1
|
Liu H, Li J, Liang X, Ren H, Yin H, Wang L, Yang D, Wang D, Li Y. Encapsulation of Pd Single-Atom Sites in Zeolite for Highly Efficient Semihydrogenation of Alkynes. J Am Chem Soc 2024; 146:24033-24041. [PMID: 39146528 DOI: 10.1021/jacs.4c07674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Palladium (Pd)-based single-atom catalysts (SACs) have shown outstanding selectivity for semihydrogenation of alkynes, but most Pd single sites coordinated with highly electronegative atoms (such as N, O, and S) of supports will result in a decrease in the electron density of Pd sites, thereby weakening the adsorption of reactants and reducing catalytic performance. Constructing a rich outer-shell electron environment of Pd single-atom sites by changing the coordination structure offers a novel opportunity to enhance the catalytic efficiency with excellent alkene selectivity. Therefore, in this work, we first propose the in situ preparation of isolated Pd sites encapsulated within Al/Si-rich ZSM-5 structure using the one-pot seed-assisted growth method. Pd1@ZSM-5 features Pd-O-Al/Si bonds, which can boost the domination of d-electron near the Fermi level, thereby promoting the adsorption of substrates on Pd sites and reducing the energy barrier for the semihydrogenation of alkynes. In semihydrogenation of phenylacetylene, Pd1@ZSM-5 catalyst performs the highest turnover frequency (TOF) value of 33582 molC═C/molPd/h with 96% selectivity of styrene among the reported heterogeneous catalysts and nearly 17-fold higher than that of the commercial Lindlar catalyst (1992 molC═C/molPd/h). This remarkable catalytic performance can be retained even after 6 cycles of usage. Particularly, the zeolitic confinement structure of Pd1@ZSM-5 enables precise shape-selective catalysis for alkyne reactants with a size less than 4.3 Å.
Collapse
Affiliation(s)
- Huan Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jialu Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hongyuan Ren
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hang Yin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China
| | - Ligang Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Da Yang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
2
|
Liu H, Wang Y, Xu W, Yang Y, Yang J, Li C, Zhu T. Unraveling the Synergistic Mechanism of Ir Species with Various Electron Densities over an Ir/ZSM-5 Catalyst Enables High-Efficiency NO Reduction by CO. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12082-12090. [PMID: 38888120 DOI: 10.1021/acs.est.4c02346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Selective catalytic reduction using CO as a reducing agent (CO-SCR) has exhibited its application potential in coal-fired, steel, and other industrial sectors. In comparison to NH3-SCR, CO-SCR can achieve synergistic control of CO and NO pollutants, making it a powerful denitrification technology that treats waste with waste. Unfortunately, the competitive adsorption of O2 and NO on CO-SCR catalysts inhibits efficient conversion of NOx under O2-containing conditions. In this work, we obtained two Ir sites with different electron densities, Ir1 single atoms in the oxidized Irδ+ state and Ir0 nanoparticles in the metallic state, by controlled pretreatment of the Ir/ZSM-5 catalyst with H2 at 200 °C. The coexistence of Ir1 single atoms and Ir0 nanoparticles on ZSM-5 creates a synergistic effect, which facilitates the reduction of NO through CO in the presence of O2, following the Langmuir-Hinshelwood mechanism. The ONNO dimer is formed on the Ir1 single atom sites and then spills over to the neighboring Ir0 nanoparticles for subsequent reduction to N2 by CO. Specifically, this tandem reaction enables 83% NO conversion and 100% CO conversion on an Ir-based catalyst at 250 °C under 3% O2.
Collapse
Affiliation(s)
- Huixian Liu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yixi Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wenqing Xu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| | - Yang Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jun Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chaoqun Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tingyu Zhu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| |
Collapse
|
3
|
Mao XL, Cai YJ, Luo QX, Liu X, Jiang QQ, Zhang CR, Zhang L, Liang RP, Qiu JD. Europium(III) Functionalized Covalent Organic Framework as Sensitive and Selective Fluorescent Switch for Detection of Uranium. Anal Chem 2024; 96:5037-5045. [PMID: 38477697 DOI: 10.1021/acs.analchem.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Uranium poses severe health risks due to its radioactivity and chemical toxicity if released into the environment. Therefore, there is an urgent demand to develop sensing materials in situ monitoring of uranium with high sensitivity and stability. In this work, a fluorescent Eu3+-TFPB-Bpy is synthesized by grafting Eu3+ cation onto TFPB-Bpy covalent organic framework (COF) synthesized through Schiff base condensation of monomers 1,3,5-tris(4-formylphenyl)benzene (TFPB) and 5,5'-diamino-2,2'-bipyridine (Bpy). The fluorescence of Eu3+-TFPB-Bpy is enhanced compared with that of TFPB-Bpy, which is originated from the intramolecular rotations of building blocks limited by the bipyridine units of TFPB-Bpy coordinated with Eu3+. More significantly, Eu3+-TFPB-Bpy is a highly efficient probe for sensing UO22+ in aqueous solution with the luminescence intensity efficiently amplified by complexation of UO22+ with Eu3+. The turn-on sensing capability was derived from the resonance energy transfer occurring from UO22+ to the Eu3+-TFPB-Bpy. The developed probe displayed desirable linear range from 5 nM to 5 μM with good selectivity and rapid response time (2 s) for UO22+ in mining wastewater. This strategy provides a vivid illustration for designing luminescence lanthanide COF hybrid materials with applications in environmental monitoring.
