1
|
Zheng W, Wang H, Huang Q, Li Y, Huang J, Cai W, Lai Y. Ultra-Antifouling Liquid-Like Surfaces for Sustainable Viscous Water-in-Oil Emulsions Separation and Oil Recovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413751. [PMID: 39648530 DOI: 10.1002/adma.202413751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Indexed: 12/10/2024]
Abstract
The demand for efficient separation techniques in industries dealing with high viscosity emulsions has surged due to their widespread applications in various scenarios, including emulsion-based drug delivery systems, the removal of emulsified impurities in formulations and oil spill remediation. However, membrane fouling is a major challenge for conventional separation methods, leading to decreased efficiency and increased maintenance costs. Herein, a novel approach is reported by constructing liquid-like surfaces with double anti-fouling structure, incorporating soft nanomicelles within a rigid, chemically cross-linked network for both anti-membrane-fouling and effective viscous water-in-oil emulsion separation. The coating significantly outperforms perfluorinated and commercial polytetrafluoroethylene (PVDF) membranes, effectively preventing the adhesion of viscous oils like crude oil and pump oil, and alleviating severe membrane fouling. For high-viscosity emulsions (97.3 cP and 52.8 cP), it maintains over 99% separation efficiency after 3 h continuous use. Even after 15 h immersion in strong acids, alkalis, salts, or organic solvents, its separation efficiency remains above 95%. In addition, thanks to the anti-membrane-fouling ability, this work achieved 6 h continuous emulsion separation performance for the first time, demonstrating unparalleled long-term stability. Overall, this study offers valuable insights into the development of innovative coatings for efficient and eco-friendly separation of high-viscosity emulsions.
Collapse
Affiliation(s)
- Weiwei Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Huicai Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Qingshan Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Ya Li
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Weilong Cai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| |
Collapse
|
2
|
Liu Z, Si Y, Yu C, Jiang L, Dong Z. Bioinspired superwetting oil-water separation strategy: toward the era of openness. Chem Soc Rev 2024; 53:10012-10043. [PMID: 39302142 DOI: 10.1039/d4cs00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Bioinspired superwetting oil-water separation strategies have received significant attention for their potential in addressing global water scarcity and aquatic pollution challenges. Over the past two decades, the field has rapidly developed, reaching a pivotal phase of innovation in the oil-water separation process. However, many groundbreaking studies have not received extensive scientific recognition. In this review, we systematically examine the application of bioinspired superwetting materials for complex multiscale oil-water separation. We discuss the development of 2D membrane filtration and 3D sponge adsorption materials in confined spaces, summarizing the core separation mechanisms, key research findings, and the evolutionary logic of these materials. Additionally, we highlight emerging open-space separation strategies, emphasizing several novel dynamic separation devices of significant importance. We evaluate and compare the design concepts, separation principles, materials used, comprehensive performance, and existing challenges of these diverse strategies. Finally, we summarize these advantages, critical bottlenecks, and prospects of this field and propose potential solutions for real oil-water separation processes from a general perspective.
Collapse
Affiliation(s)
- Zhuoxing Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R 999077, China.
| | - Cunlong Yu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
3
|
Zhao S, Qu R, Liu N, Li X, Zhai H, Wei Y, Feng L. A Wax-Elastomer Superwetting Membrane with Controllable Permeability: Toward Separating a Crude Oil-in-Water Emulsion from an Oil Field. J Phys Chem A 2023; 127:8639-8649. [PMID: 37812074 DOI: 10.1021/acs.jpca.3c05401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Smart superwetting membranes with finely tunable properties have attracted increased attention recently. However, they mostly focus on controllable wettability rather than controllable permeability. Also, the oil/water separation performance is usually tested with laboratory-simulated samples, making it hard for the materials to meet practical applications. Herein, we fabricate thermally responsive superwetting membranes with wax, polystyrene-B-poly(ethylene-ran-butylene)-B-polys (SEBS, a kind of elastomer), and polydopamine (PDA) to realize emulsion separation with controllable permeability. Benefiting from the elasticity of SEBS and the fluidity difference of wax at different temperatures, the pore size of the membrane could be readily tuned, resulting in different permeability. The separation flux is 0 at ambient temperature (pore size 0.394 μm) and is over 100 L m-2 h-1 at a high temperature (pore size 0.477 μm). The membrane could realize the separation of simulated oil-in-water emulsions with efficiency above 99.4%. Furthermore, it successfully achieved crude oil-in-water emulsion separation from the oil field with oil residues of less than 300 mg L-1 in the temperature range of 60-80 °C, which is the actual working temperature adopted in industrial production. Such a polydopamine/wax-SEBS modified membrane with unprecedented controllable permeability can promote the development of the emulsion treatment field and provide a new direction for designing smart superwetting materials.
