1
|
Artasensi A, Bassanini I, E Ferrandi E, Feni L, Vistoli G, Fumagalli L, Gandolfi R. Chemoenzymatic approach towards the synthesis of the antitumor and antileishmanial marine metabolite (+)-Harzialactone A via the stereoselective, biocatalyzed reduction of a prochiral ketone. Bioorg Chem 2023; 138:106675. [PMID: 37329813 DOI: 10.1016/j.bioorg.2023.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
As a rich source of biological active compounds, marine natural products have been increasingly screened as candidates for developing new drugs. Among the several marine products and metabolites, (+)-Harzialactone A has drawn considerable attention for its antitumor and antileishmanial activity. In this work a chemoenzymatic approach has been implemented for the preparation of the marine metabolite (+)-Harzialactone A. The synthesis involved a stereoselective, biocatalyzed reduction of the prochiral ketone 4-oxo-5-phenylpentanoic acid or the corresponding esters, all generated by chemical reactions. A collection of different promiscuous oxidoreductases (both wild-type and engineered) and diverse microorganism strains were investigated to mediate the bioconversions. After co-solvent and co-substrate investigation in order to enhance the bioreduction performance, T. molischiana in presence of NADES (choline hydrochloride-glucose) and ADH442 were identified as the most promising biocatalysts, allowing the obtainment of the (S)-enantiomer with excellent ee (97% to > 99% respectively) and good to excellent conversion (88% to 80% respectively). The successful attempt in this study provides a new chemoenzymatic approach for the synthesis of (+)-Harzialactone A.
Collapse
Affiliation(s)
- Angelica Artasensi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133, Milan, Italy.
| | - Ivan Bassanini
- Istituto di Scienze e Tecnologie Chimiche ''Giulio Natta'', Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131, Milan, Italy.
| | - E E Ferrandi
- Istituto di Scienze e Tecnologie Chimiche ''Giulio Natta'', Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131, Milan, Italy.
| | - Lucia Feni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133, Milan, Italy.
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133, Milan, Italy.
| | - Laura Fumagalli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133, Milan, Italy.
| | - Raffaella Gandolfi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
2
|
Liu Y, Zhang L, Zhang Y, Cao S, Ban X, Yin Y, Zhao X, Jiang Z. Asymmetric Olefin Isomerization via Photoredox Catalytic Hydrogen Atom Transfer and Enantioselective Protonation. J Am Chem Soc 2023; 145:18307-18315. [PMID: 37552539 DOI: 10.1021/jacs.3c03732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Asymmetric olefin isomerization can be appreciated as an ideal synthetic approach to access valuable enantioenriched C═C-containing molecules due to the excellent atom economy. Nonetheless, its occurrence usually requires a thermodynamic advantage, namely, a higher stability of the product to the substrate. It has thus led to rather limited examples of success. Herein, we report a photoredox catalytic hydrogen atom transfer (HAT) and enantioselective protonation strategy for the challenging asymmetric olefin isomerization. As a paradigm, by establishing a dual catalyst system involving a visible light photosensitizer DPZ and a chiral phosphoric acid, with the assistance of N-hydroxyimide to perform HAT, a wide array of allylic azaarene derivatives, featuring α-tertiary carbon stereocenters and β-C═C bonds, was synthesized with high yields, ees, and E/Z ratios starting from the conjugated α-substituted alkenylazaarene E/Z-mixtures. The good compatibility of assembling deuterium on stereocenters by using inexpensive D2O as a deuterium source further underscores the broad applicability and promising utility of this strategy. Moreover, mechanistic studies have provided clear insights into its challenges in terms of reactivity and enantioselectivity. The exploration will robustly inspire the development of thermodynamically unfavorable asymmetric olefin isomerizations.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Linghong Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Yong Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Shanshan Cao
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Xu Ban
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Yanli Yin
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, Henan, P. R. China
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 451001, Henan, P. R. China
| | - Xiaowei Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Zhiyong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| |
Collapse
|
3
|
Murugesan T, Elikkottil A, Kaliyamoorthy A. Palladium-Catalyzed Regioselective C3-Allylic Alkylation of 2-Aryl Imidazopyridines with MBH Carbonates. J Org Chem 2023; 88:2655-2665. [PMID: 36719167 DOI: 10.1021/acs.joc.2c03001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Imidazopyridine is an important framework that constitutes several pharmaceutical drugs and biologically active molecules. Herein, we present the palladium-catalyzed regioselective C3-allylic alkylation of 2-aryl imidazopyridines with MBH carbonates. This strategy furnishes a broad spectrum of C3-allylated imidazopyridines, and their structures have been unequivocally established using X-ray analysis. Besides, the reaction can be easily scaled up on a gram scale, and the ensuing product can be smoothly manipulated into synthetically useful entities.