Collapse
Affiliation(s)
- Xiang-Lan Mao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yuan-Jun Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiao-Qiao Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Cheng-Rong Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
4
|
Kashin AS, Prima DO, Arkhipova DM, Ananikov VP. An Unusual Microdomain Factor Controls Interaction of Organic Halides with the Palladium Phase and Influences Catalytic Activity in the Mizoroki-Heck Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302999. [PMID: 37381097 DOI: 10.1002/smll.202302999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Indexed: 06/30/2023]
Abstract
In this work, using a combination of scanning and transmission electron microscopy (SEM and TEM), the transformations of palladium-containing species in imidazolium ionic liquids in reaction mixtures of the Mizoroki-Heck reaction and in related organic media are studied to understand a challenging question of the relative reactivity of organic halides as key substrates in modern catalytic technologies. The microscopy technique detects the formation of a stable nanosized palladium phase under the action of an aryl (Ar) halide capable of forming microcompartments in an ionic liquid. For the first time, the correlation between the reactivity of the aryl halide and the microdomain structure is observed: Ar-I (well-developed microdomains) > Ar-Br (microphase present) > Ar-Cl (minor amount of microphase). Previously, it is assumed that molecular level factors, namely, carbon-halogen bond strength and the ease of bond breakage, are the sole factors determining the reactivity of aryl halides in catalytic transformations. The present work reports a new factor connected with the nature of the organic substrates used and their ability to form a microdomain structure and concentrate metallic species, highlighting the importance of considering both the molecular and microscale properties of the reaction mixtures.
Collapse
Affiliation(s)
- Alexey S Kashin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Darya O Prima
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Daria M Arkhipova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
5
|
Galushko AS, Boiko DA, Pentsak EO, Eremin DB, Ananikov VP. Time-Resolved Formation and Operation Maps of Pd Catalysts Suggest a Key Role of Single Atom Centers in Cross-Coupling. J Am Chem Soc 2023; 145:9092-9103. [PMID: 37052882 DOI: 10.1021/jacs.3c00645] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
An approach to the spatially localized characterization of supported catalysts over a reaction course is proposed. It consists of a combination of scanning, transmission, and high-resolution scanning transmission electron microscopy to determine metal particles from arrays of surface nanoparticles to individual nanoparticles and individual atoms. The study of the evolution of specific metal catalyst particles at different scale levels over time, particularly before and after the cross-coupling catalytic reaction, made it possible to approach the concept of 4D catalysis-tracking the positions of catalytic centers in space (3D) over time (+1D). The dynamic behavior of individual palladium atoms and nanoparticles in cross-coupling reactions was recorded with nanometer accuracy via the precise localization of catalytic centers. Single atoms of palladium leach out into solution from the support under the action of the catalytic system, where they exhibit extremely high catalytic activity compared to surface metal nanoparticles. Monoatomic centers, which make up only approximately 1% of palladium in the Pd/C system, provide more than 99% of the catalytic activity. The remaining palladium nanoparticles changed their shape and could move over the surface of the support, which was recorded by processing images of the array of nanoparticles with a neural network and aligning them using automatically detected keypoints. The study reveals a novel opportunity for single-atom catalysis─easier detachment (capture) from (on) the carbon support surface is the origin of superior catalytic activity, rather than the operation of single atomic catalytic centers on the surface of the support, as is typically assumed.
Collapse
Affiliation(s)
- Alexey S Galushko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A Boiko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Evgeniy O Pentsak
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry B Eremin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Bridge Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-3502, United States
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
6
|
Tang X, Ye J, Guo L, Pu T, Cheng L, Cao XM, Guo Y, Wang L, Guo Y, Zhan W, Dai S. Atomic Insights into the Cu Species Supported on Zeolite for Direct Oxidation of Methane to Methanol via Low-Damage HAADF-STEM. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2208504. [PMID: 37014632 DOI: 10.1002/adma.202208504] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/04/2023] [Indexed: 06/19/2023]
Abstract
Precise determination of the structure-property relationship of zeolite-based metal catalysts is critical for the development toward practical applications. However, the scarcity of real-space imaging of zeolite-based low-atomic-number (LAN) metal materials due to the electron-beam sensitivity of zeolites has led to continuous debates regarding the exact LAN metal configurations. Here, a low-damage high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging technique is employed for direct visualization and determination of LAN metal (Cu) species in ZSM-5 zeolite frameworks. The structures of the Cu species are revealed based on the microscopy evidence and also proved by the complementary spectroscopy results. The correlation between the characteristic Cu size in Cu/ZSM-5 catalysts and their direct oxidation of methane to methanol reaction properties is unveiled. As a result, the mono-Cu species stably anchored by Al pairs inside the zeolite channels are identified as the key structure for higher C1 oxygenates yield and methanol selectivity for direct oxidation of methane. Meanwhile, the local topological flexibility of the rigid zeolite frameworks induced by the Cu agglomeration in the channels is also revealed. This work exemplifies the combination of microscopy imaging and spectroscopy characterization serves as a complete arsenal for revealing structure-property relationships of the supported metal-zeolite catalysts.
