou 215006, China
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Bologna 40136, Italy.,Center for Chemical Catalysis-C3, Alma Mater Studiorum University of Bologna, Bologna 40136, Italy
| | - Stefania Albonetti
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Bologna 40136, Italy.,Center for Chemical Catalysis-C3, Alma Mater Studiorum University of Bologna, Bologna 40136, Italy
| | - Xiaodong Wen
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No. 1, Beijing 101407, China.,State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yong Yang
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No. 1, Beijing 101407, China.,State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Flemming Besenbacher
- The Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
| | - Yongwang Li
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No. 1, Beijing 101407, China.,State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Hans Niemantsverdriet
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No. 1, Beijing 101407, China.,SynCat@DIFFER, Syngaschem BV, 6336 HH Eindhoven, The Netherlands
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Ren Su
- Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou 215006, China.,SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No. 1, Beijing 101407, China
| |
Collapse
|
6
|
Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Wang M, Yang Q. Microenvironment engineering of supported metal nanoparticles for chemoselective hydrogenation. Chem Sci 2022; 13:13291-13302. [PMID: 36507185 PMCID: PMC9682894 DOI: 10.1039/d2sc04223a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022] Open
Abstract
Selective hydrogenation with supported metal catalysts widely used in the production of fine chemicals and pharmaceuticals often faces a trade-off between activity and selectivity, mainly due to the inability to adjust one factor of the active sites without affecting other factors. In order to solve this bottleneck problem, the modulation of the microenvironment of active sites has attracted more and more attention, inspired by the collaborative catalytic mode of enzymes. In this perspective, we aim to summarize recent advances in the regulation of the microenvironment surrounding supported metal nanoparticles (NPs) using porous materials enriched with organic functional groups. Insights on how the microenvironment induces the enrichment, oriented adsorption and activation of substrates through non-covalent interaction and thus determines the hydrogenation activity and selectivity will be particularly discussed. Finally, a brief summary will be provided, and challenges together with a perspective in microenvironment engineering will be proposed.
Collapse
Affiliation(s)
- Maodi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qihua Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
8
|
Okladnikov I, Boyko Y, Nelyubina Y, Ioffe S, Sukhorukov A. Asymmetric Synthesis of a Pyrrolizidinone‐Based hNK1 Antagonist through Reductive Ring Contraction of a Six‐Membered Cyclic Nitronate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ilya Okladnikov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of organic and metal-organic nitrogen-oxygen systems RUSSIAN FEDERATION
| | - Yaroslav Boyko
- University of Illinois Urbana-Champaign Roger Adams Laboratory, Department of Chemistry UNITED STATES
| | - Yulia Nelyubina
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Center for molecular composition studies RUSSIAN FEDERATION
| | - Sema Ioffe
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of organic and metal-organic nitrogen-oxygen systems RUSSIAN FEDERATION
| | - Alexey Sukhorukov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Organic and Metal-organic Nitrogen-oxygen Systems Leninsky prospect, 47 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
9
|
Cerezo-Navarrete C, Marin IM, García-Miquel H, Corma A, Chaudret B, Martínez-Prieto LM. Magnetically Induced Catalytic Reduction of Biomass-Derived Oxygenated Compounds in Water. ACS Catal 2022. [PMID: 37528952 PMCID: PMC10388291 DOI: 10.1021/acscatal.2c01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of energetically efficient processes for the aqueous reduction of biomass-derived compounds into chemicals is key for the optimal transformation of biomass. Herein we report an early example of the reduction of biomass-derived oxygenated compounds in water by magnetically induced catalysis. Non-coated and carbon-coated core-shell FeCo@Ni magnetic nanoparticles were used as the heating agent and the catalyst simultaneously. In this way it was possible to control the product distribution by adjusting the field amplitude applied during the magnetic catalysis, opening a precedent for this type of catalysis. Finally, the encapsulation of the magnetic nanoparticles in carbon (FeCo@Ni@C) strongly improved the stability of the magnetic catalyst in solution, making its reuse possible up to at least eight times in dioxane and four times in water.
