1
|
Jocic A, Wickenhäuser T, Lindenthal S, Zhang WS, Zaumseil J, Schröder R, Klingeler R, Kivala M. Redox-active, photoluminescent porous polymers based on spirofluorene-bridged N-heterotriangulenes and their feasibility as organic cathode materials. Chem Sci 2024:d4sc04276j. [PMID: 39483254 PMCID: PMC11523812 DOI: 10.1039/d4sc04276j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Novel microporous polymers were synthesized through Yamamoto polymerization of selectively brominated spirofluorene-bridged N-heterotriangulenes. Extensive characterization, including combustion analysis, ToF-SIMS, IR, and Raman spectroscopy, confirmed the elemental composition and integrity of the polymers. The amorphous polymers, observed by scanning electron microscopy as globular particles aggregating into larger structures, exhibited remarkable thermal stability (decomposition temperatures > 400 °C) and BET surface areas up to 690 m2 g-1. Dispersions of the tert-butyl-substituted polymer in different solvents displayed bathochromically shifted emission with remarkable solvatochromism. The polymer is reversibly oxidized at +3.81 V (vs. Li/Li+) in composite electrodes with carbon black and reaches specific capacities up to 26 mA h g-1 and excellent cycling stability when implemented as cathode material in lithium-ion batteries. Our results highlight the potential of spirofluorene-bridged N-heterotriangulenes as versatile building blocks for the development of functional redox-active porous polymers.
Collapse
Affiliation(s)
- Angelina Jocic
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Tom Wickenhäuser
- Kirchhoff-Institute for Physics, Heidelberg University Im Neuenheimer Feld 227 69120 Heidelberg Germany
| | - Sebastian Lindenthal
- Institute for Physical Chemistry, Heidelberg University Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Wen-Shan Zhang
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- BioQuant Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Heidelberg University Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | | | - Rüdiger Klingeler
- Kirchhoff-Institute for Physics, Heidelberg University Im Neuenheimer Feld 227 69120 Heidelberg Germany
| | - Milan Kivala
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
2
|
Steidel J, Michalsky I, Ajdari M, Kivala M, Tegeder P. Determination of energetic positions of electronic states and the exciton dynamics in a π-expanded N-heterotriangulene derivative adsorbed on Au(111). Phys Chem Chem Phys 2024; 26:16454-16458. [PMID: 38819930 DOI: 10.1039/d4cp01713g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Bridged triarylamines, so-called N-heterotriangulenes (N-HTAs) are promising organic semiconductors for applications in optoelectronic devices. Thereby the electronic structure at organic/metal interfaces and within thin films as well as the electronically excited states dynamics after optical excitation is essential for the performance of organic-molecule-based devices. Here, we investigated the energy level alignment and the excited state dynamics of a N-HTA derivative adsorbed on Au(111) by means of energy- and time-resolved two-photon photoemission spectroscopy. We quantitatively determined the energetic positions of several occupied and unoccupied molecular (transport levels) and excitonic states (optical gap) in detail. A transport gap of 3.20 eV and an optical gap of 2.58 eV is determined, resulting in an exciton binding energy of 0.62 eV. With the first time-resolved investigation on a N-HTA compound we gained insights into the exciton dynamics and resolved processes on the femtosecond to picosecond timescale.
Collapse
Affiliation(s)
- Jakob Steidel
- Ruprecht-Karls-Universität Heidelberg, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
| | - Ina Michalsky
- Ruprecht-Karls-Universität Heidelberg, Organisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Mohsen Ajdari
- Ruprecht-Karls-Universität Heidelberg, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
| | - Milan Kivala
- Ruprecht-Karls-Universität Heidelberg, Organisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Petra Tegeder
- Ruprecht-Karls-Universität Heidelberg, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Tsurusaki A, Tahara S, Nakamura M, Matsumoto H, Kamikawa K. Synthesis, Structures, and Properties of π-Extended Phosphindolizine Derivatives. Chemistry 2023; 29:e202203321. [PMID: 36539376 DOI: 10.1002/chem.202203321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Dibenzo[b,g]phosphindolizine oxide and three types of benzo[e]naphthophosphindolizine oxides have been synthesized by the ring-closing metathesis of benzo[b]phosphole oxide and naphthophosphole oxides with two olefin tethers. Their molecular structures and properties were revealed by X-ray crystallographic analysis, UV-vis spectroscopy, and electrochemical analysis. The number and position of the benzene rings were found to alter the structural geometry and the HOMO/LUMO energy levels, and their effects were investigated by theoretical calculations. Among the phosphindolizine oxide derivatives investigated, only benzo[e]naphtho[2,3-b]phosphindolizine oxide with the naphthalene ring fused at 2,3-positions showed weak yellow fluorescence with a large Stokes shift.
