1
|
Xiong Z, Zhang H. Exploring the boundaries of covalency. Nat Rev Chem 2024:10.1038/s41570-024-00672-5. [PMID: 39506089 DOI: 10.1038/s41570-024-00672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Affiliation(s)
- Zuping Xiong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, China.
| |
Collapse
|
2
|
Lee CK, Gangadharappa C, Fahrenbach AC, Kim DJ. Harnessing Radicals: Advances in Self-Assembly and Molecular Machinery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408271. [PMID: 39177115 DOI: 10.1002/adma.202408271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Radicals, with their unpaired electrons, exhibit unique chemical and physical properties that have long intrigued chemists. Despite early skepticism about their stability, the discovery of persistent radicals has opened new possibilities for molecular interactions. This review examines the mechanisms and applications of radically driven self-assembly, focusing on key motifs such as naphthalene diimides, tetrathiafulvalenes, and viologens, which serve as models for radical assembly. The potential of radical interactions in the development of artificial molecular machines (AMMs) are also discussed. These AMMs, powered by radical-radical interactions, represent significant advancements in non-equilibrium chemistry, mimicking the functionalities of biological systems. From molecular switches to ratchets and pumps, the versatility and unique properties of radically powered AMMs are highlighted. Additionally, the applications of radical assembly in materials science are explored, particularly in creating smart materials with redox-responsive properties. The review concludes by comparing AMMs to biological molecular machines, offering insights into future directions. This overview underscores the impact of radical chemistry on molecular assembly and its promising applications in both synthetic and biological systems.
Collapse
Affiliation(s)
| | | | - Albert C Fahrenbach
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dong Jun Kim
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Yin B, Wang C, Xie S, Gu J, Sheng H, Wang DX, Yao J, Zhang C. Regulating Spin Density using TEMPOL Molecules for Enhanced CO 2-to-Ethylene Conversion by HKUST-1 Framework Derived Electrocatalysts. Angew Chem Int Ed Engl 2024; 63:e202405873. [PMID: 38709722 DOI: 10.1002/anie.202405873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/08/2024]
Abstract
The selectivity of multicarbon products in the CO2 reduction reaction (CO2RR) depends on the spin alignment of neighboring active sites, which requires a spin catalyst that facilitates electron transfer with antiparallel spins for enhanced C-C coupling. Here, we design a radical-contained spin catalyst (TEMPOL@HKUST-1) to enhance CO2-to-ethylene conversion, in which spin-disordered (SDO) and spin-ordered (SO) phases co-exist to construct an asymmetric spin configuration of neighboring active sites. The replacement of axially coordinated H2O molecules with TEMPOL radicals introduces spin-spin interactions among the Cu(II) centers to form localized SO phases within the original H2O-mediated SDO phases. Therefore, TEMPOL@HKUST-1 derived catalyst exhibited an approximately two-fold enhancement in ethylene selectivity during the CO2RR at -1.8 V versus Ag/AgCl compared to pristine HKUST-1. In situ ATR-SEIRAS spectra indicate that the spin configuration at asymmetric SO/SDO sites significantly reduces the kinetic barrier for *CO intermediate dimerization toward the ethylene product. The performance of the spin catalyst is further improved by spin alignment under a magnetic field, resulting in a maximum ethylene selectivity of more than 50 %. The exploration of the spin-polarized kinetics of the CO2RR provides a promising path for the development of novel spin electrocatalysts with superior performance.