Collapse
Affiliation(s)
- Christian Cerezo-Navarrete
- Instituto de Tecnología Química, Universitat Politècnica de València (UPV), Avenida de los Naranjos S/N, 46022 Valencia, Spain
| | - Irene Mustieles Marin
- LPCNO, Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, UPS, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Héctor García-Miquel
- ITEAM Research Institute, Universitat Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València (UPV), Avenida de los Naranjos S/N, 46022 Valencia, Spain
| | - Bruno Chaudret
- LPCNO, Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, UPS, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Luis M. Martínez-Prieto
- Instituto de Tecnología Química, Universitat Politècnica de València (UPV), Avenida de los Naranjos S/N, 46022 Valencia, Spain
- Departamento de Química Inorgánica (University of Seville), Instituto de Investigaciones Químicas (CSIC-US); Avenida Americo Vespucio 49, 41092 Seville, Spain
| |
Collapse
|
10
|
Yu Z, Wang Y, Zhang G, Sun Z, Liu YY, Shi C, Wang W, Wang A. A highly dispersed Ni3P/HZSM-5 catalyst for hydrodeoxygenation of phenolic compounds to cycloalkanes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Wang Y, He H, Wang C, Lu Y, Dong K, Huo F, Zhang S. Insights into Ionic Liquids: From Z-Bonds to Quasi-Liquids. JACS AU 2022; 2:543-561. [PMID: 35373210 PMCID: PMC8965826 DOI: 10.1021/jacsau.1c00538] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 05/26/2023]
Abstract
Ionic liquids (ILs) hold great promise in the fields of green chemistry, environmental science, and sustainable technology due to their unique properties, such as a tailorable structure, the various types available, and their environmentally friendly features. On the basis of multiscale simulations and experimental characterizations, two unique features of ILs are as follows: (1) strong coupling interactions between the electrostatic forces and hydrogen bonds, namely in the Z-bond, and (2) the unique semiordered structure and properties of ultrathin films, specifically regarding the quasi-liquid. In accordance with the aforementioned theoretical findings, many cutting-edge applications have been proposed: for example, CO2 capture and conversion, biomass conversion and utilization, and energy storage materials. Although substantial progress has been made recently in the field of ILs, considerable challenges remain in understanding the nature of and devising applications for ILs, especially in terms of e.g. in situ/real-time observation and highly precise multiscale simulations of the Z-bond and quasi-liquid. In this Perspective, we review recent developments and challenges for the IL research community and provide insights into the nature and function of ILs, which will facilitate future applications.
Collapse
Affiliation(s)
- Yanlei Wang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Hongyan He
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Chenlu Wang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Yumiao Lu
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Kun Dong
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Feng Huo
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Suojiang Zhang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory
of Multiphase Complex Systems, CAS Key Laboratory of Green Process
and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s
Republic of China
| |
Collapse
|
12
|
Xu C, Wu H, Zhang Z, Zheng B, Zhai J, Zhang K, Wu W, Mei X, He M, Han B. Highly Effective and Chemoselective Hydrodeoxygenation of Aromatic Alcohols. Chem Sci 2022; 13:1629-1635. [PMID: 35282624 PMCID: PMC8827088 DOI: 10.1039/d1sc06430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
Effective hydrodeoxygenation (HDO) of aromatic alcohols is very attractive in both conventional organic synthesis and upgrading of biomass-derived molecules, but the selectivity of this reaction is usually low because of...
Collapse
Affiliation(s)
- Caiyun Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Bingxiao Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Jianxin Zhai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Kaili Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Wei Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Xuelei Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
13
|
Sun R, Guo HY, Ma SS, Wang YF, Yu Z, Xu BH. Ru(dppbsa)-catalyzed hydrodeoxygenation and reductive etherification of ketones and aldehydes. Org Chem Front 2022. [DOI: 10.1039/d1qo01717a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(dppbsa)-catalyzed hydrodeoxygenation and reductive etherification of ketones and aldehydes were developed. The carbonyl substrates without β-CH functionality follow the hydrogenation-hydrogenolysis path, wherein the hydrogenolysis of the alkanol intermediates presents as...
