1
|
Hirota E, Hirashima SI, Tadasue C, Suzuki A, Matsushima Y, Nakashima K, Miura T. Synthesizing Chiral Vicinal Bisphosphine Derivatives through Hydrophosphinylation and Asymmetric Protonation of Secondary Phosphine Sulfides with Vinylphosphine Oxides. J Org Chem 2025; 90:5075-5080. [PMID: 40168494 DOI: 10.1021/acs.joc.5c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Herein, we report bifunctional iminophosphorane-catalyzed hydrophosphinylation and asymmetric protonation of secondary phosphine sulfides with vinylphosphine oxides. This reaction efficiently afforded chiral vicinal bisphosphine derivatives in high yields with excellent enantioselectivities (up to 99% yield and 95% ee). Furthermore, the produced chiral vicinal bisphosphine derivatives could be readily transformed into vicinal bisphosphines and vicinal bisphosphine monosulfides. This study presents the first methodology for using secondary phosphine sulfides as pronucleophiles in asymmetric protonation reactions.
Collapse
Affiliation(s)
- Eiki Hirota
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shin-Ichi Hirashima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Chika Tadasue
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Anna Suzuki
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yasuyuki Matsushima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kosuke Nakashima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tsuyoshi Miura
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
2
|
Ma J, Duan J, Yu ZX. Ni(0)-Catalyzed Rearrangement of Vinylcyclobutanones (VCBOs) to Synthesize Six-Membered Non-Conjugated Enones. Angew Chem Int Ed Engl 2025; 64:e202417407. [PMID: 39279105 DOI: 10.1002/anie.202417407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
We report here the first nickel-catalyzed rearrangement of vinylcyclobutanones (VCBOs) under mild conditions to synthesize non-conjugated cyclohexenone derivatives, which so far do not have many ways to be accessed. The reaction exhibits a wide substrate scope with reaction yields up to 98 %. This VCBO rearrangement can also be used to access various n/6 (n=5-8) bicyclic products efficiently. Furthermore, mechanism of this rearrangement has been investigated using DFT calculations, showing that vinyl group-assisted cyclobutanone C-C cleavage is easy with a computed activation free energy of 18.1 kcal/mol.
Collapse
Affiliation(s)
- Jiguo Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jicheng Duan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
3
|
Saha J, Banerjee S, Malo S, Das AK, Das I. A Torquoselective Thermal 6π-Electrocyclization Approach to 1,4-Cyclohexadienes via Solvent-Aided Proton Transfer: Experimental and Theoretical Studies. Chemistry 2024; 30:e202304009. [PMID: 38179806 DOI: 10.1002/chem.202304009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/06/2024]
Abstract
The thermal 6π-electrocyclization of hexatriene typically delivers 1,3-cyclohexadiene (1,3-CHD). However, there is only limited success in directly synthesizing 1,4-cyclohexadiene (1,4-CHD) using such an approach, probably due to the difficulty in realizing thermally-forbidden 1,3-hydride shift after electrocyclic ring closure. The present study shows that by heating (2E,4E,6E)-hexatrienes bearing ester or ketone substituents at the C1-position in a mixture of toluene/MeOH or EtOH (2 : 1) solvents at 90-100 °C, 1,4-CHDs can be selectively synthesized. This is achieved through a torquoselective disrotatory 6π-electrocyclic ring closure followed by a proton-transfer process. The success of this method depends on the polar protic solvent-assisted intramolecular proton transfer from 1,3-CHD to 1,4-CHD, which has been confirmed by deuterium-labeling experiments. There are no reports to date for such a solvent-assisted isomerization. Density functional theory (DFT) studies have suggested that forming 1,3-CHD and subsequent isomerization is a thermodynamically feasible process, regardless of the functional groups involved. Two possible successive polar solvent-assisted proton-transfer pathways have been identified for isomerization.