Collapse
Affiliation(s)
- Xuan Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jiajie Ye
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Lisheng Guo
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Tiancheng Pu
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, 18015, United States
| | - Lu Cheng
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xiao-Ming Cao
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yanglong Guo
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Li Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yun Guo
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
7
|
Velty A, Corma A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO 2 to chemicals and fuels. Chem Soc Rev 2023; 52:1773-1946. [PMID: 36786224 DOI: 10.1039/d2cs00456a] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
For many years, capturing, storing or sequestering CO2 from concentrated emission sources or from air has been a powerful technique for reducing atmospheric CO2. Moreover, the use of CO2 as a C1 building block to mitigate CO2 emissions and, at the same time, produce sustainable chemicals or fuels is a challenging and promising alternative to meet global demand for chemicals and energy. Hence, the chemical incorporation and conversion of CO2 into valuable chemicals has received much attention in the last decade, since CO2 is an abundant, inexpensive, nontoxic, nonflammable, and renewable one-carbon building block. Nevertheless, CO2 is the most oxidized form of carbon, thermodynamically the most stable form and kinetically inert. Consequently, the chemical conversion of CO2 requires highly reactive, rich-energy substrates, highly stable products to be formed or harder reaction conditions. The use of catalysts constitutes an important tool in the development of sustainable chemistry, since catalysts increase the rate of the reaction without modifying the overall standard Gibbs energy in the reaction. Therefore, special attention has been paid to catalysis, and in particular to heterogeneous catalysis because of its environmentally friendly and recyclable nature attributed to simple separation and recovery, as well as its applicability to continuous reactor operations. Focusing on heterogeneous catalysts, we decided to center on zeolite and ordered mesoporous materials due to their high thermal and chemical stability and versatility, which make them good candidates for the design and development of catalysts for CO2 conversion. In the present review, we analyze the state of the art in the last 25 years and the potential opportunities for using zeolite and OMS (ordered mesoporous silica) based materials to convert CO2 into valuable chemicals essential for our daily lives and fuels, and to pave the way towards reducing carbon footprint. In this review, we have compiled, to the best of our knowledge, the different reactions involving catalysts based on zeolites and OMS to convert CO2 into cyclic and dialkyl carbonates, acyclic carbamates, 2-oxazolidones, carboxylic acids, methanol, dimethylether, methane, higher alcohols (C2+OH), C2+ (gasoline, olefins and aromatics), syngas (RWGS, dry reforming of methane and alcohols), olefins (oxidative dehydrogenation of alkanes) and simple fuels by photoreduction. The use of advanced zeolite and OMS-based materials, and the development of new processes and technologies should provide a new impulse to boost the conversion of CO2 into chemicals and fuels.
Collapse
Affiliation(s)
- Alexandra Velty
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| |
Collapse
|
8
|
Li G, Zhang H, Han Y. 4D-STEM Ptychography for Electron-Beam-Sensitive Materials. ACS CENTRAL SCIENCE 2022; 8:1579-1588. [PMID: 36589892 PMCID: PMC9801507 DOI: 10.1021/acscentsci.2c01137] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 05/26/2023]
Abstract
Recent advances in high-speed pixelated electron detectors have substantially facilitated the implementation of four-dimensional scanning transmission electron microscopy (4D-STEM). A critical application of 4D-STEM is electron ptychography, which reveals the atomic structure of a specimen by reconstructing its transmission function from redundant convergent-beam electron diffraction patterns. Although 4D-STEM ptychography offers many advantages over conventional imaging modes, this emerging technique has not been fully applied to materials highly sensitive to electron beams. In this Outlook, we introduce the fundamentals of 4D-STEM ptychography, focusing on data collection and processing methods, and present the current applications of 4D-STEM ptychography in various materials. Next, we discuss the potential advantages of imaging electron-beam-sensitive materials using 4D-STEM ptychography and explore its feasibility by performing simulations and experiments on a zeolite material. The preliminary results demonstrate that, at the low electron dose required to preserve the zeolite structure, 4D-STEM ptychography can reliably provide higher resolution and greater tolerance to the specimen thickness and probe defocus as compared to existing imaging techniques. In the final section, we discuss the challenges and possible strategies to further reduce the electron dose for 4D-STEM ptychography. If successful, it will be a game-changer for imaging extremely sensitive materials, such as metal-organic frameworks, hybrid halide perovskites, and supramolecular crystals.
Collapse
Affiliation(s)
| | | | - Yu Han
- Advanced Membranes and Porous
Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Wang Y, Wang M. Recent progresses on single-atom catalysts for the removal of air pollutants. Front Chem 2022; 10:1039874. [DOI: 10.3389/fchem.2022.1039874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The booming industrialization has aggravated emission of air pollutants, inflicting serious harm on environment and human health. Supported noble-metals are one of the most popular catalysts for the oxidation removal of air pollutants. Unfortunately, the high price and large consumption restrict their development and practical application. Single-atom catalysts (SACs) emerge and offer an optimizing approach to address this issue. Due to maximal atom utilization, tunable coordination and electron environment and strong metal-support interaction, SACs have shown remarkable catalytic performance on many reactions. Over the last decade, great potential of SACs has been witnessed in the elimination of air pollutants. In this review, we first briefly summarize the synthesis methods and modulation strategies together with the characterization techniques of SACs. Next, we highlight the application of SACs in the abatement of air pollutants including CO, volatile organic compounds (VOCs) and NOx, unveiling the related catalytic mechanism of SACs. Finally, we propose the remaining challenges and future perspectives of SACs in fundamental research and practical application in the field of air pollutant removal.
