1
|
Zuo J, Liu K, Harrell J, Fang L, Piotrowiak P, Shimoyama D, Lalancette RA, Jäkle F. Near-IR Emissive B-N Lewis Pair-Functionalized Anthracenes via Selective LUMO Extension in Conjugated Dimer and Polymer. Angew Chem Int Ed Engl 2024; 63:e202411855. [PMID: 38976519 DOI: 10.1002/anie.202411855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Acenes are attractive as building blocks for low gap organic materials with applications, for example, in organic light emitting diodes, solar cells, bioimaging and diagnostics. Previously, we have shown that modification of dipyridylanthracene via B-N Lewis pair fusion (BDPA) strongly redshifts the emission, while facilitating self-sensitized reactivity toward O2 to reversibly generate the corresponding endoperoxides. Herein, we report on the further expansion of the π-system of BDPA to a vinyl-substituted monomer, vinylene-bridged dimer, and a polymer with an average of 20 chromophores. The extension of π-conjugation results in largely reduced band gaps of 1.8 eV for the dimer and 1.7 eV for the polymer, the latter giving rise to NIR emission with a maximum at 731 nm and an appreciable quantum yield of 7 %. Electrochemical and computational studies reveal efficient delocalization of the lowest unoccupied molecular orbital (LUMO) along the pyridyl-anthracene-pyridyl axis, which results in effective electronic communication between BDPA units, selectively lowers the LUMO, and ultimately narrows the band gap. Time-resolved emission and transient absorption (TA) measurements offer insights into the pertinent photophysical processes. Extension of π-conjugation also slows down the self-sensitized formation of endoperoxides, while significantly accelerating the thermal release of singlet oxygen to regenerate the parent acenes.
Collapse
Affiliation(s)
- Jingyao Zuo
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Kanglei Liu
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Jaren Harrell
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Lujia Fang
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Piotr Piotrowiak
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Daisuke Shimoyama
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Roger A Lalancette
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
2
|
Pradhan SR, Prasad CK, Das M, Srinivasan A. De novo fabrication of higher arene ring incorporated contorted calix[2]phyrin(2.2. 1. 1. 1) and its F - bound complex. Dalton Trans 2024; 53:15258-15263. [PMID: 39222023 DOI: 10.1039/d4dt01903b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The rational design and synthesis of a novel contorted calix[2]phyrin(2.2.1.1.1) structure has been achieved, utilizing a terphenyl unit as a key building component. This terphenyl unit serves as a segment of the armchair periphery in a π-extended two-dimensional architecture. The resulting molecule exhibits remarkable properties, including the ability to self-assemble into solid-state supramolecular nanotubes. Additionally, it has demonstrated an affinity for complexation with fluoride anions, highlighting its potential for applications in molecular recognition and sensor technology. The incorporation of the terphenyl unit not only enhances the structural rigidity but also contributes to the unique electronic characteristics of the calix[2]phyrin.
Collapse
Affiliation(s)
- Sourav Ranjan Pradhan
- National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, Odisha, India.
| | - Chetan Kumar Prasad
- National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, Odisha, India.
| | - Mainak Das
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - A Srinivasan
- National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, Odisha, India.
| |
Collapse
|
3
|
Pradhan SR, Prasad CK, Das M, Srinivasan A. The (o-p-o)-Terphenyl Embedded Calix[2]phyrin(2.2.1.1.1) and Its Cu(II) Complex. Chem Asian J 2024; 19:e202400135. [PMID: 38503696 DOI: 10.1002/asia.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/02/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
The introduction of a higher arene unit as a structural motif is unprecedented in calixphyrin chemistry. Herein, the syntheses, spectral and structural characterization of heretofore anonymous terphenylene unit (o-p-o) incorporated calixphyrin with fused sp2 meso carbons is reported. The explicitly tailored macrocyclic core is utilized to stabilize the Cu(II) metal ion. The molecular structures of the calixbenziphyrin and Cu(II) complex are unambiguously confirmed by single-crystal X-ray analysis. Moreover, theoretical supports uphold experimental conclusions.