Collapse
Affiliation(s)
- Tamilarasu Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Afna Elikkottil
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Alagiri Kaliyamoorthy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| |
Collapse
|
4
|
Sim J, Ryou B, Choi M, Lee C, Park CM. Electrochemical C(sp 3)-H Functionalization of γ-Lactams Based on Hydrogen Atom Transfer. Org Lett 2022; 24:4264-4269. [PMID: 35675591 DOI: 10.1021/acs.orglett.2c01528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe the electrochemical α-amidoalkylation of γ-lactams based on transition-metal-free cross-coupling via hydrogen atom transfer. The highly selective hydrogen atom transfer process allows for a broad substrate scope including both inter- and intramolecular reactions. Also, the construction of quaternary centers was realized by a double hydrogen atom transfer protocol to afford spirocycles. Detailed mechanistic studies including experimental and computational studies are provided to support the reaction pathway.
Collapse
Affiliation(s)
| | | | | | | | - Cheol-Min Park
- Department of Chemistry, Ulsan National Institute of Science & Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
5
|
Li F, Zhu S, Koenigs RM. Photocatalytic 1,2-oxo-alkylation reaction of styrenes with diazoacetates. Chem Commun (Camb) 2022; 58:7526-7529. [PMID: 35703319 DOI: 10.1039/d2cc02414d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report on the photocatalytic 1,2-difunctionalization reaction of styrenes with acceptor-only diazoalkanes. In the presence of DABCO and tBuOOH, the carbene reactivity of diazoalkanes can be suppressed and a 1,2 oxo-alkylation reaction can be achieved (32 examples, up to 94% yield) without the formation of cyclopropane by-products via the formation of radical intermediates from ethyl diazoacetate.
Collapse
Affiliation(s)
- Fang Li
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany.
| | - Siqi Zhu
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany.
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany.
| |
Collapse
|
6
|
Electrocatalytic Isomerization of Allylic Alcohols: Straightforward Preparation of β-Aryl-Ketones. Catalysts 2022. [DOI: 10.3390/catal12030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Electrochemical synthesis has been rapidly developing over the past few years. Here, we report a practical and eco-friendly electrocatalytic isomerization of allylic alcohols to their corresponding carbonyl compounds. This reaction can be carried out in undivided cells without the addition of external chemical oxidants and metal catalysts. Moreover, this reaction features a broad substrate scope including challenging allylic alcohols bearing tri- and tetra-substituted olefins and affords straightforward access to diverse β-aryl-ketones. Mechanistic investigations suggest that the reactions proceed through a radical process. This study represents a unique example in which electrochemistry enables hydrogen atom transfer in organic allylic alcohol substrates using a simple organocatalyst.