Collapse
|
14
|
Kreissl H, Jin J, Lin S, Schüette D, Störtte S, Levin N, Chaudret B, Vorholt AJ, Bordet A, Leitner W. Commercial Cu 2 Cr 2 O 5 Decorated with Iron Carbide Nanoparticles as a Multifunctional Catalyst for Magnetically Induced Continuous-Flow Hydrogenation of Aromatic Ketones. Angew Chem Int Ed Engl 2021; 60:26639-26646. [PMID: 34617376 PMCID: PMC9298693 DOI: 10.1002/anie.202107916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/30/2021] [Indexed: 11/10/2022]
Abstract
Copper chromite is decorated with iron carbide nanoparticles, producing a magnetically activatable multifunctional catalytic system. This system (ICNPs@Cu2 Cr2 O5 ) can reduce aromatic ketones to aromatic alcohols when exposed to magnetic induction. Under magnetic excitation, the ICNPs generate locally confined hot spots, selectively activating the Cu2 Cr2 O5 surface while the global temperature remains low (≈80 °C). The catalyst selectively hydrogenates a scope of benzylic and non-benzylic ketones under mild conditions (3 bar H2 , heptane), while ICNPs@Cu2 Cr2 O5 or Cu2 Cr2 O5 are inactive when the same global temperature is adjusted by conventional heating. A flow reactor is presented that allows the use of magnetic induction for continuous-flow hydrogenation at elevated pressure. The excellent catalytic properties of ICNPs@Cu2 Cr2 O5 for the hydrogenation of biomass-derived furfuralacetone are conserved for at least 17 h on stream, demonstrating for the first time the application of a magnetically heated catalyst to a continuously operated hydrogenation reaction in the liquid phase.
Collapse
Affiliation(s)
- Hannah Kreissl
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Jing Jin
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Sheng‐Hsiang Lin
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Dirk Schüette
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Sven Störtte
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Natalia Levin
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets.Université de ToulouseINSAUPSLPCNOCNRS-UMR5215135 Avenue de Rangueil31077ToulouseFrance
| | - Andreas J. Vorholt
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityWorringerweg 252074AachenGermany
| |
Collapse
|
15
|
Kreissl H, Jin J, Lin S, Schüette D, Störtte S, Levin N, Chaudret B, Vorholt AJ, Bordet A, Leitner W. Commercial Cu
2
Cr
2
O
5
Decorated with Iron Carbide Nanoparticles as a Multifunctional Catalyst for Magnetically Induced Continuous‐Flow Hydrogenation of Aromatic Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hannah Kreissl
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Jing Jin
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Sheng‐Hsiang Lin
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Dirk Schüette
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Sven Störtte
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Natalia Levin
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets. Université de Toulouse INSA UPS LPCNO CNRS-UMR5215 135 Avenue de Rangueil 31077 Toulouse France
| | - Andreas J. Vorholt
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| |
Collapse
|
16
|
Yu Z, Yao Y, Wang Y, Li Y, Sun Z, Liu YY, Shi C, Liu J, Wang W, Wang A. Reprint of: A bifunctional Ni3P/γ-Al2O3 catalyst prepared by electroless plating for the hydrodeoxygenation of phenol. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Guillet SG, Pisanò G, Chakrabortty S, Müller BH, Vries JG, Kamer PCJ, Cazin CSJ, Nolan SP. A Simple Synthetic Route to [Rh(acac)(CO)(NHC)] Complexes: Ligand Property Diagnostic Tools and Precatalysts. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sébastien G. Guillet
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| | - Gianmarco Pisanò
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| | - Soumyadeep Chakrabortty
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Bernd H. Müller
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Johannes G. Vries
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Paul C. J. Kamer
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| | - Steven. P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| |