Collapse
Affiliation(s)
- Jayanta Saha
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soumadip Banerjee
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata, 700032, India
| | - Sidhartha Malo
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhijit Kumar Das
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata, 700032, India
| | - Indrajit Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Lee H, Nam H, Lee SY. Enantio- and Diastereoselective Variations on α-Iminonitriles: Harnessing Chiral Cyclopropenimine-Thiourea Organocatalysts. J Am Chem Soc 2024; 146:3065-3074. [PMID: 38281151 DOI: 10.1021/jacs.3c09911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Chiral 1-pyrrolines containing a nitrile motif serve as crucial structural scaffolds in biologically active molecules and exhibit diversity as building blocks owing to their valuable functional groups; however, the asymmetric synthesis of such compounds remains largely unexplored. Herein, we present an enantio- and diastereoselective method for the synthesis of α-chiral nitrile-containing 1-pyrroline derivatives bearing vicinal stereocenters through the design and introduction of chiral cyclopropenimine-based bifunctional catalysts featuring a thiourea moiety. This synthesis entails a highly stereoselective conjugate addition of α-iminonitriles to a wide array of enones, followed by cyclocondensation, thereby affording a series of cyanopyrroline derivatives, some of which contain all-carbon quaternary centers. Moreover, we demonstrate the synthetic utility of this strategy by performing a gram-scale reaction with 1% catalyst loading, along with a variety of chemoselective transformations of the product, including the synthesis of a vildagliptin analogue. Finally, we showcase the selective synthesis of all four stereoisomers of the cyanopyrroline products through trans-to-cis isomerization, highlighting the versatility of our approach.
Collapse
Affiliation(s)
- Hooseung Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeongwoo Nam
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Eronen A, Nieger M, Kajander TA, Repo T. Stereospecific Synthesis of Cyclohexenone Acids by [3,3]-Sigmatropic Rearrangement Route. J Org Chem 2023; 88:12914-12923. [PMID: 37656942 PMCID: PMC10507681 DOI: 10.1021/acs.joc.3c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 09/03/2023]
Abstract
Herein we report a modular synthetic method for the preparation of diaryl-substituted cyclohexenone acids starting from phenyl pyruvate and suitable enones. When the reaction is carried out in alkaline tert-butanol or toluene solutions in microwave-assisted conditions mainly anti configuration products are obtained with up to 86% isolated yield. However, when the reaction is carried out in alkaline water, a mixture of products with anti and syn conformations is obtained with up to 98% overall isolated yield. Mechanistically the product with anti conformation forms by a hemiketal-oxy-Cope type [3,3]-sigmatropic rearrangement-intramolecular aldol condensation route and syn product by an intermolecular aldol condensation-electrocyclization (disrotatory type) route.
Collapse
Affiliation(s)
- Aleksi Eronen
- Department
of Chemistry, University of Helsinki, PO Box 55 (A. I. Virtasen aukio
1), 00014, Helsinki, Finland
| | - Martin Nieger
- Department
of Chemistry, University of Helsinki, PO Box 55 (A. I. Virtasen aukio
1), 00014, Helsinki, Finland
| | - Tommi A. Kajander
- Institute
of Biotechnology, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014, Helsinki, Finland
| | - Timo Repo
- Department
of Chemistry, University of Helsinki, PO Box 55 (A. I. Virtasen aukio
1), 00014, Helsinki, Finland
| |
Collapse
|
6
|
Kondoh A, Hirozane T, Terada M. Formal Umpolung Addition of Phosphites to 2‐Azaaryl Ketones under Chiral Brønsted Base Catalysis: Enantioselective Protonation Utilizing [1,2]‐Phospha‐Brook Rearrangement. Chemistry 2022; 28:e202201240. [DOI: 10.1002/chem.202201240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Takayuki Hirozane
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
7
|
Cruz PDJ, Cassels WR, Chen CH, Johnson JS. Doubly stereoconvergent crystallization enabled by asymmetric catalysis. Science 2022; 376:1224-1230. [PMID: 35679416 PMCID: PMC9467684 DOI: 10.1126/science.abo5048] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthetic methods that enable simultaneous control over multiple stereogenic centers are desirable for the efficient preparation of pharmaceutical compounds. Herein, we report the discovery and development of a catalyst-mediated asymmetric Michael addition/crystallization-induced diastereomer transformation of broad scope. The sequence controls three stereogenic centers, two of which are stereochemically labile. The configurational instability of 1,3-dicarbonyls and nitroalkanes, typically considered a liability in stereoselective synthesis, is productively leveraged by merging enantioselective Brønsted base organocatalysis and thermodynamic stereocontrol using a single convergent crystallization. The synthesis of useful γ-nitro β-keto amides containing three contiguous stereogenic centers is thus achieved from Michael acceptors containing two prochiral centers.
