1
|
Kondoh A, Kato T, Chen H, Terada M. Asymmetric Auto-Tandem Catalysis with Chiral Organosuperbases: Intramolecular Cyclization/Enantioselective Direct Mannich-Type Addition Sequence. Org Lett 2024; 26:6523-6528. [PMID: 39028997 DOI: 10.1021/acs.orglett.4c02532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
An enantioselective addition reaction of alkynyl esters with imines was developed under asymmetric autotandem catalysis with a chiral Brønsted base. A chiral bis(guanidino)iminophosphorane organosuperbase, which has much higher basicity than that of conventional chiral organic bases, efficiently promoted both the intramolecular cyclization for the construction of a benzofuran ring or a benzothiophene ring and the sequential enantioselective direct Mannich-type reaction of diarylmethane derivatives, affording enantio-enriched diarylalkane derivatives that are otherwise difficult to access.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takuro Kato
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hao Chen
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
2
|
Barešić L, Marijanović M, Dokli I, Margetić D, Glasovac Z. Cocatalytic Activity of the Furfuryl and Oxanorbornane-Substituted Guanidines in the Aldol Reaction Catalyzed by ( S)-Proline. Int J Mol Sci 2024; 25:5570. [PMID: 38791607 PMCID: PMC11121891 DOI: 10.3390/ijms25105570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
This work investigated the cocatalytic activity of recently prepared guanidinium salts containing an oxanorbornane subunit in an (S)-proline-catalyzed aldol reaction. The activity was interpreted by the diastereoselectivity of the reaction (anti/syn ratio) and for the most interesting polycyclic guanidinium salt, the enantioselectivity of the reaction was determined. The results indicated a negative impact on the oxanorbornane unit if present as the flexible substituent. For most of the tested aldehydes, the best cocatalysts provided enantioselectivities above 90% and above 95% at room temperature and 0 °C, respectively, culminating in >99.5% for 4-chloro- and 2-nitrobenzaldehyde as the substrate. The barriers for forming four possible enantiomers were calculated and the results for two anti-enantiomers are qualitatively consistent with the experiment. Obtained results suggest that the representatives of furfurylguanidinium and rigid polycyclic oxanorbornane-substituted guanidinium salts are good lead structures for developing new cocatalysts by tuning the chemical space around the guanidine moiety.
Collapse
Affiliation(s)
- Luka Barešić
- Centre for Nuclear Magnetic Resonance, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | | | - Irena Dokli
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Davor Margetić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Zoran Glasovac
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Kondoh A, Ojima R, Ishikawa S, Terada M. Construction of 1,3-Nonadjacent Stereogenic Centers Through Enantioselective Addition of α-Thioacetamides to α-Substituted Vinyl Sulfones Catalyzed by Chiral Strong Brønsted Base. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308020. [PMID: 38126668 PMCID: PMC10916638 DOI: 10.1002/advs.202308020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Indexed: 12/23/2023]
Abstract
An enantioselective addition reaction for the construction of 1,3-nonadjacent stereogenic centers is developed by means of a chiral strong Brønsted base catalyst. The chiral sodium ureate catalyst efficiently promoted the reaction of α-thioacetamides as less acidic pronucleophiles with vinyl sulfones having a variety of α-substituents including aryl, alkyl and halo groups, and α-phenylacrylates, accomplishing the construction of various 1,3-nonadjacent stereogenic centers in highly diastereo- and enantioselective manners. This is a rare example of the construction of 1,3-nonadjacent stereogenic centers with less acidic pronucleophiles. In addition, the application of Michael acceptors having various types of α-substituents in a single catalyst system is achieved for the first time, demonstrating the utility of the present catalyst system for the construction of 1,3-nonadjacent stereogenic centers.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant MoleculesGraduate School of ScienceTohoku UniversityAramaki, Aoba‐kuSendai980–8578Japan
| | - Rihaku Ojima
- Department of ChemistryGraduate School of ScienceTohoku UniversityAramaki, Aoba‐kuSendai980–8578Japan
| | - Sho Ishikawa
- Department of ChemistryGraduate School of ScienceTohoku UniversityAramaki, Aoba‐kuSendai980–8578Japan
| | - Masahiro Terada
- Department of ChemistryGraduate School of ScienceTohoku UniversityAramaki, Aoba‐kuSendai980–8578Japan
| |
Collapse
|
4
|
Racochote S, Naweephattana P, Surawatanawong P, Kuhakarn C, Leowanawat P, Reutrakul V, Soorukram D. Base-catalyzed diastereodivergent thia-Michael addition to chiral β-trifluoromethyl-α,β-unsaturated N-acylated oxazolidin-2-ones. Org Biomol Chem 2023; 21:7180-7187. [PMID: 37624045 DOI: 10.1039/d3ob00999h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Base-catalyzed diastereodivergent thia-Michael addition of thiols to chiral β-trifluoromethyl-α,β-unsaturated N-acylated oxazolidin-2-ones is reported. By tuning the base-catalyst (i-Pr2NEt, DABCO, or P2-t-Bu), a range of chiral thia-Michael adducts was synthesized in good yields with high diastereoselectivities. A plausible mechanism was proposed on the basis of the experimental results. This work is complementary to the existing methods offering advantages, e.g., switchable diastereoselectivity using a readily synthesized chiral starting material, a cheap and readily available base catalyst, and a simple and practical operation, enabling synthetic application in organic synthesis.