Collapse
|
18
|
Bordet A, Leitner W. Metal Nanoparticles Immobilized on Molecularly Modified Surfaces: Versatile Catalytic Systems for Controlled Hydrogenation and Hydrogenolysis. Acc Chem Res 2021; 54:2144-2157. [PMID: 33822579 PMCID: PMC8154204 DOI: 10.1021/acs.accounts.1c00013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 01/08/2023]
Abstract
The synthesis and use of supported metal nanoparticle catalysts have a long-standing tradition in catalysis, typically associated with the field of heterogeneous catalysis. More recently, the development and understanding of catalytic systems composed of metal nanoparticles (NPs) that are synthesized from organometallic precursors on molecularly modified surfaces (MMSs) have opened a conceptually new approach to the design of multifunctional catalysts (NPs@MMS). These complex yet fascinating materials bridge molecular ("homogeneous") and material ("heterogeneous") approaches to catalysis and provide access to catalytic systems with tailor-made reactivity through judicious combinations of supports, molecular modifiers, and nanoparticle precursors. A particularly promising field of application is the controlled activation and transfer of dihydrogen, enabling highly selective hydrogenation and hydrogenolysis reactions as relevant for the conversion of biogenic feedstocks and platform chemicals as well as for novel synthetic pathways to fine chemicals and even pharmaceuticals. Consequently, the topic offers an emerging field for interdisciplinary research activities involving organometallic chemists, material scientists, synthetic organic chemists, and catalysis experts.This Account will provide a brief overview of the historical background and cover examples from the most recent developments in the field. A coherent account on the methodological and experimental basis will be given from the long-standing experience in our laboratories. MMSs are widely accessible via chemisorption and physisorption methods for the generation of stable molecular environments on solid surfaces, whereby a special emphasis is given here to ionic liquid-type molecules as modifiers (supported ionic liquid phases, SILPs) and silica as support material. Metal nanoparticles are synthesized following an organometallic approach, allowing the controlled formation of small and uniformly dispersed monometallic or multimetallic NPs in defined composition. A combination of techniques from molecular and material characterization provides a detailed insight into the structure of the resulting materials across various scales (electron microscopy, solid-state NMR, XPS, XAS, etc.).The molecular functionalities grafted on the silica surface have a pronounced influence on the formation, stabilization, and reactivity of the NPs. The complementary and synergistic fine-tuning of the metal and its molecular environment in NPs@MMSs allow in particular the control of the activation of hydrogen and its transfer to substrates. Monometallic (Ru, Rh, Pd) monofunctional NPs@MMSs possess excellent activities for the hydrogenation of alkenes, alkynes, and arenes for which a nonpolarized (homolytic) activation of H2 is predominant. The incorporation of 3d metals in noble metal NPs to give bimetallic (FeRu, CoRh, etc.) monofunctional NPs@MMSs favors a more polarized H2 activation and thus its transfer to the C═O bond, while at the same time preventing the arrangement of noble metal atoms necessary for ring hydrogenation. The incorporation of reactive functionalities, such as, for example, a -SO3H moiety on NPs@MMSs, results in bifunctional catalysts enabling the heterolytic cleavage corresponding to a formal H-/H+ transfer. Consequently, such catalysts possess excellent deoxygenation activity with strong synergistic effects arising from an intimate contact between the nanoparticles and the molecular functionality.While many more efforts are still required to explore, control, and understand the chemistry of NPs@MMS catalysts fully, the currently available examples already highlight the large potential of this approach for the rational design of multifunctional catalytic systems.