Collapse
Affiliation(s)
- Shuaiheng Zhao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Ruixiang Qu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Na Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiangyu Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Huajun Zhai
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yen Wei
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lin Feng
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
4
|
Zhou S, Jiang L, Dong Z. Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chem Rev 2023; 123:2276-2310. [PMID: 35522923 DOI: 10.1021/acs.chemrev.1c00976] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid flowing around a solid edge, i.e., overflow, is a commonly observed flow behavior. Recent research into surface wetting properties and microstructure-controlled overflow behavior has attracted much attention. Achieving controllable macroscale liquid dynamics by manipulating the micro-nanoscale liquid overflow has stimulated diverse scientific interest and fostered widespread use in practical applications. In this review, we outline the evolution of overflow and present a critical survey of the mechanism of surface wetting properties and microstructure-controlled liquid overflow in multilength scales ranging from centimeter to micro and even nanoscale. We summarize the latest progress in utilizing the mechanisms to manipulate liquid overflow and achieve macroscale liquid dynamics and in emerging applications to manipulate overflow for sustainable development in various fields, along with challenges and perspectives.
Collapse
Affiliation(s)
- Shan Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Zhang Q, Bai X, Li Y, Zhang X, Tian D, Jiang L. Ultrastable Super-Hydrophobic Surface with an Ordered Scaly Structure for Decompression and Guiding Liquid Manipulation. ACS NANO 2022; 16:16843-16852. [PMID: 36222751 DOI: 10.1021/acsnano.2c06749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Directional droplet manipulation is very crucial in microfluidics, intelligent liquid management, etc. However, excessive liquid pressure tends to destroy the solid-gas-liquid (SAL) composite interface, creating a highly adhesive surface, which is not conducive to liquid transport. Herein, we propose a strategy to enhance the surface durability, in which the surface cannot withstand liquid pressure only by "blocking" but must instead guide liquid transport for "decompression". Learning from the water resistance of water strider legs and the drag reduction of shark skin, we present a continuous integrated system to obtain an ultrastable super-hydrophobic surface with a highly ordered scaly structure via a liquid flow-induced alignment method for lossless unidirectional liquid transport. The nonwetting scaly structure can both buffer liquid pressure and drive droplet motion to further reduce the vertical pressure of the liquid. Moreover, droplets can be manipulated unidirectionally using a voice. This work could aid in manufacturing scalable anisotropic micro-nanostructure surfaces, which inspires efforts in realizing lossless continuous liquid control on demand and related microfluidic applications.
Collapse
Affiliation(s)
- Qiuya Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
- School of Physics, Beihang University, Beijing100191, P. R. China
| | - Xiuhui Bai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
| | - Yan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing100083, P. R. China
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100191, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100191, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100191, P. R. China
| |
Collapse
|
6
|
Mu L, Yue X, Hao B, Wang R, Ma PC. Facile preparation of melamine foam with superhydrophobic performance and its system integration with prototype equipment for the clean-up of oil spills on water surface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155184. [PMID: 35417731 DOI: 10.1016/j.scitotenv.2022.155184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
A simple and efficient method was developed to rectify the surface properties of commercial melamine foam. The process was based on the siloxane coating originated from the silanization of methyltrimethoxysilane and tetraethoxysilane. The foam can be easily scaled up by employing low-cost chemicals and devices. The studies on the properties of the material showed that the wettability of melamine foam was changed to superhydrophobic with a water contact angle of 156° due to the presence of alkylsilane. The modified foam exhibited excellent oil/water selectivity and high oil absorption capacities of 77-163 times its own weight. The retention of absorption capacity was greater than 97% after 5000 cycles compression. These fascinating characteristics made the modified foam exceptional recyclability for commonly organic solvents and oils without obvious dissolution/swelling. Based on these inspiring results, the material can be employed for the continuous separation of various oil compounds floating on water surface with the assistance of a vacuum pump. Moreover, the prepared material was integrated with an apparatus to develop a prototype oil collector for the remediation of oil spills in a larger open-air environment. The devices could be readily used in a range of real-world applications, including industrial oil spill clean-up.