Collapse
Affiliation(s)
- Sasirome Racochote
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Phiphob Naweephattana
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Pawaret Leowanawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| |
Collapse
|
5
|
Rozsar D, Farley AJM, McLauchlan I, Shennan BDA, Yamazaki K, Dixon DJ. Bifunctional Iminophosphorane-Catalyzed Enantioselective Nitroalkane Addition to Unactivated α,β-Unsaturated Esters. Angew Chem Int Ed Engl 2023; 62:e202303391. [PMID: 36929179 PMCID: PMC10946890 DOI: 10.1002/anie.202303391] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Herein we describe the enantioselective intermolecular conjugate addition of nitroalkanes to unactivated α,β-unsaturated esters, catalyzed by a bifunctional iminophosphorane (BIMP) superbase. The transformation provides the most direct access to pharmaceutically relevant enantioenriched γ-nitroesters, utilizing feedstock chemicals, with unprecedented selectivity. The methodology exhibits a broad substrate scope, including β-(fluoro)alkyl, aryl and heteroaryl substituted electrophiles, and was successfully applied on a gram scale with reduced catalyst loading, and, additionally, catalyst recovery was carried out. The formal synthesis of a range of drug molecules, and an enantioselective synthesis of (S)-rolipram were achieved. Additionally, computational studies revealed key reaction intermediates and transition state structures, and provided rationale for high enantioselectivities, in good agreement with experimental results.
Collapse
Affiliation(s)
- Daniel Rozsar
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| | - Alistair J. M. Farley
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| | - Iain McLauchlan
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| | | | - Ken Yamazaki
- Division of Applied ChemistryOkayama University700-8530TsushimanakaOkayamaJapan
| | - Darren J. Dixon
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| |
Collapse
|
6
|
Bai YJ, Cheng ML, Zheng XH, Zhang SY, Wang PA. Chiral Cyclopropenimine-catalyzed Asymmetric Michael Addition of Bulky Glycine Imine to α,β-Unsaturated Isoxazoles. Chem Asian J 2022; 17:e202200131. [PMID: 35415949 DOI: 10.1002/asia.202200131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/26/2022] [Indexed: 11/11/2022]
Abstract
A highly efficient asymmetric Michael addition of bulky glycine imine to α,β-unsaturated isoxazoles has been achieved by using 5 mol% of chiral cyclopropenimine as a chiral organo-superbase catalyst under mild conditions. Michael adducts were obtained in excellent yields (up to 97%) and stereoselectivities (up to>99 : 1 dr and 98% ee). A significant solvent effect was found in these chiral organosuperbase catalyzed asymmetric Michael reactions. Gram-scale preparation of Michael adducts and their transformations are realized to provide corresponding products without loss of stereoselectivities. The configurations of Michael adduct was determined by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Yu-Jun Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, P. R. China) E-mails.,Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Mei-Ling Cheng
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xiao-Hui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, P. R. China) E-mails
| | - Sheng-Yong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, P. R. China) E-mails.,Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Ping-An Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
7
|
Rozsar D, Formica M, Yamazaki K, Hamlin TA, Dixon DJ. Bifunctional Iminophosphorane-Catalyzed Enantioselective Sulfa-Michael Addition to Unactivated α,β-Unsaturated Amides. J Am Chem Soc 2022; 144:1006-1015. [PMID: 34990142 PMCID: PMC8793149 DOI: 10.1021/jacs.1c11898] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The
first metal-free catalytic intermolecular enantioselective
Michael addition to unactivated α,β-unsaturated amides
is described. Consistently high enantiomeric excesses and yields were
obtained over a wide range of alkyl thiol pronucleophiles and electrophiles
under mild reaction conditions, enabled by a novel squaramide-based
bifunctional iminophosphorane catalyst. Low catalyst loadings (2.0
mol %) were achieved on a decagram scale, demonstrating the scalability
of the reaction. Computational analysis revealed the origin of the
high enantiofacial selectivity via analysis of relevant transition
structures and provided substantial support for specific noncovalent
activation of the carbonyl group of the α,β-unsaturated
amide by the catalyst.