Collapse
|
10
|
Chen X, Peng M, Xiao D, Liu H, Ma D. Fully Exposed Metal Clusters: Fabrication and Application in Alkane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaowen Chen
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Hongyang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
11
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
12
|
Chen Q, Peng P, Yang G, Li Y, Han M, Tan Y, Zhang C, Chen J, Jiang K, Liu L, Ye C, Xing E. Template‐Guided Regioselective Encaging of Platinum Single Atoms into Y Zeolite: Enhanced Selectivity in Semihydrogenation and Resistance to Poisoning. Angew Chem Int Ed Engl 2022; 61:e202205978. [DOI: 10.1002/anie.202205978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Qiang Chen
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Pai Peng
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Ganjun Yang
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Yanzhi Li
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Mengxi Han
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Yaozong Tan
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Chengxi Zhang
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| | - Junwen Chen
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| | - Kun Jiang
- School of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430200 China
| | - Lei Liu
- School of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430200 China
| | - Chenliang Ye
- College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Enhui Xing
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| |
Collapse
|
13
|
Chen Q, Peng P, Yang G, Li Y, Han M, Tan Y, Zhang C, Chen J, Jiang K, Liu L, Ye C, Xing E. Template‐Guided Regioselective Encaging of Platinum Single Atoms into Y Zeolite: Enhanced Selectivity in Semihydrogenation and Resistance to Poisoning. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiang Chen
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Pai Peng
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Ganjun Yang
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Yanzhi Li
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Mengxi Han
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Yaozong Tan
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Chengxi Zhang
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| | - Junwen Chen
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| | - Kun Jiang
- School of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430200 China
| | - Lei Liu
- School of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430200 China
| | - Chenliang Ye
- College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Enhui Xing
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| |
Collapse
|
14
|
Tang X, Ye J, Guo Y, Dai S. Advanced Transmission Electron Microscopy for Identification of
Atomic‐Scale
Configurations of
Zeolite‐Supported
Metal Catalysts. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuan Tang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 PR China
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 PR China
| | - Jiajie Ye
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 PR China
| | - Yun Guo
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 PR China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 PR China
| |
Collapse
|
15
|
Boronat M, Climent MJ, Concepción P, Díaz U, García H, Iborra S, Leyva-Pérez A, Liu L, Martínez A, Martínez C, Moliner M, Pérez-Pariente J, Rey F, Sastre E, Serna P, Valencia S. A Career in Catalysis: Avelino Corma. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Maria J. Climent
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Hermenegildo García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Lichen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Agustin Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Cristina Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Enrique Sastre
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, Catalysis Fundamentals, Annandale, New Jersey 08801, United States
| | - Susana Valencia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
16
|
Kurtoğlu-Öztulum SF, KaanYalçın, Zhao Y, Pelin Çağlayan H, Hoffman AS, Gates BC, Bare SR, Ünal U, Uzun A. Transformation of Reduced Graphene Aerogel-Supported Atomically Dispersed Iridium into Stable Clusters Approximated as Ir6 during Ethylene Hydrogenation Catalysis. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Tang P, Lee HJ, Hurlbutt K, Huang PY, Narayanan S, Wang C, Gianolio D, Arrigo R, Chen J, Warner JH, Pasta M. Elucidating the Formation and Structural Evolution of Platinum Single-Site Catalysts for the Hydrogen Evolution Reaction. ACS Catal 2022; 12:3173-3180. [PMID: 35558899 PMCID: PMC9086987 DOI: 10.1021/acscatal.1c05958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/04/2022] [Indexed: 12/12/2022]
Abstract
Platinum single-site catalysts (SSCs) are a promising technology for the production of hydrogen from clean energy sources. They have high activity and maximal platinum-atom utilization. However, the bonding environment of platinum during operation is poorly understood. In this work, we present a mechanistic study of platinum SSCs using operando, synchrotron-X-ray absorption spectroscopy. We synthesize an atomically dispersed platinum complex with aniline and chloride ligands onto graphene and characterize it with ex-situ electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, X-ray absorption near-edge structure spectroscopy (XANES), and extended X-ray absorption fine structure spectroscopy (EXAFS). Then, by operando EXAFS and XANES, we show that as a negatively biased potential is applied, the Pt-N bonds break first followed by the Pt-Cl bonds. The platinum is reduced from platinum(II) to metallic platinum(0) by the onset of the hydrogen-evolution reaction at 0 V. Furthermore, we observe an increase in Pt-Pt bonding, indicating the formation of platinum agglomerates. Together, these results indicate that while aniline is used to prepare platinum SSCs, the single-site complexes are decomposed and platinum agglomerates at operating potentials. This work is an important contribution to the understanding of the evolution of bonding environment in SSCs and provides some molecular insights into how platinum agglomeration causes the deactivation of SSCs over time.