Collapse
Affiliation(s)
- Pedro de Jesús Cruz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William R. Cassels
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chun-Hsing Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey S. Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Rozsar D, Formica M, Yamazaki K, Hamlin TA, Dixon DJ. Bifunctional Iminophosphorane-Catalyzed Enantioselective Sulfa-Michael Addition to Unactivated α,β-Unsaturated Amides. J Am Chem Soc 2022; 144:1006-1015. [PMID: 34990142 PMCID: PMC8793149 DOI: 10.1021/jacs.1c11898] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The
first metal-free catalytic intermolecular enantioselective
Michael addition to unactivated α,β-unsaturated amides
is described. Consistently high enantiomeric excesses and yields were
obtained over a wide range of alkyl thiol pronucleophiles and electrophiles
under mild reaction conditions, enabled by a novel squaramide-based
bifunctional iminophosphorane catalyst. Low catalyst loadings (2.0
mol %) were achieved on a decagram scale, demonstrating the scalability
of the reaction. Computational analysis revealed the origin of the
high enantiofacial selectivity via analysis of relevant transition
structures and provided substantial support for specific noncovalent
activation of the carbonyl group of the α,β-unsaturated
amide by the catalyst.
Collapse
Affiliation(s)
- Daniel Rozsar
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Michele Formica
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom.,Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| |
Collapse
|
9
|
Gallarati S, Laplaza R, Corminboeuf C. Harvesting the fragment-based nature of bifunctional organocatalysts to enhance their activity. Org Chem Front 2022. [DOI: 10.1039/d2qo00550f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancing the activity of bifunctional organocatalysts: a fragment-based approach coupled with activity maps helps identifying better-performing catalytic motifs.
Collapse
Affiliation(s)
- Simone Gallarati
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ruben Laplaza
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National Center for Competence in Research – Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National Center for Competence in Research – Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National Center for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
García-Garrido SE, Presa Soto A, García-Álvarez J. Iminophosphoranes (R3P NR′): From terminal to multidentate ligands in organometallic chemistry. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Lu H, Kang X, Luo Y. Structure-Based Relative Energy Prediction Model: A Case Study of Pd(II)-Catalyzed Ethylene Polymerization and the Electronic Effect of Ancillary Ligands. J Phys Chem B 2021; 125:12047-12053. [PMID: 34694809 DOI: 10.1021/acs.jpcb.1c05143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rapidly mapping a reaction energy profile to understand the reaction mechanism is of great importance and highly desired for the discovery of new chemical reactions. Herein, a combination of density functional theory (DFT) calculations and regression analysis has been applied to construct quantitative structures-based energy prediction models, considering Pd(II)-catalyzed ethylene polymerization as an example, for rapid construction of the reaction energy profile. It is inspiring that only geometrical parameters of the reaction center of one species are capable of predicting the whole energy profile with high accuracy. The reaction energies of ethylene insertion and β-H elimination, which directly correlate with polymerization activity and the possibility of branch formation, were studied to elucidate the electronic effects of ancillary ligands. Further analyses of these models from the statistical and chemical points of view afforded useful information on the design of the catalyst ligand. The current work is expected to methodologically shed new light on rapidly mapping the energy profile of chemical reactions and further provide useful information for the development of the reactions.
Collapse
Affiliation(s)
- Han Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.,PetroChina Petrochemical Research Institute, Beijing 102206, China
| |
Collapse
|
12
|
Toffano M, Guillot R, Bournaud C, Brière J, Vo‐Thanh G. Auto Tandem Catalysis: Asymmetric Vinylogous Cycloaddition/Kinetic Resolution Sequence for the Enantioselective Synthesis of Spiro‐Dihydropyranone from Benzylidene Meldrum's Acid. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Martial Toffano
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182 Université Paris Saclay 91405 Orsay Cedex France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182 Université Paris Saclay 91405 Orsay Cedex France
| | - Chloée Bournaud
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182 Université Paris Saclay 91405 Orsay Cedex France
| | | | - Giang Vo‐Thanh
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182 Université Paris Saclay 91405 Orsay Cedex France
| |
Collapse
|
13
|