Collapse
Affiliation(s)
- Daniel Rozsar
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Michele Formica
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom.,Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| |
Collapse
|
8
|
DBU-catalyzed Michael addition of bulky glycine imine to α,β-unsaturated isoxazoles and pyrazolamides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Vazdar K, Margetić D, Kovačević B, Sundermeyer J, Leito I, Jahn U. Design of Novel Uncharged Organic Superbases: Merging Basicity and Functionality. Acc Chem Res 2021; 54:3108-3123. [PMID: 34308625 DOI: 10.1021/acs.accounts.1c00297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
ConspectusOne of the constant challenges of synthetic chemistry is the molecular design and synthesis of nonionic, metal-free superbases as chemically stable neutral organic compounds of moderate molecular weight, intrinsically high thermodynamic basicity, adaptable kinetic basicity, and weak or tunable nucleophilicity at their nitrogen, phosphorus, or carbon basicity centers. Such superbases can catalyze numerous reactions, ranging from C-C bond formation to cycloadditions and polymerization, to name just a few. Additional benefits of organic superbases, as opposed to their inorganic counterparts, are their solubility in organic reaction media, mild reaction conditions, and higher selectivity. Approaching such superbasic compounds remains a continuous challenge. However, recent advances in synthetic methodology and theoretical understanding have resulted in new design principles and synthetic strategies toward superbases. Our computational contributions have demonstrated that the gas-phase basicity region of 350 kcal mol-1 and even beyond is easily reachable by organosuperbases. However, despite record-high basicities, the physical limitations of many of these compounds become quickly evident. The typically large molecular weight of these molecules and their sensitivity to ordinary reaction conditions prevent them from being practical, even though their preparation is often not too difficult. Thus, obviously structural limitations with respect to molecular weight and structural complexity must be imposed on the design of new synthetically useful organic superbases, but strategies for increasing their basicity remain important.The contemporary design of novel organic superbases is illustrated by phosphazenyl phosphanes displaying gas-phase basicities (GB) above 300 kcal mol-1 but having molecular weights well below 1000 g·mol-1. This approach is based on a reconsideration of phosphorus(III) compounds, which goes along with increasing their stability in solution. Another example is the preparation of carbodiphosphoranes incorporating pyrrolidine, tetramethylguanidine, or hexamethylphosphazene as a substituent. With gas-phase proton affinities of up to 300 kcal mol-1, they are among the top nonionic carbon bases on the basicity scale. Remarkably, the high basicity of these compounds is achieved at molecular weights of around 600 g·mol-1. Another approach to achieving high basicity through the cooperative effect of multiple intramolecular hydrogen bonding, which increases the stabilization of conjugate acids, has recently been confirmed.This Account focuses on our efforts to produce superbasic molecules that embody many desirable traits, but other groups' approaches will also be discussed. We reveal the crucial structural features of superbases and place them on known basicity scales. We discuss the emerging potential and current limits of their application and give a general outlook into the future.