Collapse
Affiliation(s)
- Peng Tang
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Hyeon Jeong Lee
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Kevin Hurlbutt
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Po-Yuan Huang
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Sudarshan Narayanan
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Chenbo Wang
- Oxford Suzhou Centre for Advanced Research, 388 Ruoshui Road, Suzhou 215123, Jiangsu Province, P. R. China
| | - Diego Gianolio
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Rosa Arrigo
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, United Kingdom
| | - Jun Chen
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Jamie H. Warner
- Materials Graduate Program, Texas Materials Institute, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas 78712, United States
| | - Mauro Pasta
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
- Oxford Suzhou Centre for Advanced Research, 388 Ruoshui Road, Suzhou 215123, Jiangsu Province, P. R. China
| |
Collapse
|
18
|
Direct assessment of confinement effect in zeolite-encapsulated subnanometric metal species. Nat Commun 2022; 13:821. [PMID: 35145095 PMCID: PMC8831493 DOI: 10.1038/s41467-022-28356-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Subnanometric metal species confined inside the microporous channels/cavities of zeolites have been demonstrated as stable and efficient catalysts. The confinement interaction between the metal species and zeolite framework has been proposed to play the key role for stabilization, though the confinement interaction is elusive to be identified and measured. By combining theoretical calculations, imaging simulation and experimental measurements based on the scanning transmission electron microscopy-integrated differential phase contrast imaging technique, we have studied the location and coordination environment of isolated iridium atoms and clusters confined in zeolite. The image analysis results indicate that the local strain is intimately related to the strength of metal-zeolite interaction and a good correlation is found between the zeolite deformation energy, the charge state of the iridium species and the local absolute strain. The direct observation of confinement with subnanometric metal species encapsulated in zeolites provides insights to understand their structural features and catalytic consequences. Zeolite-encapsulated metal nanoparticles have important catalytic properties, but their effect on the zeolite local structure has been difficult to characterize. Here the authors, using DFT calculations and scanning transmission electron microscopy, characterize the local strain due to confinement effects in metal-zeolite catalysts.
Collapse
|
19
|
Li S, Yang H, Wang S, Wang J, Fan W, Dong M. Improvement of adsorption and catalytic properties of zeolites by precisely controlling their particle morphology. Chem Commun (Camb) 2022; 58:2041-2054. [PMID: 35060979 DOI: 10.1039/d1cc05537b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An aluminosilicate zeolite has a porous structure with openings comparable to the molecular size, which endows it with unique adsorptive and catalytic properties that are highly dependent on its chemical composition and crystal morphology. Thus, the precise control or rational design of zeolite's particle morphology has attracted much attention as it can greatly improve the adsorptive separation and catalytic properties by effectively adjusting the diffusion path of adsorbates, reactants and products. This paper reviews the recent progress made in the synthesis and application of zeolites with a specific crystal/particle morphology with emphasis on the control of the crystal size and facet exposure degree, oriented assembly of crystals, creation of hierarchical porous structures and synthesis of core-shell structures. It is shown that an appropriate decrease of the crystal size and/or an increase of the exposure degree of certain facets by adding seeds and optimizing the synthesis conditions enhances the catalytic stability and product selectivity in some reactions. This can also be achieved by introducing plenty of mesopores and/or macropores in zeolites as a result of significant alleviation of diffusion limitation. Assembly of zeolite crystals into membranes on porous substrates improves the adsorptive separation performance of zeolites, for e.g. alcohol/water mixture and xylene and butane isomers. Core-shell-structured composites with metal nanoparticles or subnanoparticles as the core and the zeolite, including its modified counterpart, as the shell show excellent catalytic performance in some hydrogenation, dehydrogenation and oxidation reactions. In addition, attempts to illustrate the relationship between zeolite's particle morphology and its catalytic performance are discussed and strategies for the rational design of zeolite's particle size and behavior are envisioned.
Collapse
Affiliation(s)
- Shiying Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China.
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China.
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China.
| |
Collapse
|
20
|
Wang X, Zhang Y, Wu J, Zhang Z, Liao Q, Kang Z, Zhang Y. Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chem Rev 2021; 122:1273-1348. [PMID: 34788542 DOI: 10.1021/acs.chemrev.1c00505] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single-atom catalysis has been recognized as a pivotal milestone in the development history of heterogeneous catalysis by virtue of its superior catalytic performance, ultrahigh atomic utilization, and well-defined structure. Beyond single-atom protrusions, two more motifs of single-atom substitutions and single-atom vacancies along with synergistic single-atom motif assemblies have been progressively developed to enrich the single-atom family. On the other hand, besides traditional carbon material based substrates, a wide variety of 2D transitional metal dichalcogenides (TMDs) have been emerging as a promising platform for single-atom catalysis owing to their diverse elemental compositions, variable crystal structures, flexible electronic structures, and intrinsic activities toward many catalytic reactions. Such substantial expansion of both single-atom motifs and substrates provides an enriched toolbox to further optimize the geometric and electronic structures for pushing the performance limit. Concomitantly, higher requirements have been put forward for synthetic and characterization techniques with related technical bottlenecks being continuously conquered. Furthermore, this burgeoning single-atom catalyst (SAC) system has triggered serial scientific issues about their changeable single atom-2D substrate interaction, ambiguous synergistic effects of various atomic assemblies, as well as dynamic structure-performance correlations, all of which necessitate further clarification and comprehensive summary. In this context, this Review aims to summarize and critically discuss the single-atom engineering development in the whole field of 2D TMD based catalysis covering their evolution history, synthetic methodologies, characterization techniques, catalytic applications, and dynamic structure-performance correlations. In situ characterization techniques are highlighted regarding their critical roles in real-time detection of SAC reconstruction and reaction pathway evolution, thus shedding light on lifetime dynamic structure-performance correlations which lay a solid theoretical foundation for the whole catalytic field, especially for SACs.