Wang J, Qi X, Min XL, Yi W, Liu P, He Y. Tandem Iridium Catalysis as a General Strategy for Atroposelective Construction of Axially Chiral Styrenes. J Am Chem Soc 2021; 143:10686-10694. [PMID: 34228930 DOI: 10.1021/jacs.1c04400] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Axially chiral styrenes are of great interest since they may serve as a class of novel chiral ligands in asymmetric synthesis. However, only recently have strategies been developed for their enantioselective preparation. Thus, the development of novel and efficient methodologies is highly desirable. Herein, we reported the first tandem iridium catalysis as a general strategy for the synthesis of axially chiral styrenes enabled by Asymmetric Allylic Substitution-Isomerization (AASI) using cinnamyl carbonate analogues as electrophiles and naphthols as nucleophiles. In this approach, axially chiral styrenes were generated through two independent iridium-catalytic cycles: iridium-catalyzed asymmetric allylic substitution and in situ isomerization via stereospecific 1,3-hydride transfer catalyzed by the same iridium catalyst. Both experimental and computational studies demonstrated that the isomerization proceeded by iridium-catalyzed benzylic C-H bond oxidative addition, followed by terminal C-H reductive elimination. Amid the central-to-axial chirality transfer, the hydroxyl of naphthol plays a crucial role in ensuring the stereospecificity by coordinating with the Ir(I) center. The process accommodated broad functional group compatibility. The products were generated in excellent yields with excellent to high enantioselectivities, which could be transformed to various axially chiral molecules.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiao-Long Min
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
14
|
Oiarbide M, Palomo C. Extended Enolates: Versatile Intermediates for Asymmetric C-H Functionalization via Noncovalent Catalysis. Chemistry 2021; 27:10226-10246. [PMID: 33961323 PMCID: PMC8361983 DOI: 10.1002/chem.202100756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/22/2022]
Abstract
Catalyst-controlled functionalization of unmodified carbonyl compounds is a relevant operation in organic synthesis, especially when high levels of site- and stereoselectivity can be attained. This objective is now within reach for some subsets of enolizable substrates using various types of activation mechanisms. Recent contributions to this area include enantioselective transformations that proceed via transiently generated noncovalent di(tri)enolate-catalyst coordination species. While relatively easier to form than simple enolate congeners, di(tri)enolates are ambifunctional in nature and so control of the reaction regioselectivity becomes an issue. This Minireview discusses in some detail this and other problems, and how noncovalent activation approaches based on metallic and metal free catalysts have been developed to advance the field.
Collapse
Affiliation(s)
- Mikel Oiarbide
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHUManuel Lardizabal 320018San SebastiánSpain
| | - Claudio Palomo
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHUManuel Lardizabal 320018San SebastiánSpain
| |
Collapse
|
15
|
Guo F, Chen J, Huang Y. A Bifunctional N-Heterocyclic Carbene as a Noncovalent Organocatalyst for Enantioselective Aza-Michael Addition Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01908] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fangfang Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Jiean Chen
- Shenzhen Bay Laboratory, Shenzhen 518055, People’s Republic of China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
16
|
Su G, Thomson CJ, Yamazaki K, Rozsar D, Christensen KE, Hamlin TA, Dixon DJ. A bifunctional iminophosphorane squaramide catalyzed enantioselective synthesis of hydroquinazolines via intramolecular aza-Michael reaction to α,β-unsaturated esters. Chem Sci 2021; 12:6064-6072. [PMID: 33996002 PMCID: PMC8098679 DOI: 10.1039/d1sc00856k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
An efficient synthesis of enantioenriched hydroquinazoline cores via a novel bifunctional iminophosphorane squaramide catalyzed intramolecular aza-Michael reaction of urea-linked α,β-unsaturated esters is described. The methodology exhibits a high degree of functional group tolerance around the forming hydroquinazoline aryl core and wide structural variance on the nucleophilic N atom of the urea moiety. Excellent yields (up to 99%) and high enantioselectivities (up to 97 : 3 er) using both aromatic and less acidic aliphatic ureas were realized. The potential industrial applicability of the transformation was demonstrated in a 20 mmol scale-up experiment using an adjusted catalyst loading of 2 mol%. The origin of enantioselectivity and reactivity enhancement provided by the squaramide motif has been uncovered computationally using density functional theory (DFT) calculations, combined with the activation strain model (ASM) and energy decomposition analysis (EDA). The activation of both aromatic and aliphatic ureas as N-centered nucleophiles in intramolecular Michael addition reactions to α,β-unsaturated esters was achieved under bifunctional iminophosphorane squaramide superbase catalysis.![]()
Collapse
Affiliation(s)
- Guanglong Su
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Connor J Thomson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK .,Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam De Boelelaan 1083, 1081 HV Amsterdam The Netherlands
| | - Daniel Rozsar
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Kirsten E Christensen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam De Boelelaan 1083, 1081 HV Amsterdam The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
17
|