Collapse
Affiliation(s)
- Alexis Bordet
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut
für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
19
|
Yu Z, Yao Y, Wang Y, Li Y, Sun Z, Liu YY, Shi C, Liu J, Wang W, Wang A. A bifunctional Ni3P/γ-Al2O3 catalyst prepared by electroless plating for the hydrodeoxygenation of phenol. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Wang Y, Chang Z, Hu Y, Lin X, Dou X. Mild and Selective Rhodium-Catalyzed Transfer Hydrogenation of Functionalized Arenes. Org Lett 2021; 23:1910-1914. [PMID: 33599508 DOI: 10.1021/acs.orglett.1c00341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diboron-mediated rhodium-catalyzed transfer hydrogenation of functionalized arenes is reported. In addition to good functional group tolerance, the reaction features operational simplicity and controllable chemoselectivity. The general applicability of this procedure is demonstrated by the selective hydrogenation of a range of arenes, including functionalized benzenes, biphenyls, and polyaromatics.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Zhiqian Chang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Hu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Lin
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaowei Dou
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
21
|
Rengshausen S, Van Stappen C, Levin N, Tricard S, Luska KL, DeBeer S, Chaudret B, Bordet A, Leitner W. Organometallic Synthesis of Bimetallic Cobalt-Rhodium Nanoparticles in Supported Ionic Liquid Phases (Co x Rh 100- x @SILP) as Catalysts for the Selective Hydrogenation of Multifunctional Aromatic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006683. [PMID: 33346403 DOI: 10.1002/smll.202006683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The synthesis, characterization, and catalytic properties of bimetallic cobalt-rhodium nanoparticles of defined Co:Rh ratios immobilized in an imidazolium-based supported ionic liquid phase (Cox Rh100- x @SILP) are described. Following an organometallic approach, precise control of the Co:Rh ratios is accomplished. Electron microscopy and X-ray absorption spectroscopy confirm the formation of small, well-dispersed, and homogeneously alloyed zero-valent bimetallic nanoparticles in all investigated materials. Benzylideneacetone and various bicyclic heteroaromatics are used as chemical probes to investigate the hydrogenation performances of the Cox Rh100- x @SILP materials. The Co:Rh ratio of the nanoparticles is found to have a critical influence on observed activity and selectivity, with clear synergistic effects arising from the combination of the noble metal and its 3d congener. In particular, the ability of Cox Rh100- x @SILP catalysts to hydrogenate 6-membered aromatic rings is found to experience a remarkable sharp switch in a narrow composition range between Co25 Rh75 (full ring hydrogenation) and Co30 Rh70 (no ring hydrogenation).
Collapse
Affiliation(s)
- Simon Rengshausen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Casey Van Stappen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Natalia Levin
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Simon Tricard
- Laboratoire de Physique et Chimie des Nano-Objets, Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 Avenue de Rangueil, Toulouse, 31077, France
| | - Kylie L Luska
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets, Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 Avenue de Rangueil, Toulouse, 31077, France
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| |
Collapse
|
22
|
Chakrabortty S, Rockstroh N, Bartling S, Lund H, Müller BH, Kamer PCJ, de Vries JG. The solvent determines the product in the hydrogenation of aromatic ketones using unligated RhCl 3 as catalyst precursor. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01504d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RhCl3-catalysed hydrogenation/hydrodeoxygenation of aromatic ketones produced alkylcyclohexanes in TFE and cyclohexyl alkyl alcohols in water at moderate temperatures. Rh-nanoparticles were found to be the true catalysts.
Collapse
Affiliation(s)
| | - Nils Rockstroh
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Henrik Lund
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Bernd H. Müller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Paul C. J. Kamer
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Johannes G. de Vries
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
23
|
Bordet A, Moos G, Welsh C, Licence P, Luska KL, Leitner W. Molecular Control of the Catalytic Properties of Rhodium Nanoparticles in Supported Ionic Liquid Phase (SILP) Systems. ACS Catal 2020; 10:13904-13912. [PMID: 33343998 PMCID: PMC7737233 DOI: 10.1021/acscatal.0c03559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Rhodium nanoparticles (NPs) immobilized on imidazolium-based supported ionic liquid phases (Rh@SILP) act as effective catalysts for the hydrogenation of biomass-derived furfuralacetone. The structure of ionic liquid-type (IL) molecular modifiers was systematically varied regarding spacer, side chain, and anion to assess the influence on the NP synthesis and their catalytic properties. Well-dispersed Rh NPs with diameters in the range of 0.6-2.0 nm were formed on all SILP materials, whereby the actual size was dependent significantly on the IL structure. The resulting variations in catalytic activity for hydrogenation of the C=O moiety in furfuralacetone allowed control of the product selectivity to obtain either the saturated alcohol or the ketone in high yield. Experiments conducted under batch and continuous flow conditions demonstrated that Rh NPs immobilized on SILPs with suitable IL structures are more active and much more stable than Rh@SiO2 catalyst synthesized on unmodified silica.