Collapse
Affiliation(s)
- Xin Wang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuwei Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jing Wu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
21
|
Liu L, Corma A. Isolated metal atoms and clusters for alkane activation: Translating knowledge from enzymatic and homogeneous to heterogeneous systems. Chem 2021. [DOI: 10.1016/j.chempr.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Li C, Sun P, Li F. Hierarchical Zeolites-confined Metal Catalysts and Their Enhanced Catalytic Performances. Chem Asian J 2021; 16:2795-2805. [PMID: 34369091 DOI: 10.1002/asia.202100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Indexed: 11/10/2022]
Abstract
The confinement of metal species within hierarchical zeolites combines the acidic/basic sites of zeolites, the enhanced mass transfer of mesoporous system, and the inside active metal sites, leading to high activity, unique selectivity, and superior stability in chemicals synthesis, energy and environment catalysis. To date, review on this emerging topic is rarely reported. Herein, we classify five metals-hierarchical zeolites composite (metal@hierarchical zeolites) according to the location of metals on hierarchical structure, including metals located on micropores, intercrystalline mesopores, intracrystalline mesopores, hollow nanobox and mesoporous shells. The synthesis and catalysis applications of metal@hierarchical zeolites composite are provided, highlighting the rational design of catalyst preparation, the improved catalytic efficiency and stability of metal species. Finally, we discuss the current limitations and future opportunities for this emerging field. This Review is expected to inspire more developments and applications of metal@hierarchical zeolites.
Collapse
Affiliation(s)
- Chengyang Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100000, P. R. China
| | - Peng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
23
|
Del Campo P, Martínez C, Corma A. Activation and conversion of alkanes in the confined space of zeolite-type materials. Chem Soc Rev 2021; 50:8511-8595. [PMID: 34128513 DOI: 10.1039/d0cs01459a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Microporous zeolite-type materials, with crystalline porous structures formed by well-defined channels and cages of molecular dimensions, have been widely employed as heterogeneous catalysts since the early 1960s, due to their wide variety of framework topologies, compositional flexibility and hydrothermal stability. The possible selection of the microporous structure and of the elements located in framework and extraframework positions enables the design of highly selective catalysts with well-defined active sites of acidic, basic or redox character, opening the path to their application in a wide range of catalytic processes. This versatility and high catalytic efficiency is the key factor enabling their use in the activation and conversion of different alkanes, ranging from methane to long chain n-paraffins. Alkanes are highly stable molecules, but their abundance and low cost have been two main driving forces for the development of processes directed to their upgrading over the last 50 years. However, the availability of advanced characterization tools combined with molecular modelling has enabled a more fundamental approach to the activation and conversion of alkanes, with most of the recent research being focused on the functionalization of methane and light alkanes, where their selective transformation at reasonable conversions remains, even nowadays, an important challenge. In this review, we will cover the use of microporous zeolite-type materials as components of mono- and bifunctional catalysts in the catalytic activation and conversion of C1+ alkanes under non-oxidative or oxidative conditions. In each case, the alkane activation will be approached from a fundamental perspective, with the aim of understanding, at the molecular level, the role of the active sites involved in the activation and transformation of the different molecules and the contribution of shape-selective or confinement effects imposed by the microporous structure.
Collapse
Affiliation(s)
- Pablo Del Campo
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | | | | |
Collapse
|
24
|
Zhu T, Han Y, Liu S, Yuan B, Liu Y, Ma H. Porous Materials Confining Single Atoms for Catalysis. Front Chem 2021; 9:717201. [PMID: 34368087 PMCID: PMC8333616 DOI: 10.3389/fchem.2021.717201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, single-atom catalysts (SACs) have received extensive attention due to their unique structure and excellent performance. Currently, a variety of porous materials are used as confined single-atom catalysts, such as zeolites, metal-organic frameworks (MOFs), or carbon nitride (CN). The support plays a key role in determining the coordination structure of the catalytic metal center and its catalytic performance. For example, the strong interaction between the metal and the carrier induces the charge transfer between the metal and the carrier, and ultimately affects the catalytic behavior of the single-atom catalyst. Porous materials have unique chemical and physical properties including high specific surface area, adjustable acidity and shape selectivity (such as zeolites), and are rational support materials for confined single atoms, which arouse research interest in this field. This review surveys the latest research progress of confined single-atom catalysts for porous materials, which mainly include zeolites, CN and MOFs. The preparation methods, characterizations, application fields, and the interaction between metal atoms and porous support materials of porous material confined single-atom catalysts are discussed. And we prospect for the application prospects and challenges of porous material confined single-atom catalysts.