Collapse
Affiliation(s)
- Baipeng Yin
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Can Wang
- State Key Laboratory of Metastable Materials Science and Technology (MMST) Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
| | - Shijie Xie
- State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jianmin Gu
- State Key Laboratory of Metastable Materials Science and Technology (MMST) Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
| | - Hua Sheng
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, 350108, China
| | - Chuang Zhang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
4
|
Tuo DH, Ao YF, Wang QQ, Wang DX. Chiral Benzene Triimide (BTI) Radical Anions for Probing the Interplay of Unpaired Electron Spin and Chirality. Chemistry 2024; 30:e202302954. [PMID: 37903731 DOI: 10.1002/chem.202302954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Herein a series of chiral BTI radical anions bearing different chiral substituents were efficiently prepared by chemical reduction. X-ray crystallography revealed finely-tuned packing and helix assemblies of the radicals by the size of chiral substituents in crystalline state. In accordance with the crystalline-state packing, the powder ESR spectra indicate that 4 a- ⋅CoCp2 + and 4 c- ⋅CoCp2 + π-dimers exhibit thermally excited triplet states arising from strong spin-spin interactions, while discrete 4 b- ⋅CoCp2 + shows a broad doublet-state signal reflecting weak spin-spin interactions. The interplay between the unpaired electron spin and chiral substituents was studied by UV-Vis-NIR spectra, electronic circular dichroism (ECD) and TD DFT calculations. Different NIR absorptions of the radicals attributing to isolated SOMO→LUMO+1 (~889 nm) transitions were recorded. The emergence of Cotton effects (CEs) at the NIR region for 4 c- ⋅CoCp2 + radical enantiomers suggest the interplay between chirality and unpaired electron spin. The origin of the different circularly polarized light absorptions regarding SOMO derived transitions (around 880 nm) was attributed to chiral substitutes regulated electric and magnetic transition dipole moments of the unpaired electron participated transition.
Collapse
Affiliation(s)
- De-Hui Tuo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Lai W, Bu Y, Xiao W, Liu H, Guo J, Zhao L, Yang K, Xie S, Zeng Z. Magnetic Bistability in an Organic Radical-Based Charge Transfer Cocrystal. J Am Chem Soc 2023; 145:24328-24337. [PMID: 37878504 DOI: 10.1021/jacs.3c09226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
We report herein an organic charge transfer cocrystal complex, consisting of a stable radical TPVr and an electron acceptor TCNQF4, as a rare sort of all-organic-based magnetic bistable materials with a thermally activated magnetic hysteresis loop over the temperature range from 170 to 260 K. Detailed X-ray crystallographic studies and theoretical calculations revealed that while a π-associated radical anion dimer was formed upon an integer charge transfer process from TPVr to the TCNQF4 molecules within the cocrystal lattice, the resulting TCNQF4·- π-dimers were found to exhibit varied intradimer π-stacking distances and singly occupied molecular orbital overlaps at different temperatures, thus yielding two different singlet states with distinct singlet-triplet gaps above and below the loop, which eventually contributed to the thermally excited molecular magnetic bistability.
Collapse
Affiliation(s)
- Weiming Lai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| | - Yanru Bu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| | - Wang Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| | - Haohao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| | - Longfeng Zhao
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| |
Collapse
|
6
|
Hou B, Li K, He H, Hu J, Xu Z, Xiang Q, Wang P, Chen X, Sun Z. Stable Crystalline Nanohoop Radical and Its Self-Association Promoted by van der Waals Interactions. Angew Chem Int Ed Engl 2023; 62:e202301046. [PMID: 36754831 DOI: 10.1002/anie.202301046] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
A stable nanohoop radical (OR3) combining the structures of cycloparaphenylene and an olympicenyl radical is synthesized and isolated in the crystalline state. X-ray crystallographic analysis reveals that OR3 forms a unique head-to-tail dimer that further aggregates into a one-dimensional chain in the solid state. Variable-temperature NMR and concentration-dependent absorption measurements indicate that the π-dimer is not formed in solution. An energy decomposition analysis indicates that van der Waals interactions are the driving force for the self-association process, in contrast with other olympicenyl derivatives that favor π-dimerization. The physical properties in solution phase have been studied, and the stable cationic species obtained by one-electron chemical oxidation. This study offers a new molecular design to modulate the self-association of organic radicals for overcoming the spin-Peierls transition, and to prepare novel nanohoop compounds with spin-related properties.