Collapse
Affiliation(s)
- Sourav Ranjan Pradhan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of, Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India
| | - Chetan Kumar Prasad
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of, Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India
| | - Mainak Das
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - A Srinivasan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of, Homi Bhabha National Institute, Bhubaneswar, 752050, Odisha, India
| |
Collapse
|
4
|
Wang L, Cheng C, Li ZY, Guo X, Wu Q, Hao E, Jiao L. Nucleophilic Aromatic Substitution (S NAr) as an Approach to Challenging Nitrogen-Bridged BODIPY Oligomers. Org Lett 2024; 26:3026-3031. [PMID: 38602395 DOI: 10.1021/acs.orglett.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
A series of nitrogen-bridged BODIPY oligomers were synthesized via nucleophilic aromatic substitution (SNAr) as a convenient approach. Further transformations achieved novel α,α-aryl BODIPY dimers as well as a BODIPY hexamer efficiently. These BODIPY oligomers showed good photophysical properties, such as apparent absorption and emission both in visible and near-infrared regions. Interestingly, the high air and photothermal stability, strong NIR absorption, and high photothermal conversion rates of hexamer B6 suggest potential applications in photothermal therapy.
Collapse
Affiliation(s)
- Long Wang
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Cheng Cheng
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Zhong-Yuan Li
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|
5
|
Wen B, Li C, Kang B, Zheng T, Wang Y, Jiang Y, Xu L, Oh J, Osuka A, Kim D, Song J. Cyclic Azobenzene-BODIPY Hybrids. Chemistry 2024; 30:e202303193. [PMID: 37943119 DOI: 10.1002/chem.202303193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Cyclic azobenzene-BODIPY hybrids were synthesized via cyclization by 1) acid-catalysed condensation of azobenzene-bridged dipyrroles with 3,5-di-tert-butylbenzaldehyde, 2) oxidation with DDQ, and 3) metalation with BF3 ⋅ Et2 O. The structures of many cyclic hybrids have been confirmed by single crystal X-ray analysis. The absorption spectra of the hybrids reveal the effective cyclic conjugation. The ultrafast measurements reveal that the photoexcited decays of these cyclic hybrids depend upon the ring size and connectivity.
Collapse
Affiliation(s)
- Bin Wen
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Chao Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Byeongjoo Kang
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Tao Zheng
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Yi Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Yibei Jiang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Ling Xu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Juwon Oh
- Department of Chemistry, Soonchunhyang University, Asan, 31538, Korea (Korea
| | - Atsuhiro Osuka
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Jianxin Song
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
6
|
Liu W, Zhang H, Liang S, Wang T, He S, Hu Y, Zhang R, Ning H, Ren J, Bakulin A, Gao F, Yuan J, Zou Y. The Synthesis of a Multiple D-A Conjugated Macrocycle and Its Application in Organic Photovoltaic. Angew Chem Int Ed Engl 2023; 62:e202311645. [PMID: 37819601 DOI: 10.1002/anie.202311645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
As a novel class of materials, D-A conjugated macrocycles hold significant promise for chemical science. However, their potential in photovoltaic remains largely untapped due to the complexity of introducing multiple donor and acceptor moieties into the design and synthesis of cyclic π-conjugated molecules. Here, we report a multiple D-A ring-like conjugated molecule (RCM) via the coupling of dimer molecule DBTP-C3 as a template and thiophenes in high yields. RCM exhibits a narrow optical gap (1.33 eV) and excellent thermal stability, and shows a remarkable photoluminescence yield (ΦPL ) of 11.1 % in solution, much higher than non-cyclic analogues. Organic solar cell (OSC) constructed with RCM as electron acceptor shows efficient charge separation at donor-acceptor band offsets and achieves a power conversion efficiency (PCE) of 14.2 %-approximately fourfold higher than macrocycle-based OSCs reported so far. This is partly due to low non-radiative voltage loss down to 0.20 eV and a high electroluminescence yield (ΦEL ) of 4×10-4 . Our findings emphasize the potential of D-A cyclic conjugated molecules in advancing organic photovoltaic technology.