Collapse
Affiliation(s)
- Tao Zhu
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yiwei Han
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
| | - Shuai Liu
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
| | - Bo Yuan
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
| | - Yatao Liu
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
| | - Hongli Ma
- Institute of Atmospheric Environmental Management and Pollution Control, China University of Mining & Technology (Beijing), Beijing, China
| |
Collapse
|
25
|
Serna P, Rodríguez-Fernández A, Yacob S, Kliewer C, Moliner M, Corma A. Single-Site vs. Cluster Catalysis in High Temperature Oxidations. Angew Chem Int Ed Engl 2021; 60:15954-15962. [PMID: 33881798 DOI: 10.1002/anie.202102339] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Indexed: 12/28/2022]
Abstract
The behavior of single Pt atoms and small Pt clusters was investigated for high-temperature oxidations. The high stability of these molecular sites in CHA is a key to intrinsic structure-performance descriptions of elemental steps such as O2 dissociation, and subsequent oxidation catalysis. Subtle changes in the atomic structure of Pt are responsible for drastic changes in performance driven by specific gas/metal/support interactions. Whereas single Pt atoms and Pt clusters (> ca. 1 nm) are unable to activate, scramble, and desorb two O2 molecules at moderate T (200 °C), clusters <1 nm do so catalytically, but undergo oxidative fragmentation. Oxidation of alkanes at high T is attributed to stable single Pt atoms, and the C-H cleavage is inferred to be rate-determining and less sensitive to changes in metal nuclearity compared to its effect on O2 scrambling. In contrast, when combustion involves CO, catalysis is dominated by metal clusters, not single Pt atoms.
Collapse
Affiliation(s)
- Pedro Serna
- ExxonMobil Research and Engineering Co., Corporate Strategic Research, Annandale, NJ, 08801, USA
| | - Aida Rodríguez-Fernández
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Cientificas (UPV-CSIC), Av. de los Naranjos, s/n, 46022, Valencia, Spain
| | - Sara Yacob
- ExxonMobil Research and Engineering Co., Corporate Strategic Research, Annandale, NJ, 08801, USA
| | - Christine Kliewer
- ExxonMobil Research and Engineering Co., Corporate Strategic Research, Annandale, NJ, 08801, USA
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Cientificas (UPV-CSIC), Av. de los Naranjos, s/n, 46022, Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Cientificas (UPV-CSIC), Av. de los Naranjos, s/n, 46022, Valencia, Spain
| |
Collapse
|
26
|
Serna P, Rodríguez‐Fernández A, Yacob S, Kliewer C, Moliner M, Corma A. Single‐Site vs. Cluster Catalysis in High Temperature Oxidations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pedro Serna
- ExxonMobil Research and Engineering Co. Corporate Strategic Research Annandale NJ 08801 USA
| | - Aida Rodríguez‐Fernández
- Instituto de Tecnología Química, Universitat Politècnica de València—Consejo Superior de Investigaciones Cientificas (UPV-CSIC) Av. de los Naranjos, s/n 46022 Valencia Spain
| | - Sara Yacob
- ExxonMobil Research and Engineering Co. Corporate Strategic Research Annandale NJ 08801 USA
| | - Christine Kliewer
- ExxonMobil Research and Engineering Co. Corporate Strategic Research Annandale NJ 08801 USA
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València—Consejo Superior de Investigaciones Cientificas (UPV-CSIC) Av. de los Naranjos, s/n 46022 Valencia Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València—Consejo Superior de Investigaciones Cientificas (UPV-CSIC) Av. de los Naranjos, s/n 46022 Valencia Spain
| |
Collapse
|
27
|
Li T, Beck A, Krumeich F, Artiglia L, Ghosalya MK, Roger M, Ferri D, Kröcher O, Sushkevich V, Safonova OV, van Bokhoven JA. Stable Palladium Oxide Clusters Encapsulated in Silicalite-1 for Complete Methane Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04868] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Teng Li
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Arik Beck
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Frank Krumeich
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Luca Artiglia
- Paul Scherrer Insitute, CH-5232 Villigen, Switzerland
| | - Manoj K. Ghosalya
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Paul Scherrer Insitute, CH-5232 Villigen, Switzerland
| | - Maneka Roger
- Paul Scherrer Insitute, CH-5232 Villigen, Switzerland
- École polytechnique fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne, Switzerland
| | - Davide Ferri
- Paul Scherrer Insitute, CH-5232 Villigen, Switzerland
| | - Oliver Kröcher
- Paul Scherrer Insitute, CH-5232 Villigen, Switzerland
- École polytechnique fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne, Switzerland
| | | | | | - Jeroen A. van Bokhoven
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Paul Scherrer Insitute, CH-5232 Villigen, Switzerland
| |
Collapse
|
28
|
Chen Y, Sun H, Gates BC. Prototype Atomically Dispersed Supported Metal Catalysts: Iridium and Platinum. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004665. [PMID: 33185034 DOI: 10.1002/smll.202004665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/21/2020] [Indexed: 06/11/2023]
Abstract
When metal nanoparticles on supports are made smaller and smaller-to the limit of atomic dispersion-they become cationic and take on new catalytic properties that are only recently being discovered. The synthesis of these materials is reviewed, including their structure characterization-especially by atomic-resolution electron microscopy and X-ray absorption and infrared spectroscopies-and relationships between structure and catalyst performance, for reactions including hydrogenations, oxidations, and the water gas shift. Structure determination is challenging because of the intrinsic nonuniformity of the support surfaces-and therefore the structures on them-but fundamental understanding has advanced rapidly, benefiting from nearly uniform catalysts consisting of metals on well-defined-crystalline-supports and their characterization by spectroscopy and microscopy. Recent advances in atomic-resolution electron microscopy have spurred the field, providing stunning images and deep insights into structure. The iridium catalysts have typically been made from organoiridium precursors, opening the way to understanding and control of the metal-support bonding and ligands on the metal, including catalytic reaction intermediates. Platinum catalysts are usually made with less precision, from salt precursors, but they catalyze a wider array of reactions than the iridium, typically being stable at higher temperatures and seemingly offering rich prospect for discovery of new catalysts.
