1
|
Cho Y, Kim Y, Seo J, Bielawski CW. Ring-Opening Metathesis Polymerization of Thianorbornenes. ACS Macro Lett 2024; 13:1509-1514. [PMID: 39453731 DOI: 10.1021/acsmacrolett.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
A series of exo-7-thiabicyclo[2.2.1]hept-5-ene-2,3-dicarboximides were synthesized and polymerized using Schrock's catalyst, 2,6-diisopropylphenylimidoneophylidene molybdenum(VI) bis(hexafluoro-tert-butoxide). The ring-opening metathesis polymerization (ROMP) reactions were found to proceed in a controlled manner, enabling chain extensions and tuning of polymer molecular weight. The polymers were characterized using size exclusion chromatography (SEC) as well as spectroscopic (NMR, FT-IR), thermal (TGA, DSC), and optical techniques. The physical, chemical, and optical properties of the polymers were found to be affected by the embedded sulfur atoms and the pendant substituents. Copolymers with norbornene were also synthesized and characterized. Treatment of a poly(thianorbornene) with potassium hydroxide led to ring-opening hydrolysis and afforded a derivative that was soluble in aqueous media.
Collapse
Affiliation(s)
- Youngsang Cho
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeram Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jinwon Seo
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Nance E, Pun SH, Saigal R, Sellers DL. Drug delivery to the central nervous system. NATURE REVIEWS. MATERIALS 2022; 7:314-331. [PMID: 38464996 PMCID: PMC10923597 DOI: 10.1038/s41578-021-00394-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 03/12/2024]
Abstract
Despite the rising global incidence of central nervous system (CNS) disorders, CNS drug development remains challenging, with high costs, long pathways to clinical use and high failure rates. The CNS is highly protected by physiological barriers, in particular, the blood-brain barrier and the blood-cerebrospinal fluid barrier, which limit access of most drugs. Biomaterials can be designed to bypass or traverse these barriers, enabling the controlled delivery of drugs into the CNS. In this Review, we first examine the effects of normal and diseased CNS physiology on drug delivery to the brain and spinal cord. We then discuss CNS drug delivery designs and materials that are administered systemically, directly to the CNS, intranasally or peripherally through intramuscular injections. Finally, we highlight important challenges and opportunities for materials design for drug delivery to the CNS and the anticipated clinical impact of CNS drug delivery.
Collapse
Affiliation(s)
- Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Rajiv Saigal
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| | - Drew L. Sellers
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- These authors contributed equally: Elizabeth Nance, Suzie H. Pun, Rajiv Saigal, Drew L. Sellers
| |
Collapse
|
3
|
Wu X, Pi W, Hu X, He X, Zhu Y, Wang J, Yang S. Heat- and freeze-tolerant organohydrogel with enhanced ionic conductivity over a wide temperature range for highly mechanoresponsive smart paint. J Colloid Interface Sci 2022; 608:2158-2168. [PMID: 34773850 DOI: 10.1016/j.jcis.2021.10.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/10/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022]
Abstract
Binary solvent-based fabrication permits the conductive organohydrogel to function well at low-temperature environments. However, the deep cryogenic and high temperatures are still threatening the performance of conductive organohydrogels in the application of stretchable electronics, biosensors, and intelligent coatings. Here, a radically new method is developed to introduce propylene and carbonate cellulose nanofibrils into freeze tolerance polymer matrix, and fabricate an antifreezing/antiheating organohydrogel integrated a high mechanical strength (1.6 MPa) and high level of ionic conductivity (4.2 S cm-1) over a wide temperature range (-40 to 100 °C). In this designed system, the propylene carbonate with low freezing point and high boiling point was shown to enhance antifreezing (-40 °C) and antiheating (100 °C) performance of organohydrogel. Furthermore, negative charge-rich cellulose nanofibrils (CNFs) were served as an ion transport channel and nanoreinforcements to boost the conductive and mechanical properties of the organohydrogel. In particular, Molecular Dynamics (MD) simulations reveal that propylene carbonate with high dielectric constant is capable of generating ion migration-facilitated effects, enabling the high ionic conductivity of organohydrogel. Tapping into these attributes, potential applications in mechanoresponsive smart coating have been demonstrated utilizing the appealing organohydrogel as a paint, rendering unprecedented protection and monitoring performance.
Collapse
Affiliation(s)
- Xianzhang Wu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenjian Pi
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xunxiang Hu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiu He
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuan Zhu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Jinqing Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shengrong Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Liu J, Han L, Geng J, Hua J, Wang Z. Metal-Ligand Coordination Induced Ionochromism for π-Conjugated Materials. Front Chem 2020; 8:589106. [PMID: 33134283 PMCID: PMC7567163 DOI: 10.3389/fchem.2020.589106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022] Open
Abstract
Recent studies indicated that the toxicity of heavy metal ions caused a series of environmental, food, and human health problems. Chemical ionochromic sensors are crucial for detecting these toxicity ions. Incorporating organic ligands into π-conjugated polymers made them receptors for metal ions, resulting in an ionochromism phenomenon, which is promising to develop chemosensors for metal ions. This review highlights the recent advances in π-conjugated polymers with ionochromism to metal ions, which may guide rational structural design and evaluation of chemosensors.
Collapse
Affiliation(s)
- Jinhui Liu
- Key Laboratory of Rubber-Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Long Han
- Key Laboratory of Rubber-Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Jieting Geng
- Key Laboratory of Rubber-Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Jing Hua
- Key Laboratory of Rubber-Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Zhaobo Wang
- Key Laboratory of Rubber-Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|