Collapse
Affiliation(s)
- Wei Liu
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Huotian Zhang
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Songting Liang
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Tong Wang
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, W12 0BZ, London, United Kingdom
| | - Siqing He
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Yunbin Hu
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Haoqing Ning
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, W12 0BZ, London, United Kingdom
| | - Jie Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Pol-ymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Artem Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, W12 0BZ, London, United Kingdom
| | - Feng Gao
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Jun Yuan
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| |
Collapse
|
7
|
Sahoo SS, Panda PK. Bis(naphthobipyrrolyl)methene-derived hexapyrrolic BODIPY as a single-molecule helicate with near-infrared emission. Chem Commun (Camb) 2023. [PMID: 37465935 DOI: 10.1039/d3cc02336b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Helically twisted bis(naphthobipyrrolyl)methene-derived open-chain hexapyrroles have been synthesized as HCl salts and the corresponding BODIPY. Their solid-state structures elucidated by single-crystal X-ray diffraction analysis clearly showed the presence of intramolecular hydrogen bonds, which were concluded to play a pivotal role in stabilizing the twisted conformation. Both molecules were observed to be NIR active, with the BODIPY moiety emission extending beyond 800 nm.
Collapse
Affiliation(s)
| | - Pradeepta K Panda
- School of Chemistry University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
8
|
Ansteatt S, Uthe B, Mandal B, Gelfand RS, Dunietz BD, Pelton M, Ptaszek M. Engineering giant excitonic coupling in bioinspired, covalently bridged BODIPY dyads. Phys Chem Chem Phys 2023; 25:8013-8027. [PMID: 36876508 DOI: 10.1039/d2cp05621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Strong excitonic coupling in photosynthetic systems is believed to enable efficient light absorption and quantitative charge separation, motivating the development of artificial multi-chromophore arrays with equally strong or even stronger excitonic coupling. However, large excitonic coupling strengths have typically been accompanied by fast non-radiative recombination, limiting the potential of the arrays for solar energy conversion as well as other applications such as fluorescent labeling. Here, we report giant excitonic coupling leading to broad optical absorption in bioinspired BODIPY dyads that have high photostability, excited-state lifetimes at the nanosecond scale, and fluorescence quantum yields of nearly 50%. Through the synthesis, spectroscopic characterization, and computational modeling of a series of dyads with different linking moieties, we show that the strongest coupling is obtained with diethynylmaleimide linkers, for which the coupling occurs through space between BODIPY units with small separations and slipped co-facial orientations. Other linkers allow for broad tuning of both the relative through-bond and through-space coupling contributions and the overall strength of interpigment coupling, with a tradeoff observed in general between the strength of the two coupling mechanisms. These findings open the door to the synthesis of molecular systems that function effectively as light-harvesting antennas and as electron donors or acceptors for solar energy conversion.
Collapse
Affiliation(s)
- Sara Ansteatt
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Brian Uthe
- Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Bikash Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Rachel S Gelfand
- Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Matthew Pelton
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA. .,Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
9
|
Rao Y, Xu L, Zhou M, Yin B, Osuka A, Song J. Expanded Azaporphyrins Consisting of Multiple BODIPY Units: Global Aromaticity and High Affinities Towards Alkali Metal Ions. Angew Chem Int Ed Engl 2022; 61:e202206899. [DOI: 10.1002/anie.202206899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yutao Rao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China
| | - Ling Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China
| | - Mingbo Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China
| | - Bangshao Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China
| | - Atsuhiro Osuka
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China
| | - Jianxin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China
| |
Collapse
|
10
|
|
11
|
Rao Y, Xu L, Zhou M, Yin B, Osuka A, Song J. Expanded Azaporphyrins Consisting of Multiple BODIPY Units: Global Aromaticity and High Affinities Towards Alkali Metal Ions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yutao Rao
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Ling Xu
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Mingbo Zhou
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Bangshao Yin
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Atsuhiro Osuka
- Hunan Normal University - Erliban Campus: Hunan Normal University Chemistry CHINA
| | - Jianxin Song
- Hunan Normal University Chemistry Yue Lu Qu Lushan Road 36 410081 Changsha CHINA
| |
Collapse
|
12
|
Chen H, Shi X, Lun Y, Xu Y, Lu T, Duan Z, Shao M, Sessler JL, Yu H, Lei C. 3,6-Carbazoylene Octaphyrin (1.0.0.0.1.0.0.0) and Its Bis-BF 2 Complex. J Am Chem Soc 2022; 144:8194-8203. [PMID: 35482960 DOI: 10.1021/jacs.2c01240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3,6-Carbazole precursors were used to prepare an octaphyrin. The conformation and electronic structure of the system could be modulated through trifluoroacetate (TFA) protonation and BF2 complexation. The resulting nonaromatic macrocyclic complexes, 2-2TFA and 2-2BF2, displayed noteworthy photophysical properties. For instance, the diprotonated species 2-2TFA showed a strong panchromic absorption up to 800 nm, while the bis-BF2-chelated dipyrromethene (BODIPY)-like complex 2-2BF2 exhibited an intense visible absorption feature (ε535nm = 2.1 × 105 M-1 cm-1), as well as a relatively red-shifted emission at 640 nm characterized by a large Stokes shift. It was found that 2-2BF2 could be used to construct a high-quality organic microlaser that functions under optical pumping. The present study highlights the potential utility of expanded porphyrins as possible laser dyes.