Collapse
Affiliation(s)
- Lei Mu
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiu Yue
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Hao
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rui Wang
- CAS-Realnm Separation Science and Technology Company, Wuxi 214001, China.
| | - Peng-Cheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Chen J, Wang H, Liu X, Han X, Liu H. Multiple strategies to control the hydrophilic-hydrophobic balance of P(DMA- co-DMAEMA- co-QDMAEMA) coatings. SOFT MATTER 2022; 18:4913-4922. [PMID: 35726664 DOI: 10.1039/d2sm00521b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of the hydrophilic-hydrophobic balance of polymers has an important influence not only on their aggregation behavior in aqueous solution, but also on their adhesion properties on the surface of substrates and the applications of the modified surfaces. Based on this, a random copolymer poly(dopamine methacrylamide-co-2-(dimethylamino)ethyl methacrylate) (P(DMA-co-DMAEMA)) was synthesized as a starting polymer to generate P(DMA-co-DMAEMA-co-QDMAEMA) (PDDQ) derivatives by a programmable quaternization of the DMAEMA precursor. By adjusting the pH or temperature, both the aggregation behavior in aqueous solutions and the surface adhesive behavior on the substrate surfaces of PDDQ copolymers were regulated due to the hydrophilic-hydrophobic balance. Specifically, the surface adsorption of PDDQ copolymers on surfaces was enhanced by the increased hydrophobicity of PDDQ. Stainless steel meshes (SSM) modified with the PDDQ0 copolymer without quaternization showed a superoleophobicity in acidic aqueous media, which endowed it with improved oil-water separation performance. In addition, the hydrophilic-hydrophobic balance of PDDQs and their coatings could also be tuned by changing the ratio of DMAEMA to QDMAEMA in the copolymer. From PDDQ0 to PDDQ100, by increasing the hydrophilic QDMAEMA component of PDDQ copolymers, anti-protein properties and oil/water separation efficiency of the modified surfaces were also enhanced gradually. The results provided a reference for designing P(DMA-co-DMAEMA-co-QDMAEMA) coatings in different application environments.
Collapse
Affiliation(s)
- Jiao Chen
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Hanhan Wang
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Xing Liu
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Xia Han
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Honglai Liu
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
8
|
Zhu H, Cai S, Liao G, Gao ZF, Min X, Huang Y, Jin S, Xia F. Recent Advances in Photocatalysis Based on Bioinspired Superwettabilities. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04049] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hai Zhu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Si Cai
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
| | - Guangfu Liao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Zhong Feng Gao
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, People’s Republic of China
| | - Xuehong Min
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
| | - Yu Huang
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
| | - Fan Xia
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People’s Republic of China
| |
Collapse
|
9
|
Zhai H, Qu R, Li X, Liu Y, Zhao S, Wei Y, Feng L. A Dually Charged Membrane for Seawater Utilization: Combining Marine Pollution Remediation and Desalination by Simultaneous Removal of Polluted Dispersed Oil, Surfactants, and Ions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48171-48178. [PMID: 34582166 DOI: 10.1021/acsami.1c10220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shortage of freshwater and deterioration of the marine environment have a serious effect on the human body and ecological environment. Here, we demonstrated a facile way to prepare a multiple-target superwetting porous material to obtain available water without cumbersome steps. Through the facile immersion and hydrothermal method, a charge-enhanced membrane material combining superwettability, electrostatic interaction, and the steric effect is prepared. Such a material breaks through the limitations of single size sieving and has a universal effect on different kinds of contaminants with accurate wettability manipulation and fluid separation control. The protonation and deprotonation of active carboxyl groups at the novel created solid/liquid interface facilitate the surface wettability and flux transition, which will bring out superior continuous separation and surface lubrication control.
Collapse
Affiliation(s)
- Huajun Zhai
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ruixiang Qu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiangyu Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yanan Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuaiheng Zhao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lin Feng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Qu M, Pang Y, Li J, Wang R, He D, Luo Z, Shi F, Peng L, He J. Eco-friendly superwettable functionalized-fabric with pH-bidirectional responsiveness for controllable oil-water and multi-organic components separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Wang Y, Wang Q, Wang B, Tian Y, Di J, Wang Z, Jiang L, Yu J. Modulation of solid surface with desirable under-liquid wettability based on molecular hydrophilic-lipophilic balance. Chem Sci 2021; 12:6136-6142. [PMID: 33996010 PMCID: PMC8098691 DOI: 10.1039/d1sc00808k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