Collapse
Affiliation(s)
- Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Gilles Moos
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Calum Welsh
- The University of Nottingham, School of Chemistry, Clifton Boulevard, Nottingham NG7 2RD, United Kingdom
| | - Peter Licence
- The University of Nottingham, School of Chemistry, Clifton Boulevard, Nottingham NG7 2RD, United Kingdom
| | - Kylie L. Luska
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| |
Collapse
|
24
|
Goclik L, Offner-Marko L, Bordet A, Leitner W. Selective hydrodeoxygenation of hydroxyacetophenones to ethyl-substituted phenol derivatives using a FeRu@SILP catalyst. Chem Commun (Camb) 2020; 56:9509-9512. [PMID: 32686801 DOI: 10.1039/d0cc03695a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective hydrodeoxygenation of hydroxyacetophenone derivatives is achieved opening a versatile pathway for the production of valuable substituted ethylphenols from readily available substrates. Bimetallic iron ruthenium nanoparticles immobilized on an imidazolium-based supported ionic liquid phase (Fe25Ru75@SILP) show high activity and stability for a broad range of substrates without acidic co-catalysts.
Collapse
Affiliation(s)
- Lisa Goclik
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany. and Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Lisa Offner-Marko
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany. and Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany. and Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
25
|
Moos G, Emondts M, Bordet A, Leitner W. Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh@SILP Catalyst. Angew Chem Int Ed Engl 2020; 59:11977-11983. [PMID: 32220119 PMCID: PMC7383641 DOI: 10.1002/anie.201916385] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 11/18/2022]
Abstract
Rhodium nanoparticles immobilized on an acid‐free triphenylphosphonium‐based supported ionic liquid phase (Rh@SILP(Ph3‐P‐NTf2)) enabled the selective hydrogenation and hydrodeoxygenation of aromatic ketones. The flexible molecular approach used to assemble the individual catalyst components (SiO2, ionic liquid, nanoparticles) led to outstanding catalytic properties. In particular, intimate contact between the nanoparticles and the phosphonium ionic liquid is required for the deoxygenation reactivity. The Rh@SILP(Ph3‐P‐NTf2) catalyst was active for the hydrodeoxygenation of benzylic ketones under mild conditions, and the product distribution for non‐benzylic ketones was controlled with high selectivity between the hydrogenated (alcohol) and hydrodeoxygenated (alkane) products by adjusting the reaction temperature. The versatile Rh@SILP(Ph3‐P‐NTf2) catalyst opens the way to the production of a wide range of high‐value cyclohexane derivatives by the hydrogenation and/or hydrodeoxygenation of Friedel–Crafts acylation products and lignin‐derived aromatic ketones.
Collapse
Affiliation(s)
- Gilles Moos
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Meike Emondts
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany.,Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany.,Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
26
|
Chatterjee B, Kalsi D, Kaithal A, Bordet A, Leitner W, Gunanathan C. One-pot dual catalysis for the hydrogenation of heteroarenes and arenes. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00928h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytic system resulting from a monohydrido bridged ruthenium complex hydrogenated both heteroarenes and arenes, exhibited dual catalysis and provided access to valuable saturated heterocycles and cycloalkanes.
Collapse
Affiliation(s)
- Basujit Chatterjee
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| | - Deepti Kalsi
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Akash Kaithal
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
| | - Chidambaram Gunanathan
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| |
Collapse
|
27
|
Kacem S, Emondts M, Bordet A, Leitner W. Selective hydrogenation of fluorinated arenes using rhodium nanoparticles on molecularly modified silica. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01716g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh nanoparticles prepared on hydrophobic molecularly modified silica act as effective catalysts for the hydrogenation of fluoroarenes to fluorocyclohexane derivatives.
Collapse
Affiliation(s)
- Souha Kacem
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
| | - Meike Emondts
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI-Leibniz Institute for Interactive Materials
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
| |
Collapse
|