Collapse
Affiliation(s)
- Hao Chen
- Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, P. R. China.,Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P. R. China
| | - Xusheng Shi
- State Key Laboratory of Luminescent Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yipeng Lun
- State Key Laboratory of Luminescent Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yan Xu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P. R. China
| | - Tian Lu
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Zhiming Duan
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P. R. China
| | - Min Shao
- Laboratory for Microstructures, Instrumental Analysis and Research Center of Shanghai University, Shanghai University, Shanghai 200444, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Huakang Yu
- State Key Laboratory of Luminescent Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, P. R. China.,China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, P. R. China
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
13
|
Ajay J, Sulfikarali T, George SM, Gokulnath S. Conformationally Distinct [26]Heterorubyrin(1.1.0.1.1.0) Macrocycles and Their Bis-BODIPYs: Synthesis, Structure, and Optical Properties. Org Lett 2022; 24:1000-1004. [PMID: 35030002 DOI: 10.1021/acs.orglett.1c04043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two conformationally different [26]rubyrin(1.1.0.1.1.0) macrocycles with varying heteroatoms (S/O) and their bis-BODIPYs are reported. The solid-state structure confirms O2N4 with fairly planar pyrrole-inverted conformation, whereas a thiophene-inverted structure for S2N4 is observed. Such conformational differences can also be clearly realized from their spectral and optical features. Upon BF2 complexation, both rubyrins led to their respective bis-BODIPYs where S2N4-BOD displayed a perfectly planar conformation as evident from its X-ray structure.
Collapse
Affiliation(s)
- Jayaprakash Ajay
- Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | - Thondikkal Sulfikarali
- Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | - Sandra Mariya George
- Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | - Sabapathi Gokulnath
- Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
14
|
Zhou W, Sarma T, Yang L, Lei C, Sessler JL. Controlled assembly of a bicyclic porphyrinoid and its 3-dimensional boron difluoride arrays. Chem Sci 2022; 13:7276-7282. [PMID: 35799810 PMCID: PMC9214847 DOI: 10.1039/d2sc01635d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 12/26/2022] Open
Abstract
A fully conjugated cryptand-like bicyclic porphyrinoid ligand 4, incorporating three carbazole linkages and four dipyrrin moieties, was prepared via the acid-catalysed condensation of an extended 2,2′-bipyrrole analogue containing a central carbazole moiety and 3,4-diethyl-2,5-diformylpyrrole in 79% isolated yield. This new cryptand-like system acts as an effective ligand and allows for complexation of BF2 (boron difluoride) subunits. Three BODIPY arrays, containing two, three, and four BF2 subunits, namely 4·2BF2, 4·3BF2 and 4·4BF2, could thus be isolated from the reaction of 4 with BF3·Et2O in the presence of triethylamine at 110 °C, albeit in relatively low yield. As prepared, bicycle 4 is characterized by a rigid C2 symmetric structure as inferred from VT NMR spectroscopic analyses. In contrast, the three BODIPY-like arrays produced as the result of BF2 complexation are conformationally flexible and unsymmetric in nature as deduced from similar analyses. All four products, namely 4, 4·2BF2, 4·3BF2 and 4·4BF2, were characterized by means of single crystal X-ray diffraction analyses. Tetramer 4·4BF2 gives rise to a higher extinction coefficient (by 2.5 times) relative to the bis- and tris-BODIPY arrays 4·2BF2 and 4·3BF2. This was taken as evidence for stronger excitonic coupling in the case of 4·4BF2. All three BODIPY-like arrays proved nearly non-fluorescent, as expected given their conformationally mobile nature. The efficiency of reactive oxygen species (ROS) generation was also determined for the new BODIPY arrays of this study. A cryptand-like bicyclic porphyrinoid was obtained in preference over the monocyclic porphyrinoid by controlling the reaction stoichiometry and condensation conditions. The cryptand-like species supports formation of multiple 3D BODIPY-like arrays.![]()
Collapse
Affiliation(s)
- Weinan Zhou