Collapse
Affiliation(s)
- Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Sana Tahara
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Makoto Nakamura
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Hiroyo Matsumoto
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
4
|
Míguez‐Lago S, Gliemann BD, Kivala M, Cid MM. A Chiral Molecular Cage Comprising Diethynylallenes and N-Heterotriangulenes for Enantioselective Recognition. Chemistry 2021; 27:13352-13357. [PMID: 34374138 PMCID: PMC8518621 DOI: 10.1002/chem.202101801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 12/05/2022]
Abstract
Chirality, a characteristic tool of molecular recognition in nature, is often a complement of redox active systems. Scientists, in their eagerness to mimic such sophistication, have designed numerous chiral systems based on molecular entities with cavities, such as macrocycles and cages. In an attempt to combine chirality and redox-active species, in this contribution we report the synthesis and detailed characterization of a chiral shape-persistent molecular cage based on the combination of enantiopure diethynylallenes and electron-rich bridged triarylamines, also known as N-heterotriangulenes. Its ability for chiral recognition in solution was revealed through UV/vis titrations with enantiopure helicenes.
Collapse
Affiliation(s)
- Sandra Míguez‐Lago
- Departamento de Química OrgánicaUniversidade de VigoCampus Lagoas-Marcosende36310VigoSpain
- Department of Chemistry and PharmacyChair of Organic Chemistry IFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Bettina D. Gliemann
- Department of Chemistry and PharmacyChair of Organic Chemistry IFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Milan Kivala
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - María Magdalena Cid
- Departamento de Química OrgánicaUniversidade de VigoCampus Lagoas-Marcosende36310VigoSpain
| |
Collapse
|
5
|
Dorofeeva OV, Druzhinina AI. Enthalpy formation of fluorene: a challenging problem for theory or experiment? Phys Chem Chem Phys 2021; 23:18777-18783. [PMID: 34612416 DOI: 10.1039/d1cp02023d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The large discrepancy between the experimental enthalpy of formation of fluorene and theoretical value calculated by the G3(MP2) method was revealed more than ten years ago. Three years later, a new experimental study of this compound was undertaken to ascertain whether there is any significant error in the thermochemical data. However, after this research, the agreement between theory and experiment was improved only slightly. In this work we decided to calculate the enthalpy of formation of fluorene using the high-level DLPNO-CCSD(T1)/CBS method which shows better results compared to Gn theories. To examine the accuracy of the available experimental data, the calculations were performed not only for fluorene but also for eleven fluorene derivatives. The discrepancy of about 9 kJ mol-1 between the experimental and theoretical enthalpies of formation of fluorene was confirmed by the present calculations, whereas good agreement was observed for the fluorene derivatives. It is highly unlikely that this discrepancy may disappear when using a higher-level theory. The possible reason for such inconsistency might be the experimental difficulty associated with the glass transition discovered in the stable crystalline state of fluorene. In this case, new experiments using the latest methods, such as differential scanning calorimetry combined with X-ray powder diffraction, are needed to gain deeper insight into the solid phase transformations of fluorene.
Collapse
Affiliation(s)
- Olga V Dorofeeva
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow, 119991, Russia.
| | | |
Collapse
|
6
|
Ghosh S, Jana B, Ghosh A, Guldi DM, Patra A. The Impact of Aggregation of Quaterthiophenes on the Excited State Dynamics. J Phys Chem Lett 2021; 12:3424-3430. [PMID: 33789053 DOI: 10.1021/acs.jpclett.1c00440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oligothiophenes and their aggregates play a dominant role in optoelectronic and light-harvesting applications. Here, we controlled the degree of aggregation of 2,2':5',2″:5'',2‴-quaterthiophene (QTH) to shed light on the impact of the aggregation on the excited state dynamics. QTH aggregation realized the control over the Intersystem Crossing (ISC) rates and, in turn, the formation of triplet excited states via the simple addition of water to QTH solutions in THF. From global target analysis, the time scale was 345.5 ps for ISC for QTHs in THF, but it was 2.33 ns in the case of QTH solutions featuring 70% water. Notably, the excitonic coupling between closely packed QTHs occurred predominantly in the aggregates formed in the presence of large water concentrations. Relaxation dynamics of the resulting QTH-aggregates differed substantially from QTH solutions at lower water content. For example, QTH-aggregates lacked any triplet excited states, and the unusual emission occurs from lower excitonic states from these predominantly H-aggregates.
Collapse
Affiliation(s)
- Srijon Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Bikash Jana
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Arnab Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- Institute of Nano Science and Technology, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
7
|
Wang X, Yang S, Tian Q, Zhong C, Qu Y, Yu Y, Jiang Z, Liao L. Multi‐Layer π‐Stacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xue‐Qi Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Sheng‐Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Qi‐Sheng Tian
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Cheng Zhong
- Department of Chemistry Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yang‐Kun Qu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - You‐Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Zuo‐Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Liang‐Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Institute of Organic Optoelectronics Jiangsu Industrial Technology Research Institute (JITRI) Wujiang Suzhou Jiangsu 215211 P. R. China
| |
Collapse
|
8
|
Wang X, Yang S, Tian Q, Zhong C, Qu Y, Yu Y, Jiang Z, Liao L. Multi‐Layer π‐Stacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters. Angew Chem Int Ed Engl 2021; 60:5213-5219. [DOI: 10.1002/anie.202011384] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Xue‐Qi Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Sheng‐Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Qi‐Sheng Tian
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Cheng Zhong
- Department of Chemistry Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yang‐Kun Qu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - You‐Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Zuo‐Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Liang‐Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Institute of Organic Optoelectronics Jiangsu Industrial Technology Research Institute (JITRI) Wujiang Suzhou Jiangsu 215211 P. R. China
| |
Collapse
|