Collapse
Affiliation(s)
- Yizhen Chen
- Department of Chemical Engineering, University of California-Davis, Davis, CA, 95616, USA
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hanlei Sun
- Department of Chemical Engineering, University of California-Davis, Davis, CA, 95616, USA
- Department of Chemical and Biochemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Bruce C Gates
- Department of Chemical Engineering, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
29
|
Perez-Aguilar JE, Hughes JT, Chen CY, Gates BC. Transformation of atomically dispersed platinum in SAPO-37 into platinum clusters: catalyst for ethylene hydrogenation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01216a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomically dispersed supported platinum catalysts were synthesized by the reaction of Pt(acac)2 (acac = acetylacetonato) with the silicoaluminophosphate molecular sieve SAPO-37, with infrared spectra showing that the reaction involved SAPO OH groups.
Collapse
Affiliation(s)
| | | | - Cong-Yan Chen
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA
- Chevron Technical Center, Richmond, CA 94802, USA
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
30
|
Resasco J, Christopher P. Atomically Dispersed Pt-group Catalysts: Reactivity, Uniformity, Structural Evolution, and Paths to Increased Functionality. J Phys Chem Lett 2020; 11:10114-10123. [PMID: 33191757 DOI: 10.1021/acs.jpclett.0c02904] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of experimental and computational tools that give accurate and visual active site descriptions has renewed research interest in atomically dispersed metal catalysts. In this perspective, we describe our approach to synthesizing and understanding atomically dispersed Pt-group metals on oxide supports. Using site-specific characterization, we show that these metal species have distinct reactivity from metal clusters. We argue that producing materials where all metal sites have identical local coordination is key to both accurately assessing catalytic properties and achieving single-site behavior. Methods for assessing site uniformity are considered. We show that producing uniform metal species allows us to describe their structure at the atomic scale and understand how this structure evolves under different conditions. Finally, we suggest pathways to increased functionality for atomically dispersed catalysts, through control of their local coordination and steric environment and through cooperativity with different sites.
Collapse
Affiliation(s)
- Joaquin Resasco
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| |
Collapse
|
31
|
Wang H, Wang L, Xiao FS. Metal@Zeolite Hybrid Materials for Catalysis. ACS CENTRAL SCIENCE 2020; 6:1685-1697. [PMID: 33145408 PMCID: PMC7596864 DOI: 10.1021/acscentsci.0c01130] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 05/04/2023]
Abstract
The fixation of metal nanoparticles into zeolite crystals has emerged as a new series of heterogeneous catalysts, giving performances that steadily outperform the generally supported catalysts in many important reactions. In this outlook, we define different noble metal-in-zeolite structures (metal@zeolite) according to the size of the nanoparticles and their relative location to the micropores. The metal species within the micropores and those larger than the micropores are denoted as encapsulated and fixed structures, respectively. The development in the strategies for the construction of metal@zeolite hybrid materials is briefly summarized in this work, where the rational preparation and improved thermal stability of the metal nanostructures are particularly mentioned. More importantly, these metal@zeolite hybrid materials as catalysts exhibit excellent shape selectivity. Finally, we review the current challenges and future perspectives for these metal@zeolite catalysts.
Collapse
Affiliation(s)
- Hai Wang
- Key
Lab of Biomass Chemical Engineering of Ministry of Education, College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang Wang
- Key
Lab of Biomass Chemical Engineering of Ministry of Education, College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- (L.W.)
| | - Feng-Shou Xiao
- Key
Lab of Biomass Chemical Engineering of Ministry of Education, College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Key
Laboratory of Applied Chemistry of Zhejiang Province, Department of
Chemistry, Zhejiang University, Hangzhou 310028, China
- (F.S.X.)
| |
Collapse
|
32
|
Babucci M, Guntida A, Gates BC. Atomically Dispersed Metals on Well-Defined Supports including Zeolites and Metal–Organic Frameworks: Structure, Bonding, Reactivity, and Catalysis. Chem Rev 2020; 120:11956-11985. [DOI: 10.1021/acs.chemrev.0c00864] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Melike Babucci
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
| | - Adisak Guntida
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
| |
Collapse
|