There has been great interest in the fabrication of solid surfaces with desirable under-liquid wettability, and especially under-liquid dual-lyophobicity, because of their potential for widespread use. However, there remains the lack of a general principle to modulate the under-liquid wettability in terms of surface energy (SE). Herein, we found that the relative proportion between the polar and dispersive components in SE that reflects the competition between hydrophilicity and lipophilicity governs the under-liquid wettability of the solid surface. For the first time, we introduced hydrophilic–lipophilic balance (HLB) calculated solely based on the amount and type of hydrophilic and lipophilic fragments in surface molecules to rapidly predict the under-liquid wettability of a solid surface, thereby guiding the fabrication of solid surfaces with desirable under-liquid wettability. Accordingly, the under-liquid dual superlyophobic surfaces in a nonpolar oil–water-solid system were fabricated by grafting molecules with appropriate HLB values (e.g., 6.341–7.673 in a cyclohexane–water–solid system) onto porous nanofibrous membranes, which were able to achieve continuous separation of oil–water mixtures. This work provides reasonable guidance for the fabrication of solid surfaces with targeted under-liquid wettability, which may lead to advanced applications in oil–water–solid systems. Hydrophilic–lipophilic balance calculated based on the component of surface molecules is introduced to predict the under-liquid wettability of solid surfaces, thereby guiding the fabrication of solid surface with desirable under-liquid wettabilities.![]()
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 P. R. China .,Department of Mechanical Engineering, City University of Hong Kong Hong Kong 999077 P. R. China
| | - Qifei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Baixian Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Ye Tian
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jiancheng Di
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong Hong Kong 999077 P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 P. R. China .,International Center of Future Science, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
12
|
Zheng W, Huang J, Li S, Ge M, Teng L, Chen Z, Lai Y. Advanced Materials with Special Wettability toward Intelligent Oily Wastewater Remediation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:67-87. [PMID: 33382588 DOI: 10.1021/acsami.0c18794] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Clean water resources are essential to our human society. Oil leakage has caused water contamination, which leads to serious shortage of clean water, environmental deterioration, and even increasing number of deaths. It is of great urgency to solve the oil-polluted water problems worldwide. Efficient oil/water separation, especially emulsified oil/water mixture separation, is widely used to mitigate water pollution issues. Recently, advanced materials with special wettability have been employed for oily wastewater remediation. Moreover, by endowing them with various intelligent functions, smart materials can effectively separate complex oil/water mixtures including extremely stable emulsions. In this review, oil/water separation mechanisms and various fabrication methods of special wettability separation materials are summarized. We highlight the special wettable materials with intelligent functions, including photocatalytic, self-healing, and switchable oil/water separation materials, which can achieve self-cleaning, self-healing, and efficient oily wastewater treatment. In each section, the acting mechanisms, fabricating technologies, representative studies, and separation efficiency are briefly introduced. Lastly, the challenges and outlook for oil/water separation based on the special wettability materials are discussed.
Collapse
Affiliation(s)
- Weiwei Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shuhui Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Mingzheng Ge
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, P. R. China
| | - Lin Teng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
13
|
Li D, Liang X, Li S, Wang T, Han G, Guo Z. Bioinspired textile with dual-stimuli responsive wettability for body moisture management and signal expression. NEW J CHEM 2021. [DOI: 10.1039/d1nj02471j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A smart bioinspired loofah textile with biosafe wettability shows high directional liquid transport capacity and the ability to identify liquids with different pH values.
Collapse
Affiliation(s)
- Deke Li
- School of materials engineering
- Lanzhou Institute of Technology
- Lanzhou 730050
- People's Republic of China
- State Key Laboratory of Solid Lubrication
| | - Xiaojing Liang
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- People's Republic of China
| | - Shanpeng Li
- College of Engineering
- Lishui University
- Lishui 323000
- People's Republic of China
| | - Tao Wang
- School of materials engineering
- Lanzhou Institute of Technology
- Lanzhou 730050
- People's Republic of China
| | - Guocai Han
- School of materials engineering
- Lanzhou Institute of Technology
- Lanzhou 730050
- People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
- State Key Laboratory of Solid Lubrication
| |
Collapse
|
14
|
Sun Y, Guo Z. Programming Multiphase Media Superwetting States in the Oil-Water-Air System: Evolutions in Hydrophobic-Hydrophilic Surface Heterogeneous Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004875. [PMID: 33463790 DOI: 10.1002/adma.202004875] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/26/2020] [Indexed: 06/12/2023]
Abstract
Studies toward tailoring macroscopic extreme wetting behaviors on a certain well-defined surface in multiphase media are significant but still at an infant stage. Herein, superantiwetting evolutions in the oil-water-air system can be programmed from single to quadruple superrepellence by controlling the surface hydrophobic-hydrophilic heterogeneous chemistry. Ammonia vapor exposure makes the realization of challenging superhydrophilicity-superoleophobicity possible in air medium, causing the transition from quadruple to triple superantiwetting states in the oil-water-air system. Upon UV illumination, only single superrepellence-underwater superoleophobicity is maintained on titanium dioxide (TiO2, P25)-based coatings. A reversible transition between underoil superhydrophilicity and superhydrophobicity via an alternating UV irradiation and heating process leads to a switching between "water-absorbing" and "size-sieving" effects in water-in-oil emulsion separation. A comparative study for investigating two such effects in emulsion separation is further investigated. The current conceptual insights not only extend superwetting states to multiphase media, but can also deepen the understanding of the relationship between macroscopic extreme wetting behaviors and surface chemistry.
Collapse
Affiliation(s)
- Yihan Sun
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|