Collapse
|
7
|
Transition metal-catalyzed (remote) deconjugative isomerization of α,β-unsaturated carbonyls. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Mashiko T, Shingai Y, Sakai J, Kamo S, Adachi S, Matsuzawa A, Sugita K. Total Synthesis of Cochlearol B via Intramolecular [2+2] Photocycloaddition. Angew Chem Int Ed Engl 2021; 60:24484-24487. [PMID: 34533883 DOI: 10.1002/anie.202110556] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/15/2021] [Indexed: 11/12/2022]
Abstract
Herein, we describe the first total synthesis of cochlearol B, a meroterpenoid natural product featuring a 4/5/6/6/6-fused pentacyclic structure. Key steps, oxidative cyclization and subsequent intramolecular [2+2] photocycloaddition, which constructed the pentacyclic structure in highly stereoselective manner, allowed efficient access to cochlearol B with the longest linear sequence of 16 steps, and in 9 % overall yield. Single-crystal X-ray crystallographic analysis clearly confirmed the stereochemistry of cochlearol B.
Collapse
Affiliation(s)
- Tomoya Mashiko
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yuta Shingai
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Jun Sakai
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Shogo Kamo
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Shinya Adachi
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Akinobu Matsuzawa
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kazuyuki Sugita
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| |
Collapse
|
9
|
Mashiko T, Shingai Y, Sakai J, Kamo S, Adachi S, Matsuzawa A, Sugita K. Total Synthesis of Cochlearol B via Intramolecular [2+2] Photocycloaddition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tomoya Mashiko
- Department of Synthetic Medicinal Chemistry Faculty of Pharmaceutical Sciences Hoshi University 2-4-41 Ebara, Shinagawa-ku Tokyo 142-8501 Japan
| | - Yuta Shingai
- Department of Synthetic Medicinal Chemistry Faculty of Pharmaceutical Sciences Hoshi University 2-4-41 Ebara, Shinagawa-ku Tokyo 142-8501 Japan
| | - Jun Sakai
- Department of Synthetic Medicinal Chemistry Faculty of Pharmaceutical Sciences Hoshi University 2-4-41 Ebara, Shinagawa-ku Tokyo 142-8501 Japan
| | - Shogo Kamo
- Department of Synthetic Medicinal Chemistry Faculty of Pharmaceutical Sciences Hoshi University 2-4-41 Ebara, Shinagawa-ku Tokyo 142-8501 Japan
| | - Shinya Adachi
- Department of Synthetic Medicinal Chemistry Faculty of Pharmaceutical Sciences Hoshi University 2-4-41 Ebara, Shinagawa-ku Tokyo 142-8501 Japan
| | - Akinobu Matsuzawa
- Department of Synthetic Medicinal Chemistry Faculty of Pharmaceutical Sciences Hoshi University 2-4-41 Ebara, Shinagawa-ku Tokyo 142-8501 Japan
| | - Kazuyuki Sugita
- Department of Synthetic Medicinal Chemistry Faculty of Pharmaceutical Sciences Hoshi University 2-4-41 Ebara, Shinagawa-ku Tokyo 142-8501 Japan
| |
Collapse
|
10
|
Xiao W, Wang X, Liu R, Wu J. Quinuclidine and its derivatives as hydrogen-atom-transfer catalysts in photoinduced reactions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
|
12
|
Rivas-Loaiza JA, Baj A, López Y, Witkowski S, Wojtkielewicz A, Morzycki JW. Synthesis of Solanum Alkaloid Demissidine Stereoisomers and Analogues. J Org Chem 2021; 86:1575-1582. [PMID: 33393776 DOI: 10.1021/acs.joc.0c02410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Demissidine is an indolizidine alkaloid isolated from several potato species. A simple synthesis of demissidine stereoisomers and analogues from a common steroidal sapogenin tigogenin is presented in the paper. The key intermediate in the synthesis of these compounds is readily available tigogenoic acid. Its step-by-step transformation to indolizidine yielded 20R,25R or 20R,25S products while the direct reductive amination produced the 20S,25R compound (25-epi-demissidine).
Collapse
Affiliation(s)
- Juan A Rivas-Loaiza
- Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Aneta Baj
- Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Yliana López
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58030, Mexico
| | - Stanisław Witkowski
- Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland
| | | | - Jacek W Morzycki
- Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland
| |
Collapse
|