Collapse
Affiliation(s)
- Bingxia Hou
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Ke Li
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Huijie He
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Jinlian Hu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Qin Xiang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Peng Wang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Xing Chen
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
7
|
Koyama S, Sato K, Yamashita M, Sakamoto R, Iguchi H. Observation of slow magnetic relaxation phenomena in spatially isolated π-radical ions. Phys Chem Chem Phys 2023; 25:5459-5467. [PMID: 36748343 DOI: 10.1039/d2cp06026d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of molecular spins as quantum bits is fascinating because it offers a wide range of strategies through chemical modifications. In this regard, it is very interesting to search for organic radical ions that have small spin-orbit coupling values. On the other hand, the feature of the magnetic relaxation of π-organic radical ions is rarely exploited due to the difficulty of spin dilution, and π-stacking interaction. In this study, we focus on N,N',N''-tris(2,6-dimethylphenyl)benzenetriimide (BTI-xy), where three xylene moieties connected to the imide groups cover the π-plane of the BTI core. As a result, BTI-xy radical anions without π-stacking interaction were obtained. This led to the slow magnetization relaxation, which is reported for the first time in organic radicals. Furthermore, the relaxation times in a solution state revealed the importance of spin interaction.
Collapse
Affiliation(s)
- Shohei Koyama
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| | - Kazunobu Sato
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan. .,School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Ryota Sakamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| | - Hiroaki Iguchi
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
8
|
Yamasumi K, Ueda K, Haketa Y, Hattori Y, Suda M, Seki S, Sakai H, Hasobe T, Ikemura R, Imai Y, Ishibashi Y, Asahi T, Nakamura K, Maeda H. Charge-Segregated Stacking Structure with Anisotropic Electric Conductivity in NIR-Absorbing and Emitting Positively Charged π-Electronic Systems. Angew Chem Int Ed Engl 2023; 62:e202216013. [PMID: 36573653 DOI: 10.1002/anie.202216013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 12/28/2022]
Abstract
Squarylium-based π-electronic cation with an augmented dipole was synthesized by methylation of zwitterionic squarylium. The cation formed various ion pairs in combination with anions, and the ion pairs exhibited distinct photophysical properties in the dispersed state, ascribed to the formation of J- and H-aggregates. The ion pairs provided solid-state assemblies based on cation stacking. It is noteworthy that complete segregation of cations and anions was observed in a pseudo-polymorph of the ion pair with pentacyanocyclopentadienide as a π-electronic anion. In the crystalline state, the ion pairs exhibited photophysical properties and electric conductivity derived from cation stacking. In particular, the charge-segregated ion-pairing assembly induces an electric conductive pathway along the stacking axis. The charge-segregated mode and fascinating properties were derived from the reduced electrostatic repulsion between adjacent π-electronic cations via dipole-dipole interactions.
Collapse
Affiliation(s)
- Kazuhisa Yamasumi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kentaro Ueda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Yusuke Hattori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Masayuki Suda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Ryoya Ikemura
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Higashi, Osaka, 577-8502, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Higashi, Osaka, 577-8502, Japan
| | - Yukihide Ishibashi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, 790-8577, Japan
| | - Tsuyoshi Asahi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, 790-8577, Japan
| | - Kazuto Nakamura
- Yokkaichi Research Center, JSR Corporation, Yokkaichi, 510-8552, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| |
Collapse
|
9
|
Li K, Feng Z, Ruan H, Sun Q, Zhao Y, Wang X. The catenation of a singlet diradical dication and modulation of diradical character by metal coordination. Chem Commun (Camb) 2022; 58:6457-6460. [DOI: 10.1039/d2cc01539k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A singlet bis(triarylamine) diradical dication and its zigzag 1D magnetic chain catenated by silver cations were isolated and characterized by single-crystal X-ray crystallography, EPR spectroscopy, SQUID measurements, cyclic voltammetry and...
Collapse
|
10
|
Wang J, Ruan H, Hu Z, Wang W, Zhao Y, Wang X. Indeno[2,1-a]fluorene-11,12-dione radical anions:synthesis,characterization and property. Chemistry 2021; 28:e202103897. [PMID: 34928531 DOI: 10.1002/chem.202103897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/08/2022]
Abstract
The one-electron reduction reactions of indeno[2,1-a]fluorene-11,12-dione ( IF ) with various alkali metals bring about the radical anion salts. The different structures and properties are characterized by single crystal X-ray diffraction, electron paramagnetic resonance (EPR) spectroscopy, superconducting quantum interference device (SQUID) measurements and physical property measurement system (PPMS). IF •- K + (18-c-6) is regarded as a one-dimensional magnetic chain through C-H-C interaction. Theoretical calculations and magnetic results prove that [ IF •- K + (15-c-5)] 2 is a dimer with an open-shell ground state. IF •- Na + (15-c-5) and IF •- K + (cryptand) are monoradical anion salts. IF 2 •- Li + possesses unique π-stack structure with an interplanar separation less than 3.46 Å, making it a semiconductor ( δ RT = 1.9 Χ 10 -4 S•cm -1 ). This work gives a wealth of insights into multifunctional radical anions, and makes the design and development of different functional radicals attractive.