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Tridib Sarma
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Liu Yang
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, USA
| |
Collapse
|
15
|
Zhu Z, Zhang X, Guo X, Wu Q, Li Z, Yu C, Hao E, Jiao L, Zhao J. Orthogonally aligned cyclic BODIPY arrays with long-lived triplet excited states as efficient heavy-atom-free photosensitizers. Chem Sci 2021; 12:14944-14951. [PMID: 34820111 PMCID: PMC8597848 DOI: 10.1039/d1sc04893g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
In photosensitizers, long triplet excited state lifetimes are key to their efficient electron transfer or energy transfer processes. Herein, we report a novel class of cyclic trimeric BODIPY arrays which were efficiently generated from easily accessible meso-mesityldipyrrinone and arylboronic acids in one pot. Arylboronic acid, for the first time, was used to provide a boron source for BODIPY derivatives. Due to the well-defined and orthogonally aligned BODIPY cores as verified by X-ray crystallography, these BODIPY arrays show strong exciton coupling effects and efficient intersystem crossings, and are novel heavy-atom-free photosensitizers with a long-lived triplet excited state (lifetime up to 257.5 μs) and good reactive oxygen species generation efficiency (up to 0.72) contributed by both 1O2 and O2 -˙ under light irradiation.
Collapse
Affiliation(s)
- Zhaoyang Zhu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Xing Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Qinghua Wu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Zhongxin Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Changjiang Yu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
16
|
Kalaiselvan A, Dhamija S, Aswathi C, De AK, Gokulnath S. Planar hexaphyrin-like macrocycles turning into bis-BODIPYs with box-shaped structures exhibiting excitonic coupling. Chem Commun (Camb) 2021; 57:11485-11488. [PMID: 34651622 DOI: 10.1039/d1cc04403f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Planar carbazole based hexaphyrin-like macrocycles with bis-coordinating cores and box-shaped cyclic BODIPYs were synthesized. Solution and solid-state structure analysis of the free macrocycles indicates an inversion of two pyrrole rings, resulting in a two-dipyrrin-like environment. The BF2 complexes show large Stokes shifts and exhibit excitonic coupling, fine-tuned by the meso-substituents.
Collapse
Affiliation(s)
- Arumugam Kalaiselvan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram-695551, Maruthamala P.O., Vithura, Kerala, India.
| | - Shaina Dhamija
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab-140306, India.
| | - Chakrapani Aswathi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram-695551, Maruthamala P.O., Vithura, Kerala, India.
| | - Arijit K De
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab-140306, India.
| | - Sabapathi Gokulnath
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram-695551, Maruthamala P.O., Vithura, Kerala, India.
| |
Collapse
|
17
|
Das M, Singh D, Chitranshi S, Murugavel M, Srinivasan A. N‐Confused Pyritriphyrin: A New Class of Triphyrin and Its Calixphyrin Analogue. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mainak Das
- School of chemical sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752050 Odisha India
| | - Deepak Singh
- School of chemical sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752050 Odisha India
| | - Sangya Chitranshi
- School of chemical sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752050 Odisha India
| | - M. Murugavel
- School of chemical sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752050 Odisha India
| | - A. Srinivasan
- School of chemical sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752050 Odisha India
| |
Collapse
|
18
|
Palepu NR, Adinarayana B, Murugavel M, Garima K, Chitranshi S, Srinivasan A. 3-D Cryptand Like Normal and Doubly N-Confused Calixbenzophyrins: Synthesis and Structural Studies. Org Lett 2021; 23:2600-2603. [PMID: 33719465 DOI: 10.1021/acs.orglett.1c00506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three-dimensional (3-D) cryptand-like normal and doubly-N-confused calixbenzophyrins embedded with phenyl rings in the macrocyclic skeleton are successfully synthesized from single starting materials. These structural isomers are characterized by spectral studies and unambiguously confirmed by crystal analyses.