Formica M, Rozsar D, Su G, Farley AJM, Dixon DJ. Bifunctional Iminophosphorane Superbase Catalysis: Applications in Organic Synthesis. Acc Chem Res 2020; 53:2235-2247. [PMID: 32886474 DOI: 10.1021/acs.accounts.0c00369] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To improve the field of catalysis, there is a substantial and growing need for novel high-performance catalysts providing new reactivity. To date, however, the set of reactions that can be reliably performed to prepare chiral compounds in largely one enantiomeric form using chiral catalysts still represents a small fraction of the toolkit of known transformations. In this context, chiral Brønsted bases have played an expanding role in catalyzing enantioselective reactions between various carbon- and heteroatom-centered acids and a host of electrophilic reagents. This Account describes our recent efforts developing and applying a new family of chiral Brønsted bases incorporating an H-bond donor moiety and a strongly basic iminophosphorane, which we have named BIMPs (Bifunctional IMinoPhosphoranes), as efficient catalysts for reactions currently out of reach of more widespread tertiary amine centered bifunctional catalysts. The iminophosphorane Brønsted base is easily generated by the Staudinger reaction of a chiral organoazide and commercially available phosphine, which allows easy modification of the catalyst structure and fine-tuning of the iminophosphorane pKBH+. We have demonstrated that BIMP catalysts can efficiently promote the enantioselective addition of nitromethane to low reactivity N-diphenylphosphinoyl (DPP)-protected imines of ketones (ketimines) to access valuable chiral diamine and α-quaternary amino acid building blocks, and later extended this methodology to phosphite nucleophiles. Subsequently, the reaction scope was expanded to include the Michael addition of high pKa alkyl thiols to α-substituted acrylate esters, β-substituted α,β-unsaturated esters, and alkenyl benzimidazoles as well as the challenging direct aldol addition of aryl ketones to α-fluorinated ketones. Finally, BIMP catalysts were shown to be used in key steps in the synthesis of complex alkaloid natural products (-)-nakadomarin A and (-)-himalensine A, as well as in polymer synthesis. In most cases, the predictable nature of the BIMP promoted reactions was demonstrated by multigram scale-up while employing low catalyst loadings (down to 0.05 mol%). Furthermore, it was shown that BIMP catalysts can be easily immobilized onto a solid support in one-step for increased catalyst recycling and flow chemistry applications. Alongside our own work, this Account also includes elegant work by Johnson and co-workers utilizing the BIMP catalyst system, when alternative catalysts proved suboptimal.
Collapse
Affiliation(s)
- Michele Formica
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Daniel Rozsar
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Guanglong Su
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Alistair J. M. Farley
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Darren J. Dixon
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| |
Collapse
|
18
|
Sun C, Qi X, Min XL, Bai XD, Liu P, He Y. Asymmetric allylic substitution-isomerization to axially chiral enamides via hydrogen-bonding assisted central-to-axial chirality transfer. Chem Sci 2020; 11:10119-10126. [PMID: 34094274 PMCID: PMC8162293 DOI: 10.1039/d0sc02828b] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Axially chiral enamides bearing a N–C axis have been recently studied and were proposed to be valuable chiral building blocks, but a stereoselective synthesis has not been achieved. Here, we report the first enantioselective synthesis of axially chiral enamides via a highly efficient, catalytic approach. In this approach, C(sp2)–N bond formation is achieved through an iridium-catalyzed asymmetric allylation, and then in situ isomerization of the initial products through an organic base promoted 1,3-H transfer, leading to the enamide products with excellent central-to-axial transfer of chirality. Computational and experimental studies revealed that the 1,3-H transfer occurs via a stepwise deprotonation/re-protonation pathway with a chiral ion-pair intermediate. Hydrogen bonding interactions with the enamide carbonyl play a significant role in promoting both the reactivity and stereospecificity of the stepwise 1,3-H transfer. The mild and operationally simple formal N-vinylation reaction delivered a series of configurationally stable axially chiral enamides with good to excellent yields and enantioselectivities. Axially chiral enamides bearing a N–C axis have been recently studied and were proposed to be valuable chiral building blocks, but a stereoselective synthesis has not been achieved.![]()
Collapse
Affiliation(s)
- Chao Sun
- School of Chemical Engineering, Nanjing University of Science & Technology Nanjing 210094 China
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Xiao-Long Min
- School of Chemical Engineering, Nanjing University of Science & Technology Nanjing 210094 China
| | - Xue-Dan Bai
- School of Chemical Engineering, Nanjing University of Science & Technology Nanjing 210094 China
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA .,Department of Chemical and Petroleum Engineering, University of Pittsburgh Pittsburgh Pennsylvania 15261 USA
| | - Ying He
- School of Chemical Engineering, Nanjing University of Science & Technology Nanjing 210094 China
| |
Collapse
|