Collapse
Affiliation(s)
- Katarina Vazdar
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, v.v.i. Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | | | | | - Jörg Sundermeyer
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, v.v.i. Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
10
|
Weitkamp RF, Neumann B, Stammler H, Hoge B. Phosphorus-Containing Superbases: Recent Progress in the Chemistry of Electron-Abundant Phosphines and Phosphazenes. Chemistry 2021; 27:10807-10825. [PMID: 34032319 PMCID: PMC8362139 DOI: 10.1002/chem.202101065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 01/11/2023]
Abstract
The renaissance of Brønsted superbases is primarily based on their pronounced capacity for a large variety of chemical transformations under mild reaction conditions. Four major set screws are available for the selective tuning of the basicity: the nature of the basic center (N, P, …), the degree of electron donation by substituents to the central atom, the possibility of charge delocalization, and the energy gain by hydrogen bonding. Within the past decades, a plethora of neutral electron-rich phosphine and phosphazene bases have appeared in the literature. Their outstanding properties and advantages over inorganic or charged bases have now made them indispensable as auxiliary bases in deprotonation processes. Herein, an update of the chemistry of basic phosphines and phosphazenes is given. In addition, due to widespread interest, their use in catalysis or as ligands in coordination chemistry is highlighted.
Collapse
Affiliation(s)
- Robin F. Weitkamp
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Beate Neumann
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Berthold Hoge
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
11
|
Antenucci A, Dughera S, Renzi P. Green Chemistry Meets Asymmetric Organocatalysis: A Critical Overview on Catalysts Synthesis. CHEMSUSCHEM 2021; 14:2785-2853. [PMID: 33984187 PMCID: PMC8362219 DOI: 10.1002/cssc.202100573] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Indexed: 05/30/2023]
Abstract
Can green chemistry be the right reading key to let organocatalyst design take a step forward towards sustainable catalysis? What if the intriguing chemistry promoted by more engineered organocatalysts was carried on by using renewable and naturally occurring molecular scaffolds, or at least synthetic catalysts more respectful towards the principles of green chemistry? Within the frame of these questions, this Review will tackle the most commonly occurring organic chiral catalysts from the perspective of their synthesis rather than their employment in chemical methodologies or processes. A classification of the catalyst scaffolds based on their E factor will be provided, and the global E factor (EG factor) will be proposed as a new green chemistry metric to consider, also, the synthetic route to the catalyst within a given organocatalytic process.
Collapse
Affiliation(s)
- Achille Antenucci
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
- NIS Interdeprtmental CentreINSTM Reference CentreUniversity of TurinVia Gioacchino Quarello 15/A10135TurinItaly
| | - Stefano Dughera
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| | - Polyssena Renzi
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| |
Collapse
|
12
|
Das S, Hu Q, Kondoh A, Terada M. Enantioselective Protonation: Hydrophosphinylation of 1,1-Vinyl Azaheterocycle N-Oxides Catalyzed by Chiral Bis(guanidino)iminophosphorane Organosuperbase. Angew Chem Int Ed Engl 2021; 60:1417-1422. [PMID: 33030798 DOI: 10.1002/anie.202012492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 12/30/2022]
Abstract
Enantioselective protonation by hydrophosphinylation of diarylphosphine oxides with 2-vinyl azaheterocycle N-oxide derivatives was demonstrated using chiral bis(guanidino)iminophosphorane as the higher-order organosuperbase catalyst. It was confirmed by several control experiments that a chiral weak conjugate acid of the chiral bis(guanidino)iminophosphorane, instead of achiral diarylphosphine oxides, directly functioned as the proton source to afford the corresponding product in a highly enantioselective manner in most cases. Enantioselective protonation by a weak conjugate acid generated from the higher-order organosuperbase would broaden the scope of enantioselective reaction systems because of utilization of a range of less acidic pronucleophiles. This method is highlighted by the valuable synthesis of a series of chiral P,N-ligands for chiral metal complexes through the reduction of phosphine oxide and N-oxide units of the corresponding product without loss of enantiomeric purity.