Collapse
Affiliation(s)
| | | | | | | | | | - A Srinivasan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
19
|
Freese T, Patalag LJ, Merz JL, Jones PG, Werz DB. One-Pot Strategy for Symmetrical and Unsymmetrical BOIMPY Fluorophores. J Org Chem 2021; 86:3089-3095. [DOI: 10.1021/acs.joc.0c02860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tyll Freese
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Lukas J. Patalag
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - J. Luca Merz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Peter G. Jones
- Technische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
20
|
Patra A, Patalag LJ, Jones PG, Werz DB. Ausgedehnte, benzanellierte Oligo‐BODIPYs: In nur drei Schritten zu einer Serie planarer, bogenförmiger Nahinfrarot‐Farbstoffe. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Atanu Patra
- Technische Universität Braunschweig Institut für Organische Chemie Hagenring 30 38106 Braunschweig Deutschland
| | - Lukas J. Patalag
- Technische Universität Braunschweig Institut für Organische Chemie Hagenring 30 38106 Braunschweig Deutschland
| | - Peter G. Jones
- Technische Universität Braunschweig Institut für Anorganische and Analytische Chemie Hagenring 30 38106 Braunschweig Deutschland
| | - Daniel B. Werz
- Technische Universität Braunschweig Institut für Organische Chemie Hagenring 30 38106 Braunschweig Deutschland
| |
Collapse
|
21
|
Patra A, Patalag LJ, Jones PG, Werz DB. Extended Benzene-Fused Oligo-BODIPYs: In Three Steps to a Series of Large, Arc-Shaped, Near-Infrared Dyes. Angew Chem Int Ed Engl 2021; 60:747-752. [PMID: 33022876 PMCID: PMC7839587 DOI: 10.1002/anie.202012335] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 02/01/2023]
Abstract
We present a straightforward, three-step synthesis engaging an oligomerization and subsequent one-pot oxidation step to form fully conjugated, benzene-fused oligo-BODIPYs from simple BODIPY precursors. FeCl3 serves as an efficient, bifunctional oxidant for a (multiple) cyclization/desaturation process, applied to ethylene-bridged dimeric, trimeric and oligomeric species to transform linking ethano units into stiff benzene fusions between unsubstituted β-positions of each BODIPY unit. The structural integrity was verified by X-ray crystallography, and all target compounds were studied in detail by photophysical, electrochemical and computational means. The main S1 excited state gradually converges to a structure-specific excitation limit, displaying a strong shift of the absorption event from about 500 nm (BODIPY monomer) to 955 nm (octamer) with attenuation coefficients up to ca. 500 000 M-1 cm-1 .
Collapse
Affiliation(s)
- Atanu Patra
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Lukas J. Patalag
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| |
Collapse
|
22
|
Wu Q, Jia G, Tang B, Guo X, Wu H, Yu C, Hao E, Jiao L. Conformationally Restricted α, α Directly Linked BisBODIPYs as Highly Fluorescent Near-Infrared Absorbing Dyes. Org Lett 2020; 22:9239-9243. [DOI: 10.1021/acs.orglett.0c03441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qinghua Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Guowei Jia
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Bing Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
23
|
Wu Q, Zhu Y, Fang X, Hao X, Jiao L, Hao E, Zhang W. Conjugated BODIPY Oligomers with Controllable Near-Infrared Absorptions as Promising Phototheranostic Agents through Excited-State Intramolecular Rotations. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47208-47219. [PMID: 33035047 DOI: 10.1021/acsami.0c11701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conjugated molecules with coplanar strong donor and acceptor (D-A) units have been widely used in the design of near-infrared (NIR) photothermal agents to increase an absorption band through intramolecular charge transfer and to control intramolecular motions in aggregated states. However, such conjugated D-A systems have strong dipolar moments and intermolecular interactions, which may inhibit other channels of photothermal conversion and are often susceptible to nucleophiles, especially in the presence of light irradiation. Now, we report a molecular guideline to develop novel NIR organic photothermal nanoagents based on conjugated boron dipyrromethene (BODIPY) oligomers. This oligomerization is helpful not only for their tunable NIR absorptions in the ground state with distinctly redshifted absorption maxima up to 1002 nm and high extinction coefficients but also for their highly efficient photothermal conversion because of the possible motion of the BODIPY motifs around the ethene linked group in the excited state. These oligomers were fabricated as ultra-photostable nanoagents for multiple imaging-guided phototherapies, which efficiently accumulated in tumors, and gave complete tumor ablation with NIR laser irradiation. This strategy of "ground-state conjugation, excited-state rotation" provides a novel guideline to develop advanced theranostic molecules with NIR absorption.