Collapse
Affiliation(s)
- Jie Wang
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Huapeng Ruan
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Zhaobo Hu
- JiangXi University of Science and Technology, Faculty of Materials metallurgy and Chemistry, CHINA
| | - Wenqing Wang
- Anhui Normal University, college of chemistry and material science, CHINA
| | - Yue Zhao
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Xinping Wang
- Nanjing University, Chemistry, Xianlin Ave 163, 210023, Nanjing, CHINA
| |
Collapse
|
11
|
Yu Q, Zhang L, He Y, Pan J, Li H, Bian GQ, Chen X, Tan G. A stable tetrazagallole and its radical anion dimer. Chem Commun (Camb) 2021; 57:9268-9271. [PMID: 34519308 DOI: 10.1039/d1cc03448k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The reaction of the carbazole ligand supported Ga(I) compound LGa(THF) (3) and 1-azido-4-(tert-butyl)benzene (ArN3) afforded the first stable tetrazagallole LGaN4Ar2 (4) bearing a three-coordinate Ga atom. Reduction of 4 with elemental potassium resulted in the radical dimer {[K(18-c-6)]+[4]˙-}2, featuring a strong antiferromagnetic interaction between the spin centers.
Collapse
Affiliation(s)
- Qian Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Li Zhang
- Center of Materials Science and Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Yuhao He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jinjing Pan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Hao Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Guo-Qing Bian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiaodan Chen
- College of Chemistry and Material, Jinan University, Guangzhou 510632, China
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Cai K, Zhang L, Astumian RD, Stoddart JF. Radical-pairing-induced molecular assembly and motion. Nat Rev Chem 2021; 5:447-465. [PMID: 37118435 DOI: 10.1038/s41570-021-00283-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2021] [Indexed: 12/25/2022]
Abstract
Radical-pairing interactions between conjugated organic π-radicals are relative newcomers to the inventory of molecular recognition motifs explored in supramolecular chemistry. The unique electronic, magnetic, optical and redox-responsive properties of the conjugated π-radicals render molecules designed with radical-pairing interactions useful for applications in various areas of chemistry and materials science. In particular, the ability to control formation of radical cationic or anionic species, by redox stimulation, provides a flexible trigger for directed assembly and controlled molecular motions, as well as a convenient means of inputting energy to fuel non-equilibrium processes. In this Review, we provide an overview of different examples of radical-pairing-based recognition processes and of their emerging use in (1) supramolecular assembly, (2) templation of mechanically interlocked molecules, (3) stimuli-controlled molecular switches and, by incorporation of kinetic asymmetry in the design, (4) the creation of unidirectional molecular transporters based on pumping cassettes powered by fuelled switching of radical-pairing interactions. We conclude the discussion with an outlook on future directions for the field.
Collapse
|
13
|
Tajima K, Matsuo K, Yamada H, Seki S, Fukui N, Shinokubo H. Acridino[2,1,9,8‐
klmna
]acridine Bisimides: An Electron‐Deficient π‐System for Robust Radical Anions and n‐Type Organic Semiconductors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Keita Tajima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Kyohei Matsuo
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Hiroko Yamada
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Shu Seki
- Department of Molecular Engineering Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
14
|
Tajima K, Matsuo K, Yamada H, Seki S, Fukui N, Shinokubo H. Acridino[2,1,9,8‐
klmna
]acridine Bisimides: An Electron‐Deficient π‐System for Robust Radical Anions and n‐Type Organic Semiconductors. Angew Chem Int Ed Engl 2021; 60:14060-14067. [DOI: 10.1002/anie.202102708] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Keita Tajima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Kyohei Matsuo
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Hiroko Yamada
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Shu Seki
- Department of Molecular Engineering Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|