Collapse
Affiliation(s)
- Saikat Das
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Qiupeng Hu
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
13
|
Kondoh A, Terada M. Development of Molecular Transformations on the Basis of Catalytic Generation of Anionic Species by Organosuperbase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
14
|
Das S, Hu Q, Kondoh A, Terada M. Enantioselective Protonation: Hydrophosphinylation of 1,1‐Vinyl Azaheterocycle
N
‐Oxides Catalyzed by Chiral Bis(guanidino)iminophosphorane Organosuperbase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Saikat Das
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Qiupeng Hu
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Azusa Kondoh
- Research and Analytical Center for Giant Molecules Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
15
|
Kondoh A, Ishikawa S, Terada M. Enantioselective hydrophosphinylation of 1-alkenylphosphine oxides catalyzed by chiral strong Brønsted base. Org Biomol Chem 2020; 18:7814-7817. [PMID: 32969444 DOI: 10.1039/d0ob01778g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytic enantioselective addition of diarylphosphine oxides to 1-alkenyl(diaryl)phosphine oxides was achieved by using a chiral ureate as a chiral strong Brønsted base catalyst. The reaction followed by the reduction of phosphine oxide moieties provided chiral 1,2-diphosphinoalkanes, which are a family of useful chiral ligands for asymmetric transition metal catalysis.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | | | | |
Collapse
|
16
|
Golec JC, Carter EM, Ward JW, Whittingham WG, Simón L, Paton RS, Dixon DJ. BIMP-Catalyzed 1,3-Prototropic Shift for the Highly Enantioselective Synthesis of Conjugated Cyclohexenones. Angew Chem Int Ed Engl 2020; 59:17417-17422. [PMID: 32558981 PMCID: PMC7540019 DOI: 10.1002/anie.202006202] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Indexed: 12/18/2022]
Abstract
A bifunctional iminophosphorane (BIMP)-catalysed enantioselective synthesis of α,β-unsaturated cyclohexenones through a facially selective 1,3-prototropic shift of β,γ-unsaturated prochiral isomers, under mild reaction conditions and in short reaction times, on a range of structurally diverse substrates, is reported. α,β-Unsaturated cyclohexenone products primed for downstream derivatisation were obtained in high yields (up to 99 %) and consistently high enantioselectivity (up to 99 % ee). Computational studies into the reaction mechanism and origins of enantioselectivity, including multivariate linear regression of TS energy, were carried out and the obtained data were found to be in good agreement with experimental findings.
Collapse
Affiliation(s)
- Jonathan C. Golec
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Eve M. Carter
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - John W. Ward
- Leverhulme Research Centre for Functional Materials DesignThe Materials Innovation FactoryDepartment of ChemistryUniversity of LiverpoolLiverpoolL7 3NYUK
| | | | - Luis Simón
- Facultad de Ciencias QuímicasUniversidad de SalamancaPlaza de los Caídos 1–537008SalamancaSpain
| | - Robert S. Paton
- Department of ChemistryColorado State University1301 Center AveFt. CollinsCO80523-1872USA
| | - Darren J. Dixon
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
17
|
Golec JC, Carter EM, Ward JW, Whittingham WG, Simón L, Paton RS, Dixon DJ. BIMP‐Catalyzed 1,3‐Prototropic Shift for the Highly Enantioselective Synthesis of Conjugated Cyclohexenones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jonathan C. Golec
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Eve M. Carter
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - John W. Ward
- Leverhulme Research Centre for Functional Materials Design The Materials Innovation Factory Department of Chemistry University of Liverpool Liverpool L7 3NY UK
| | | | - Luis Simón
- Facultad de Ciencias Químicas Universidad de Salamanca Plaza de los Caídos 1–5 37008 Salamanca Spain
| | - Robert S. Paton
- Department of Chemistry Colorado State University 1301 Center Ave Ft. Collins CO 80523-1872 USA
| | - Darren J. Dixon
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
18
|
Lassaletta JM. Spotting trends in organocatalysis for the next decade. Nat Commun 2020; 11:3787. [PMID: 32728081 PMCID: PMC7391751 DOI: 10.1038/s41467-020-17600-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 01/15/2023] Open
Abstract
After two decades of steady growing, symbiotic merger of organocatalysis with emerging electrochemical and photochemical tools are envisioned as hot topics in the coming decade. Here, these trends are discussed in parallel to the implementation of artificial intelligence-based technologies, which anticipate a paradigm shift in catalyst design.
Collapse
Affiliation(s)
- José M Lassaletta
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Américo Vespucio 49, 41092, Sevilla, Spain.
| |
Collapse
|
19
|
Nakanishi T, Kikuchi J, Kaga A, Chiba S, Terada M. One‐Pot Synthesis of Enantioenriched β‐Amino Secondary Amides via an Enantioselective [4+2] Cycloaddition Reaction of Vinyl Azides with
N
‐Acyl Imines Catalyzed by a Chiral Brønsted Acid. Chemistry 2020; 26:8230-8234. [DOI: 10.1002/chem.202002049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Taishi Nakanishi
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki Aoba-ku Sendai 980-8578 Japan
| | - Jun Kikuchi
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki Aoba-ku Sendai 980-8578 Japan
| | - Atsushi Kaga
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Shunsuke Chiba
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Masahiro Terada
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|