Collapse
Affiliation(s)
- Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yucheng Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xingbao Fang
- Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xiangyu Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
24
|
Wu Q, Kang Z, Gong Q, Guo X, Wang H, Wang D, Jiao L, Hao E. Strategic Construction of Ethene-Bridged BODIPY Arrays with Absorption Bands Reaching the Near-Infrared II Region. Org Lett 2020; 22:7513-7517. [PMID: 32969229 DOI: 10.1021/acs.orglett.0c02704] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient strategy for the controllable synthesis of BODIPY arrays based on the Stille cross-coupling reaction has been developed, from which a family of well-defined ethene-bridged BODIPY arrays from dimer to hexamer was synthesized. These arrays showed strong absorptions reaching the near-infrared II (NIR II, 1000-1700 nm) region with maxima tunable from 702 nm (dimer) to 1114 nm (hexamer) and possessed efficient light-harvesting capabilities, excellent photostability, and good photothermal conversion abilities under NIR light irradiation.
Collapse
Affiliation(s)
- Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhengxin Kang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Dandan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
25
|
Wang D, Wu Q, Zhang X, Wang W, Hao E, Jiao L. A Photochemical Dehydrogenative Strategy for Direct and Regioselective Dimerization of BODIPY Dyes. Org Lett 2020; 22:7694-7698. [DOI: 10.1021/acs.orglett.0c02895] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dandan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xiankang Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wenqing Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
26
|
Abstract
During the past few years, the construction of BODIPY-based macrocycles has attracted extensive interest due to the widespread applications of these materials in sensing, bioimaging, molecular machines, and photodynamic therapy (PDT). Since significant progress has been made in this field, it is time to summarize the recent developments involving BODIPY-based macrocycles. In this review, we will briefly introduce the synthesis routes of BODIPY-based macrocycles, including a covalent synthetic protocol and a noncovalent self-assembly protocol. In addition, we will discuss the photophysical and photochemical properties and the applications of these BODIPY-based macrocycles in the areas of sensing, bioimaging, photodynamic therapy, etc.
Collapse
Affiliation(s)
- Yi Qin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Xi Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Pei-Pei Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| |
Collapse
|
27
|
Macrocyclic Arenes Functionalized with BODIPY: Rising Stars among Chemosensors and Smart Materials. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macrocycles play a crucial role in supramolecular chemistry and the family of macrocyclic arenes represents one of the most important types of hosts. Among them, calixarenes, resorcinarenes and pillararenes are the most commonly encountered macrocyclic arenes, and they have received considerable attention. Boron-dipyrromethene (BODIPY) dyes are fascinating compounds with multiple functionalization sites and outstanding luminescence properties including high fluorescence quantum yields, large molar absorption coefficients and remarkable photo- and chemical stability. The combination of macrocyclic arenes and BODIPY dyes has been demonstrated to be an effective strategy to construct chemosensors for various guests and smart materials with tailored properties. Herein, we firstly summarize the recent advances made so far in macrocyclic arenes substituted with BODIPY. This review only focuses on the three macrocyclic arenes of calixarenes, resorcinarenes and pillararenes, as there are no other macrocyclic arenes substituted BODIPY units at the present time. Hopefully, this review will not only afford a guide and useful information for those who are interested in developing novel chemosensors and smart materials, but also inspire new opportunities in this field.
Collapse
|